
Embedded Process Functional Language

Marek Běhálek1 and Petr Šaloun2

1 Department of Computer Science, Faculty of Electrical Engineering
and Computer Science, VŠB Technical University of Ostrava,

17. listopadu 15, Ostrava, Czech Republic
marek.behalek@vsb.cz

2 Department of Informatics and Computers, Faculty of Science,
University of Ostrava,

30. dubna 22, Ostrava, Czech Republic
petr.saloun@osu.cz

Abstract. Embedded systems represent an important area of computer
engineering. Demands on embedded applications are increasing. To ad-
dress these issues, different agile methodologies are used in traditional
desktop applications today. These agile methodologies often try to elim-
inate development risks in early design phases. Possible solution is to
create a working model or a prototype of critical system parts. Then we
can use this prototype in negotiation with customer and also to prove
technological aspects of our solution. From this perspective functional
languages are very attractive. They have excellent abstraction mecha-
nism and they can be used as a tool producing a kind of executable de-
sign. In this paper we present our work on a domain specific functional
language targeted to embedded systems — Embedded process functional
language (e-PFL). Created language works on a high level of abstraction
and it uses other technologies (even other functional languages) created
for embedded systems development on lower levels. It can be used like a
modeling or a prototyping language in early development phases.

1 Introduction

Embedded systems represent an important area of computer engineering. Most
of these systems are programmed in low level languages due to strict performance
or memory constrains. On the other hand, demands on embedded applications
are increasing. For example we want to decrease time to market, improve main-
tenance or make development process cheaper.

Different approaches are used to solve such problems. For example different
agile methodologies [1] are more and more popular in the area of traditional
desktop applications today. These agile methodologies try to eliminate develop-
ment risks. Development risks are mainly related to: business risks (confusion
in communication with customer, created product cannot be used in practice)
and technological risks (inability to use developed application in practice due to
technological issues). Possible solution that eliminates these risks is to develop
working model or prototype of critical system parts in early development phases.

Mathematical and Engineering Methods in Computer Science (MEMICS), Znojmo, Czech Republic, 2009.
Petr Hliněný, Vashek Matyáš, Tomáš Vojnar (Eds.)
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/DROPS.MEMICS.2009.2353

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62915046?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Marek Běhálek, Petr Šaloun

We can use this prototype for communication with customer and also to prove
technological aspects of the solution.

To address these issues we need a better tool (or tools). From this point
of view, functional languages are very attractive. They have several interesting
properties [2]. Among others they have excellent abstraction mechanism (rep-
resented by functions composition and high-order functions) and that is why
they can be used as a tool producing a kind of executable design. To conclude
functional languages definitely have a place in specification, prototyping and
simulation in early design phases.

In our work we are developing domain specific functional language targeted to
embedded systems development. Developed language can be used like a modeling
or a prototyping language in early development phases. Created language is
called Embedded process functional language (e-PFL).

2 Related Works

There are other tools able to model embedded systems. For example we can
use Unified Modeling Language – UML. Or we can use simulation tools like
Simulink3. We can address business risks using such tools. We are able to create
concrete model and use it during negotiations with customer. On the other hand
we may not be able to solve technological issues.

Embedded systems differ in many ways from common desktop applications
[3]. For example a development platform is separated from a target platform, de-
bugging is possible only with emulator, or there is no operating system present.
Really try some application on a real device can be the only possibility to elimi-
nate technological risks. Create language is still programming language. It can be
straightforwardly transformed into a target code and used on concrete embedded
systems.

Usage of functional paradigm of programming for development of embedded
applications was suggested in [4]. Also there exist several different functional
languages for implementation of embedded systems. Those languages cover wide
range of abstraction levels (from hardware description to high-level application
logic).

