
Rewriting Systems over Nested Data Words
Invariance checking for systems with dynamic control and

data structures

A. Bouajjani C. Drăgoi Y. Jurski M. Sighireanu
{abou,cezarad,jurski,sighirea}@liafa.jussieu.fr

LIAFA, University of Paris Diderot and CNRS, 75205 Paris 13, France

Abstract. We propose a generic framework for reasoning about infinite
state systems handling data like integers, booleans etc. and having com-
plex control structures. We consider that configurations of such systems
are represented by nested data words, i.e., words of ... words over a po-
tentially infinite data domain. We define a logic called NDWL allowing to
reason about nested data words, and we define rewriting systems called
NDW-RS over these nested structures. The rewriting systems are con-
strained by formulas in the logic specifying the rewriting positions as well
as structure/data transformations. We define a fragment Σ∗

2 of NDWL
with a decidable satisfiability problem. Moreover, we show that the tran-
sition relation defined by rewriting systems with Σ∗

2 constraints can be
effectively defined in the same fragment. These results can be used in
the automatization of verification problems such as inductive invariance
checking and bounded reachability analysis. Our framework allows to rea-
son about a wide range of concurrent systems including multithreaded
programs (with procedure calls, thread creation, global/local variables
over infinite data domains, locks, monitors, etc.), dynamic networks of
timed systems, cache coherence/mutex/communication protocols, etc.

1 Introduction

Automated verification of modern software systems require reasoning about sev-
eral complex features such as dynamic creation of concurrent threads, data
manipulation, procedure calls, timing constraints, etc. For that, infinite-state
models must be considered allowing to capture these features, and algorithmic
techniques must be designed allowing to cope with these multiple sources of
infinity in the state space.

We introduce in this paper a logic-based framework for reasoning about
systems with composite (or nested) data structures such as multi-sets of inte-
gers, multi-dimensional arrays of integers, arrays of stacks or queues of integers.
Nested data structures are also relevant when reasoning about systems with a
complex control structure. For instance, the configuration of a program with dy-
namic thread creation and procedure calls can be naturally modeled as multi-sets
of stacks over some potentially infinite domain of data (which can be themselves
composite data structures).

Mathematical and Engineering Methods in Computer Science (MEMICS), Znojmo, Czech Republic, 2009.
Petr Hliněný, Vashek Matyáš, Tomáš Vojnar (Eds.)
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/DROPS.MEMICS.2009.2356

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62915052?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

We consider nested data words (NDW for short1) as formal objects for the
representation of configurations of such systems with complex control and data.
The domain of NDW is parameterized by the domain of (scalar) data used in
these objects. We propose a logic, NDWL, for reasoning about such objects.
The logic NDWL is parametrized by a data logic (a first order logic over the
chosen data domain). NDWL allows to constrain the values of the data located
at different nesting levels and at different positions in these nested data words.
We consider a fragment of NDWL, called Σ∗2 , which consists of all formulas of the
form ∃≤k∀k∃≤k−1∀k−1 . . . ∃≤1∀1. ϕ where the quantifiers are on variables ranging
over positions at different nesting levels of the structures, and ϕ is a formula (in
the considered data logic) constraining the data attached to these positions.
The satisfiability problem is decidable for Σ∗2 whenever the underlying logic on
scalar data is. We show that this result can be used for checking automatically the
invariance of assertions w.r.t. relations on NDW which are effectively represented
in Σ∗2 .

Then, we introduce a class of rewriting systems over NDW, called NDW-RS.
Each rewriting rule in a NDW-RS is constrained by formulas in NDWL spec-
ifying the rewriting positions and the structure/data transformation at these
positions. We associate with each rewriting rule a NDWL formula characterizing
the relation on NDWs induced by this rule. Therefore, we obtain a procedure for
checking automatically invariance properties w.r.t. this class of models.