Erlang [5] is probably the most widely known language in this area. It has
its origin in Ericsson, so unlike most declarative languages it did not come from
academic development. It is a combination of logic and functional programming.
Typical Erlang program consists of many light-weighted processes communicat-
ing trough asynchronous messages. It is primarily used in heavily concurrent
and distributed applications. Other programming languages that can be used
in this area are in fact languages designed mainly for reactive systems like:
Concurrent Haskell [6] or Eden [7]. Other examples of languages for embedded
systems development are: Embedded Gofer [4] (strongly typed purely functional
language), Lava (Haskell library with ability to generate VHDL code) or Lustre

3 Description available at: http://www.mathworks.com/products/simulink/

Embedded Process Functional Language 3

(synchronous data-flow language used for reactive systems and hardware de-
scription). Hume [8] represents different approach. Unlike presented languages
(they often come from some general purpose language) it was specially developed
for (especially real-time) embedded systems implementation. It tries to address
performance issues, time and space constrains and controllability. The compiler
can calculate for instance how much heap and stack each part of program will
ever require at most.

Also different case studies comparing usage of functional languages for em-
bedded systems development with traditional approaches were performed [9, 10].

3 Coordination Layer

Embedded systems are often described as a set of communicating functional
units, no matter if multiple processing units are present on target machine or
not [4]. Also our model is a set of communicating devices on the highest level.

Most of functional languages used for implementation of embedded applica-
tions take two-level approach to language design. Purely functional expression
layer is often embedded into a coordination layer. Coordination layer describes
communicating processes (or communicating functional units in context of em-
bedded systems). Presented languages are often extended with side-effecting
constructs to address issues on coordination layer. These constructs often en-
able creation of functional units and maintain their synchronization. There are
two extremes. First can be represented by language Embedded Gofer [4]. It uses
monads to encapsulate processes and language is extended with message pass-
ing primitives to maintain their communication. Such side-effecting constructs
make reasoning about program properties hard or impossible. Another extreme
is Hume [8]. Coordination layer in Hume must be strictly defined on a static
level inside a source code. Communication is then implicit and we are able to
compute necessary system properties at a compile time.

When creating new language, we must decide about language aspects on co-
ordination layer. We use dynamic coordination mechanism in e-PFL . There are
language constructions that allow functional units creation and define functional
units’ connections. On the other hand, static model on coordination layer have
certain advantages.

Primary purpose of e-PFL is to create working model of an embedded system
in early design phases. We want to be able to use created language on real
devices to eliminate technological risks. In our approach, we want to use other
technologies even other functional languages on lower levels. Static model of the
coordination simplifies usage of other technologies on lower levels.

As a compromise we use following model.

– Coordination layer is dynamic on language level in EPFL. This feature sim-
plifies embedded systems modeling.

– Then we use partial evaluation and concrete system configuration is pro-
duced as a result of computation. This configuration represents static model

4 Marek Běhálek, Petr Šaloun

of future system on coordination layer. Created configuration is stored in
XML file.

This approach has several advantages. For example to eliminate technological
risks we can produce several concrete models of future system using the same
program logic on higher level. Then we can produce different target codes for
different architectures using these configurations.

4 Embedded Process Functional Language

In our work we are developing domain specific functional programming language
(Embedded process functional language – e-PFL) targeted to embedded systems
development. Developed language can be used like a modeling or a prototyping
language in early development phases. Presented language come from Process
Functional Language – PFL [11] on language level. On implementation level it
extends Parallel Process Functional Language [12] (that we have created before).
Created language was introduced in [13].

Process Functional Language improves state representation by introducing
variables while trying not to compromise its declarative nature. Usage of vari-
ables is bound to processes and is maintained by a compiler. That is why we
are able to determine program parts manipulating with state at a compile time.
Process application is the only place where we can access or update variables.
The scope of variables is defined by the scope of processes that use them. Access
and update of variable environment is uniform. We must use processes from the
same scope. For instance programmer cannot directly access or update variables.
Similar language constructions were used for e-PFL .

Created language is shortly described in this section. It uses eager evaluation.
Syntax and semantics come from PFL (it is close to pure functional subset of
Haskell). This set of constructions was extended to support embedded systems
development.