Finally, we show that our framework allows to deal with a large class of sys-
tems including distributed mutual exclusion protocols, cache coherence proto-
cols, timed networks. In particular, we provide a systematic modeling for multi-
threaded programs with procedure calls and synchronization by monitors.
Related work. The verification of dynamic/parametrized networks of infinite-
state processes has been addressed in several papers such as [2, 13, 10, 4, 11, 9, 8,
14]. All these works consider only one level nesting of data structures, i.e., collec-
tions (multisets, arrays, words) over infinite scalar data. Recently, [1, 15] propose
a framework allowing two levels of nesting with a special form: N processes may
have local arrays of integers of size exactly N . The verification approach used in
these works is upper-approximate backward reachability analysis for a particular
class of data constraints (gap order constraints on integers). Our work offers a
larger framework for modeling and specification. On the other hand, while our
framework allows for automatic inductive invariance checking, [13, 1, 4] allow for
more automated verification of safety properties based on abstract analysis.

In comparison with [9, 8], this paper presents several significant and nontriv-
ial extensions. First, we consider a more general framework where composite
(nested) data structures can be handled. This allows to deal with classes of sys-
tems (such as multithreaded programs with infinite data and unbounded number
of monitors/locks, etc.) which cannot be handled in the previous frameworks.
Second, we consider here a more general class of rewriting systems (with mixed
existential and universal rewriting strategies) allowing to model a larger class of
communication and synchronization primitives. For instance, broadcast commu-

1 NDW are not related with “nested words” in [3]

2

nication cannot be considered in the frameworks defined in our previous work,
and the same holds for timing constraints (which require a global synchronization
of the clocks).

Let us finally mention that logics on data words/trees have been proposed
for reasoning about XML documents [6, 5, 12]. The considered logics and the
obtained results in these works are not comparable with ours.

2 Motivation

We are interested in verifying automatically concurrent recursive programs with
dynamic process creation, where the processes use data from infinite domains.
The processes synchronize by monitors. The control is changed using sequential
composition, conditionals, “while” loops, and procedures calls2. In the following
we give an example of such a program.

Example The program, given in Fig. 1, is written in a Java-like syntax. An array
M of monitors is accessed concurrently by threads created during the execution
of the program. (The size of M changes by creating threads therefore monitors;
the code for thread creation is omitted). Each thread has a unique identifier
id≥ 0 and has the task of creating a monitor and putting it in M at index id.

1 Vector<Moni> M = new Vector<Moni >() ;

2 monitor Moni {//Monitors d e f i n i t i on

3 int id ;

4 procedure p () {
5 int j = value in [0 , id) ;

6 i f (M. get (j)!= null)

7 M. get (j) . p () ;

8 }
9 thread T {//Threads d e f i n i t i on

10 int id ;

11 procedure run () {
12 M. s e t (id , new Moni (id)) ;

13 M. get (id) . p () ;

14 }
15 }

Fig. 1. Example of program.

All monitors have the same type,
Moni, which has one procedure p, i.e.,
p shall be executed in mutual exclu-
sion. The procedure chooses a number
j strictly smaller than the identifier of
its owning monitor and, if the monitor
M[j] has been created, it calls its pro-
cedure. The property to check on such
programs is the absence of deadlock
due to the mutual waiting on the moni-
tors. The inter-blocking of threads may
appear if a thread i1 has locked the
monitor M[j1] and it is waiting now to
lock the monitor M[j2], while, in par-

allel, a thread i2 has locked the monitor M[j2] and it is waiting now to lock
the monitor M[j1]. The absence of deadlock can be established by checking the
invariance property that the call stacks of all threads are always sorted w.r.t.
their integer values.