Embedded systems are often described as a set of functional units. Also in
e-PFL embedded system is a set of communicating devices. These devices are
modeled using data type Device for default module Prelude.

data Device = Process EmbProcess
| Fair [Device]
| Unfa i r [Device]

Devices are strictly built from embedded processes. Embedded processes can-
not be used directly. Embedded processes are described by data type EmbProcess
(this data type was used in Device definition). Embedded processes encapsulate
issues related to communication on coordination layer. Syntax of embedded pro-
cesses is close to common functions. Embedded process definition is extended by
variables (like in processes in PFL). Variables are bounded to parameters and
also to return value (it can be a tupple and then variables are bounded to every
tupple element). Following example shows embedded process definition.

Embedded Process Functional Language 5

work : : a Integer −> b Integer −>(c Integer , d Integer)
work x y = (x , x+y)

Used variables represent communication channels. Embedded processes de-
fine operations with known input (variables bounded to parameters: a and b in
our example) and output (variables bounded to return value: c and d in our
example). Input or output of created devices is defined by used embedded pro-
cesses. Each of variables can be used like an input maximally by one device and
like an output also maximally by one device.

Devices can be started using native function startDevice.

s t a r tDev i c e : : Device −> EmbSystem −> [Annotation] −> ()

Each Device is an autonomous system working independently on other devices.
Devices are working asynchronously4. When a device is started, it tries to execute
embedded processes that it encapsulates. Processes compete for execution time
within a single device. Only one process can be running at given time. When
there is no process running new candidate for execution is selected according to
available input and fairness (according to data constructors Fair and Unfair).

These devices can be divided into distant parts — embedded system com-
ponents. Embedded system components are defined using data type EmbSystem
(first argument is component name, the second is mediator). Data type Mediator
defines concrete mediator. Both are from basic module Prelude.

data Mediator = Hume | MicroNET

data EmbSystem = EmbComponent [Character] Mediator | Emulator

In our approach we do not produce one target code. Programmer can divide
embedded system into parts. Each of these parts is associated with exactly one
mediator. Each component can use different mediator and thus can have differ-
ent features and properties. For every component is generated target code with
respect to used mediator. We have integrated two mediators into e-PFL now.
Programmer can use Hume like an intermediate language or created run-time
environment for .NET Micro Framework.

For example when Hume is used as a mediator then source codes in Hume
are produced by e-PFL compiler. These codes can be then ported using tools
created by Hume developers or we can use developed tool to compute runtime
constrains.

Using this technique we are able to address technological risks of embedded
systems development. Also we are able to implement even distributed embedded
systems as a single application in e-PFL and divide it into distant parts during
application porting. Using this technique we are able to integrate several different
languages or platforms into one solution. This solution then composes different
approaches to embedded systems development and benefits from their properties.

4 A timer can be implemented using library functions if needed. Form this point of
view the timer is a device periodically generating output necessary for other devices
to continue.

6 Marek Běhálek, Petr Šaloun

Finally we are able to change certain device features when the device is
started. We are able to add annotations to started devices. Annotations are
related to created configuration. They are stored into generated configuration
XML file and they affect produced target code. Using annotation we are able to
change coordination, initial values or target code optimization level. Annotations
are defined using data type Annotation. Programmer must not use annotations
directly. He can use standard functions from module Prelude. For example func-
tion rename. Using this function programmer can rename inputs or outputs for
a device to change devices connections.

data Attr ibute = CAttribute [Character] [Character]
data Annotation = CAnnotation [Character] [Att r ibute]

rename : : [Character] −> [Character] −> Annotation
rename x y = CAnnotation ”rename”

[(CAttribute ” o ld ” y) , (CAttribute ”new” x)]

Communication is implicit in e-PFL . Related issues are solved during a
configuration run. Each of variables used in started devices represents a com-
munication channel. Type of this communication channel is known at a compile
time and we are able to compute all necessary information related to usage of
these channels (for example initial values or underlying device architecture). Po-
tential communication issues simplify that there is maximally one input device
and one output device to each of these channels and each of them can hold up
to one value only. Main issues are thus related to data synchronization. A sort of
default communication is computed during the configuration run and computed
information is stored in a resulted configuration. Programmer can modify this
configuration in the future and thus he can control communication.