Representing program configurations by nested data words The configurations of
the program are given by the configuration of the vector M and the configuration
of threads, where each of these threads has an attached unbounded call stack,
and each of these stacks contains values over the infinite domain of integers
(corresponding to the values of variables id and j). We represent the threads
configuration as words where each position denotes a thread. Therefore, each

2 We do not allow pointer manipulation.

3

position has attached an integer data and a subword over integers, denoting the
identity of the process and its call stack. The vector elements are distinguished
positions in this nested data word, that have attached only the identity of the
monitor and an empty subword. This structure of word of words of ... words
we called it nested data words (NDW) over a potentially infinite data domain.
Let Σ be a finite alphabet, and let D be a (infinite) data domain. The nested
data words domain NDW is the union of the family {NDWk}k≥0 where (i) for
k ≥ 1, NDWk contains all sequences indexed by subsets of N with values in
Σ × D × NDWk−1, i.e., NDWk = {w | w : N ⇀ Σ × D × NDWk−1}, (ii) NDW0

contains only the empty word, denoted ε, ε(i) is undefined for all i ∈ N.
The elements of NDWk are called nested data words of level k. Since any

w ∈ NDW is a partial function we denote by dom(w) the subset of N where w is
defined. We call indexes the natural numbers in the domain of w ∈ NDW; their
level is given by the level of the word they index.

Given a word w in NDWk (k > 1) and p ∈ dom(w), then label(w[p]) (resp.
data(w[p]), ndw(w[p])) denotes the first (resp. second, third) member of the tu-
ple w[p]. These notations extend to sequences of indexes, e.g., label(w[p1, . . . , pj])
(1 < j ≤ k) denotes the label attached to index pj of the inner subword
ndw(w[p1, . . . , pj−1]) (label(w[p1, . . . , pj]) = label(ndw(w[p1, . . . , pj−1])[pj])).

7

R 2 R 7 R 5

A 7

C 5

A 2

R 3

A 3

R 1

0 1 2 3 4 5 6

Fig. 2. Element of NDW2.

Fig. 2 provides an example of a nested data
word w ∈ NDW2 built on the finite alpha-
bet Σ = {R,A,B,C,D} and the data domain
D = N. This word is a simplified representa-
tion for the configurations of the program in

Section 1 (the value of j is omitted and also the elements of the array M are omit-
ted). The domain of w is {2, 3, 5, 6, 7}, i.e., there are five created threads. The
labels A,B,C, and D denote the control points at line 14, 8, 7, 4 respectively.
These control points are important because they correspond to calls of /re-
turns from the procedure p. Notice that, label(w[6, 0]) = A, data(w[6]) = 7 and
ndw(w[6]) = [0 7→ (A, 7), 1 7→ (C, 5)] (the integer numbers in ndw(w[6]) are the
identities of the monitors locked by the thread with the identity data(w[6]) = 7).

Reasoning about programs To prove safety properties (e.g., the absence of dead-
lock) we use invariant checking. Given a set of initial configurations Init, a set
of safe configurations Safe and a set of configurations Inv, we have to check
that Inv is an inductive invariant and that Inv ⊆ Safe. Inv is an inductive
invariant if (1) Init ⊆ Inv, and (2) for every statement st of the program,
post(st, Inv) ⊆ Inv, where post(st, Inv) denotes the set of configurations ob-
tained by executing st on Inv.

We give a logical framework to specify properties of program configura-
tions and transformations between configurations. We define a multi-sorted sec-
ond order logic called nested data word logic, NDWL. Sets of configurations,
like Init, Inv, and Safe are modeled by formulas in NDWL, ϕInit, ϕInv, resp.
ϕSafe and the relation between configurations defined by post(st, •) is a formula
ϕpost(st)(γ, γ′) where γ and γ′ represent the configuration before resp. after the
execution of statement st. Then, a formula ϕInv is an inductive invariant if

4

(1) ϕInit(γ) ∧ ¬ϕInv(γ) is unsatisfiable and (2) for each program statement st,
ϕInv(γ) ∧ ϕpost(st)(γ, γ′) ∧ ¬ϕInv(γ′) is unsatisfiable.

Formulas in NDWL can specify, properties of the global variables and con-
figurations of processes. For example, using NDWL one can specify properties
on the call stack of some process, relations between two call stacks, or relations
between global and local variables.

3 Nested data word logic NDWL

The logic NDWL is parameterized by a (first-order) logic FO(D,O,P) on the
considered data domain D, i.e., by the set of operations O and by the set of
basic predicates (relations) P allowed on elements of D.

Syntax Consider the following pairwise disjoint sets of variables: (1) D (of ele-
ments denoted by b, c, d, . . .) is the set of data variables taking values in D, (2)
Γ (of elements denoted by γ, γ′, γ1, . . .) is the set of nested data word variables
taking values in NDW, (3) I (of elements denoted by x, y, . . .) is the set of index
variables taking values in N, and (4) I (of elements denoted by X,Y, . . .) is the
set of index-set variables taking values in 2N.

Additionally, each variable, which is not a data variable, is indexed by a
number from 1 to N called the level of the variable. These levels define a partition
on Γ, I, I : Γ =

⋃
1≤k≤N Γk, resp. I =

⋃
1≤k≤N Ik, I =

⋃
1≤k≤N Ik where Γk

(resp. Ik, Ik) is the set of nested data word (resp. index, index-set) variables of
level k. The syntax of terms and formulas in NDWL is given by the following
grammars:

t ::= d | o(t1, . . . , tm) | υ(tt[x0, . . . , xp]) tt ::= γ | δ(tt[x0, . . . , xp])
ϕ ::= true | r(t1, . . . , tm) | A(tt[x0, . . . , xp]) | 0 < x | x < x′ | x ∈ X | idx(x, tt)

| ∃x. ϕ | ∃d. ϕ | ¬ϕ | ϕ ∨ ϕ

where o is an operation in O of arity m ≥ 0, t is a data term and tt is a nested
data word term (ndw-term for short), x, x′, x0, . . . , xp,(p ≥ 0) are in I, r is a
predicate in P of arity m, A ∈ Σ, 0 is a constant index, X ∈ I, d ∈ D, and γ ∈ Γ .
The elements generated by this grammar respect the following level constraints:
(1) x and x′ have the same level in x < x′ (2) x and tt have the same level in
idx(x, tt) (3) x and X have the same level in x ∈ X (4) if tt is a ndw-term of level
k then δ(tt[x0, . . . , xp]) (resp. υ(tt[x0, . . . , xp])) is a ndw-term of level k − p − 1
(resp. a data term) and then x0, x1, . . . , xp have levels k, k− 1, . . . , k− p and
k − p ≥ 1; (5) t1, . . . , tm are data terms, i.e., they have level 0, in r(t1, . . . , tm)
and in o(t1, . . . , tm); (6) if tt is a ndw-term of level k in A(tt[x0, . . . , xp]) then
k − p ≥ 1 and x0, x1, . . . , xp have levels k, k − 1, . . . , k − p.

As usual, conjunction (∧), implication (⇒), and universal quantification (∀)
can be defined in terms of ¬, ∨, and ∃. We also define equality (=), disequality
(6=) and inequality (≤) in terms of < and boolean connectives. To emphasize
the level of some quantified variable, we use notations ∃k (resp. ∀k) instead of ∃
(resp. ∀).

Notice that the variables in Γ and I are free in any NDWL formula. We
assume w.l.o.g. that in every formula, each variable is quantified at most once.

5

Semantics Formally, a model of a NDWL formula is a mapping M : N∗ → 2N

which gives for each level k the set of positions defined within the model (notation
Mk=M(k)) and valuations of free variables. A valuation of index variables is
a partial mapping ρ ∈ [I ⇀ N] s.t. variables in Ik take values in Mk. We
extend ρ by ρ(0) = 0. A valuation of index-set variables is a partial mapping
ν ∈ [I ⇀ 2N] s.t. for any variable X ∈ Ik, ν(X) ⊆ Mk. A valuation of data
variables is a partial mapping β ∈ [D ⇀ D]. A valuation of NDW variables is
a partial mapping θ ∈ [Γ ⇀ NDW] s.t. variables in Γk take values in NDWk.
Moreover, for all variables γ ∈ Γk, dom(θ(γ)) ⊆Mk, and so on recursively, i.e.,
for any subword of θ(γ), w ∈ NDW` with 1 ≤ ` < k, dom(w) ⊆M`.

The data terms t are interpreted into values in D; they denote the values
stored at different positions of some (inner) word. The ndw-terms tt are inter-
preted into nested data words of the corresponding level. Formulas in NDWL can
express ordering relations between indexes (x < x′) and the membership rela-
tion between an index and an index-set (x ∈ X) or an index and the definition
domain of a nested data word (idx(x, tt)). Intuitively, A(tt[x0, . . . , xp]) says that
tt is interpreted into some word w and the indexes x0, . . . , xp form a valid path
to an inner word of w s.t. label(w[x0, . . . , xp]) = A. The concept of valid path
refers to the fact the x0 must be defined in w, x1 ∈ dom(ndw(w[x0])) and so
forth xp must be defined in ndw(w[x0, . . . , xp−1]).

In general, a term δ(tt[x0, . . . , xp]) or υ(tt[x0, . . . , xp]) is well defined if
x0, . . . , xp forms a valid path to an inner word of the word tt interprets into.
In the following we consider that γ interprets into w the nested data word pic-
tured in Fig. 2. Then, when x = 6 the term δ(γ[x]) denotes ndw(w[6]) and
υ(γ[x]) interprets into 7. The atomic formulas built over non well defined terms
are false. This fact might induce some difficulties when reasoning about nested
structures. E.g., the formula ∀2y∃1x. ¬A(γ[y, x]) saying that any subword of γ
shall have an index not labeled by A, has a model in which γ is interpreted to
w. This happens even if all defined positions in ndw(w[2]) are labeled by A; in
this case, a value for x that satisfies the property is an index ofM1 not defined
in ndw(w[2]), e.g., 1 ∈ M1 since 1 ∈ dom(ndw(w[6])) but 1 6∈ ndw(w[2]). To
obtain the intuition and reject this model, we must specify that only indexes y in
the domain of w are considered: ∀2y∃1x. idx(y, γ) =⇒ idx(x, γ[y]) ∧ ¬A(γ[y, x]).

Examples In the following, we consider that γ is interpreted to w, the nested
data word w in Fig 2. Then, the following formula states that all threads
in the configuration γ are running and their identity is smaller than 10:
∀2y. idx(y, γ) =⇒ R(γ[y]) ∧ υ(γ[y]) ≤ 10. The formula ∀2y∃1x. idx(y, γ) =⇒
idx(x, γ[y]) ∧ υ(γ[y, x]) ≥ 2 says that all the inner words of w have an index
whose data is at least 2. Finally, the next formula says that all the threads
in the configuration denoted by γ have their call stack (represented by the in-
ner word) sorted w.r.t. the identity of the owned monitors: ∀2z∀1x, y. (x <
y ∧ idx(z, γ) ∧ idx(x, γ[z]) ∧ idx(y, γ[z])) =⇒ υ(γ[z, x]) > υ(γ[z, y]).

Syntactical forms and fragments A formula is in prenex normal form (PNF)
if it is of the form Q1z1Q2z2 . . . Qmzm. ϕ where (1) Q1, . . . , Qm ∈ {∃,∀}, (2)

6

z1, . . . , zm ∈ I ∪D, and (3) ϕ is a quantifier-free formula. It can be proved that
for every formula ϕ in NDWL, there exists an equivalent formula in PNF.

We consider {Σ`
2}`≥0 and {Θ`

1}`≥0 two fragments of NDWL defined by re-
stricting the quantifier alternation over index variables of the same level in PNF
formulas. We define Σ∗2 =

⋃
`≥0Σ

`
2 and Θ∗1 =

⋃
`≥0Θ

`
1 where

Σ`
2 = {Ql . . . Q2Q1. ϕ | Qi = ∃≤i−→x i∃

−→
d i∀i−→y i, 1 ≤ i ≤ l, and ϕ quantifies over D}

Θ`
1 = {Sl . . . S1. φ | Si = ∃i−→x or Si = ∀i−→x , 1 ≤ i ≤ l, and φ quantifies over D}

Notice that, Θ∗1 is a subset of Σ∗2 which is closed under all boolean operations
while Σ∗2 is closed only under disjunction and conjunction. All the formulas given
as example above are in the Θ∗1 fragment.

4 Application to verification

The satisfiability problem for the full NDWL is not decidable. E.g., [8] proves
the undecidability of this problem for a subfragment of NDWL, which allows
∀∗∃∗ quantification over variables of the same level. The next theorem provides
a positive result for a fragment of NDWL.

Theorem 1. Whenever the data logic FO(D,O,P) has a decidable satisfiability
problem, the satisfiability problem of the fragment Σ∗2 of NDWL is also decidable.

The proof of this theorem is similar to the decidability proof for CSL logic
in [7]. The proof gives a decision procedure whose complexity is NP when the
number of universally quantified variables is fixed. Moreover, the structure of the
nested data words is simpler than the one of the heap graphs in CSL which leads
to a more efficient implementation for the decision procedure. The decidability
result in Theorem 1 is used to automate invariant checking.

Theorem 2. Checking that a formula ϕInv ∈ Θ∗1 is an inductive invariant is
decidable for specifications with the transition relation ϕpost(st) in Σ∗2 for every
program statement st, when the underlying logic, FO(D,O,P), has a decidable
satisfiability problem.

In the next section, we introduce a formalism to specify the transition relation
of a system, i.e., ϕpost, with formulas in Σ∗2 . This formalism handles a large
class of complex systems with interesting control structures like rendez-vous,
broadcast, procedure call, process creation, locks.

5 Rewriting systems over nested data words

A nested data words rewriting system (NDW-RS for short) is a pair RS = (Σ,∆)
where Σ is a finite set of labels, and ∆ is a finite set of rewriting rules. Each rule
may be an existential rule, an universal rule, or a general (mixed existential and
universal) rule. In the following, we give the syntax and the intuitive semantics
of the rewriting rules.
The existential rules have the following syntax:

7

−→
A ↪→]

−→
B : ϕg / ϕa (1)

where
−→
A and

−→
B are labels in Σ,] is the rewriting policy that can be one of

multiset (] = m), factor (] = f), or suffix (] = s), and ϕg and ϕa are NDWL
formulas.

An existential rule selects the nested data word rewritten using the guard ϕg.
On this word, the rule rewrites according to the policy the indexes labeled by−→
A and constrained using ϕg into indexes labeled by

−→
B whose data are assigned

using ϕa. In ϕg and ϕa, the path to the rewritten word, the indexes labeled by
−→
A , and those labeled by

−→
B are denoted using variables

−→
ξ , −→x , resp. −→y . Also,

the initial (resp. resulting) nested data word is denoted by the NDW variable γ
(resp. γ′). Fig. 3 (1) gives an example of a thread creation in the configuration
given in Fig. 2 modeled by the existential rule R1 below:

R1 : R ↪→m R R : υ(γ[x1]) ≥ 2 / υ(γ′[y1]) = υ(γ[x1]) ∧ δ(γ′[y1]) = δ(γ[x1])∧
υ(γ′[y2]) = 2υ(γ[x1])

Intuitively, a thread with the identity not smaller than 2 spawns a new thread
with the identity doubled. Formally, the rule rewrites γ at an index x1 labeled
by R that stores a value υ(γ[x1]) ≥ 2. The rewriting introduces two positions
labeled by R: y1 is a copy of x1 and y2 has attached an integer with the data
twice the value of υ(γ[x1]) and an empty sub-word (in Fig. 3 (1) a thread with
the identity 4 is spawned).

0

R 2 R 5

A 7

B 5

(1) (2)

R 7

D 1

R 2 R 7 R 5

A 7

C 5

R 4

A 2 A 2

R 3

A 3

R 1

876543210

R 3R 1

A 3

0 1 2 3 4 5 6 7

R 3 R 8 R 6

A 7

C 5

(3)

A 2

R 4

A 3

R 1

7654321

Fig. 3. Applying R1, R2 resp. R3 on the word of Fig. 2.

Note that more than one choice is possible for the indexes that are rewrit-
ten, i.e., −→x and −→y . The rewriting policy refines the selection of these indexes.
For example, the multiset policy puts no ordering relation between indexes in
−→x (resp. −→y); it says that rewriting concerns (min(|−→x |, |−→y |)) positions from γ
satisfying ϕg plus some added (resp. removed) positions that were not defined
in the initial (resp. resulting) word. For example, in the rule R1 y2 6∈ dom(γ)
but it is defined in γ′, y2 ∈ dom(γ′).

The suffix rewriting policy says that −→x (and −→y) are the last |−→x |, (resp. |−→y |)
consecutive positions of the subword rewritten. The call of the procedure p at
line 7 in Fig.1 on a monitor with the identity 1 in a thread with the identity 7
is modeled by an existential rewriting rule with suffix rewriting policy:

R2 : C ↪→s B D : R(γ[ξ])∧υ(γ[ξ]) = 7/υ(γ[ξ, x1]) = υ(γ′[ξ, y1])∧υ(γ′[ξ, y2]) = 1

where C is the control point of the process at the call of p, B is the return point
after the call of p, and D is the entry control point of p; the process calling p is
selected using ϕg, the local data of the new position (labeled by D) is initialised

8

using ϕa. Existential rewriting rules can model communication by shared, global
variables or rendez-vous.
The universal rules have the following syntax:

−→
C 7→

−→
D : ψg / ψa (2)

where
−→
C and

−→
D are labels in Σ and ψg and ψa are NDWL formulas.

A universal rule rewrites all indexes labeled by
−→
C and satisfying the guard

ψg by replacing their label with the respective label in
−→
D and their data with the

data assigned in ψa. To refer the positions rewritten we use the set of variables
−→u (|−→u | = |

−→
C | = |

−→
D |). The formulas ψg and ψa contain as free variables

−→
ξ ,

γ, and γ′ with the same semantics as in existential rules. Fig. 3 (3) shows the
nested data word resulting by applying the universal rule below on the word of
Fig. 2: R3 : R 7→ R : υ(γ[u]) ≥ 2 / υ(γ′[u]) = υ(γ[u]) + 1
The rule increments the identity of all threads having the identity greater than
2. In this way it will be possible to create later a thread with the identity 2.
The mixed rules combine an existential and an universal rule as follows:

−→
A ↪→]

−→
B : ϕg / ϕa |

−→
C 7→

−→
D : ψg / ψa (3)

The subword of γ rewritten (given by
−→
ξ) is fixed in ϕg and ψg. The indexes

rewritten by the existential part (−→x and −→y) may be used in ψg and ψa to choose
the indexes −→u and their new data, i.e., all the four formulas ϕg, ϕa, ψg, ψa share
the same index variables in

−→
ξ , −→x , and −→y . These rules model statements like

notifyAll(), in synchronization by monitors, or time elapsing in networks where
processes manipulate clocks.

Formally, the semantics of rewriting any rule R is given by NDWL formulas
denoted reachR(γ, γ′), where γ denotes the word to be rewritten (it satisfies the
guard ϕg/ψg) and γ′ denotes the word after the rewriting.

We denote by NDW-RS[Σ∗2] the class of NDW-RS where any rewriting rule
has the constraints ϕg and ϕa in Σ∗2 , ψg and ψa in Θk

1 .

Proposition 1. For every mixted rule of a rewriting system in NDW-RS[Σ∗2],
the associated NDWL formula is in the fragment Σ∗2 .

Then, the following theorem is a consequence of the results given in Section 4.

Theorem 3. Checking that a formula ϕ ∈ Θ∗1 is an inductive invariant is de-
cidable for any system in NDW-RS[Σ∗2], if the underlying logic FO(D,O,P) has
a decidable satisfiability problem.

Notice that all the examples of rewriting rules given in this section belong to
a system in NDW-RS[Σ∗2].

6 Conclusion

We have defined a generic framework for reasoning about unbounded networks
of processes with complex data and control structures. Various instances of this
framework allow to deal in a uniform way with important classes of system

9

models such as dynamic networks of processes with counters, clocks, unbound-
ed/parametric structures (arrays, stacks, queues) over infinite data domains, etc.
This is based on generic decidability and closure results for a (useful fragment
of a) logic for specifying configurations of such networks as nested data words.
Several classes of actions in such networks can be modeled in this logical frame-
work. For example, the process creation, the procedure calls and the rendez-vous
are modeled by existential rewriting rules while global synchronization between
processes (or broadcast) is modeled using universal and mixed rewriting rules.

Future work includes extending our framework by developing techniques for
compositional verification of concurrent programs.

References

1. P.A. Abdulla, G. Delzanno, and A. Rezine. Parameterized verification of infinite-
state processes with global conditions. In Proc. of CAV, volume 4590 of LNCS,
pages 145–157, 2007.

2. P.A. Abdulla and B. Jonsson. Verifying networks of timed processes (extended
abstract). In Proc. of TACAS, volume 1384 of LNCS, pages 298–312, 1998.

3. R. Alur and P. Madhusudan. Adding nesting structure to words. J.ACM, 56(3),
2009.

4. T. Arons, A. Pnueli, S. Ruah, J. Xu, and L.D. Zuck. Parameterized Verification
with Automatically Computed Inductive Assertions. In Proc. of CAV, volume 2102
of LNCS, pages 221–234, 2001.

5. M. Bojanczyk, C. David, A. Muscholl, Th. Schwentick, and L. Segoufin. Two-
variable logic on data trees and XML reasoning. In Proc. of PODS, pages 10–19.
ACM, 2006.

6. M. Bojanczyk, A. Muscholl, Th. Schwentick, L. Segoufin, and C. David. Two-
variable logic on words with data. In Proc. of LICS, pages 7–16. IEEE, 2006.

7. A. Bouajjani, C. Drăgoi, C. Enea, and M. Sighireanu. A logic-based framework for
reasoning about composite data structures. In Proc. of CONCUR, volume 5710 of
LNCS, pages 178–195, 2009.

8. A. Bouajjani, P. Habermehl, Y. Jurski, and M. Sighireanu. Rewriting Systems
with Data. In Proc. of FCT, volume 4639 of LNCS, pages 1–22, 2007.

9. A. Bouajjani, Y. Jurski, and M. Sighireanu. A generic framework for reasoning
about dynamic networks of infinite-state processes. In Proc. of TACAS, volume
4424 of LNCS, pages 690–705, 2007.

10. M. Bozzano and G. Delzanno. Beyond Parameterized Verification. In Proc. of
TACAS, volume 2280 of LNCS, pages 221–235, 2002.

11. A. R. Bradley, Z. Manna, and H. B. Sipma. What’s decidable about arrays? In
Proc. of VMCAI, volume 3855 of LNCS, pages 427–442, 2006.

12. C. David. Complexity of data tree patterns over xml documents. In Proc. of
MFCS, volume 5162 of LNCS, pages 278–289, 2008.

13. G. Delzanno. An assertional language for the verification of systems parametric in
several dimensions. Electr. Notes Theor. Comput. Sci., 50(4), 2001.

14. C. Ihlemann, S. Jacobs, and V. Sofronie-Stokkermans. On local reasoning in veri-
fication. In Proc. of TACAS, volume 4963 of LNCS, pages 265–281, 2008.

15. A. Rezine. Parameterized Systems: Generalizing and Simplifying Automatic Veri-
fication. PhD thesis, University of Uppsala, 2008.

10