5 Example

This section shows simple application written in e-PFL .

produce : : a Integer −> (a Integer , b Integer , c Integer)
produce x = (x+1, x , x)
work : : Device
work = Process produce

showB : : b Integer −> ()
showB x = wr i t eL ine (show x)
p r i n t e r : : Device
p r i n t e r = Process showB

annotat ion : : Annotation
annotat ion = rename ”b” ”c”

component1 : : EmbSystem
component1 = EmbComponent ”worker component” Hume

Embedded Process Functional Language 7

component2 : : EmbSystem
component2 = EmbComponent ” pr inter component ” MicroNET

main= (s ta r tDev i c e work component1 []) ‘ bl ‘
(s t a r tDev i c e p r i n t e r component2 []) ‘ bl ‘
(s t a r tDev i c e p r i n t e r component2 [annotat ion])

Listing 1.1: Simple example in e-PFL

Previous example use process bl. This process comes from PFL . It forms a
sequence of process. Its functionality is similar to construction do from Haskell.

Example composes from two components (first is using Hume, second is using
.NET Micro Framework). Fist component contains one device based on Device
named work. Second component contains two devices based on Device named
printer. Example also shows how default connections of devices can be changed
by a programmer (using annotations).

6 Conclusion and Future Work

We are developing a domain specific language called Embedded Process Func-
tional Language (e-PFL) targeted to embedded systems development. Created
language works on a high level of abstraction. It uses other technologies (even
other functional languages) created for embedded systems development on lower
levels. It can be used like a modeling or a prototyping language in early devel-
opment phases.

The contribution is that we are able to eliminate development risks using e-
PFL . In e-PFL we are able to create working prototype of future system (or its
critical parts). Then we can use this prototype in negotiation with customer to
eliminate business risks. Applications created in e-PFL can be simulated using
implemented simulator. Using partial evaluation we are able to extract static
model (or models) of future system. This model can be for example visualized
and we can use it in communication with customer. Still created e-PFL is a
programming language and we can straightforwardly produce target codes. We
are using other technologies on lower level (now we are using Hume and .NET
Micro Framework) and we can benefit from their features. Produced codes can be
directly used on real devices. Using this technique we can eliminate technological
risks during the development process.

For practical experiments we have implemented e-PFL simulator using .NET
platform and a distributing cross-platform compiler. This compiler use Hume and
.NET Micro Framework on a lower levels. Also we have created GUI containing
tool that simplifies configuration of the applications.

Proposed e-PFL is under active development now. We are considering other
language constructs that may improve its capabilities. For example we are con-
sidering different language constructions changing devices connections. We are
also improving implemented tools. For example compiler implements only ba-
sic language constructions now. Constructions like list generators (common in

8 Marek Běhálek, Petr Šaloun

Haskell) are not supported yet. Also we want to extend basic libraries. Another
area is practical applications of presented ideas. We want to use e-PFL for de-
velopment of real embedded systems.

On the other hand presented approaches and principles are actively devel-
oped and used mainly in academic circles. There is still a long way ahead to
see if presented usage of functional paradigm can truly compete with current
methodologies.

Work is partially supported by Czech-Slovak fund KONTAKT MEB 080878:
Cooperation in area of design and implementation of language systems.

References

1. Highsmith, J., Fowler, M.: The agile manifesto. Software Development Magazine
9(8) (2001) 29–30

2. Hughes, R.: Why functional programming matter. The Computer Journal 32(2)
(1989) 98–107

3. Vahid, F., Givargis, T.: Embedded System Design: A Unified Hardware/Software
Introduction. John Wiley & Sons, Inc., New York, NY, USA (2001)

4. Wallace, M., Runciman, C.: Extending a functional programming system for em-
bedded applications. Softw. Pract. Exper. 25(1) (1995) 73–96

5. Armstrong, J.: A history of erlang. In: HOPL III: Proceedings of the third ACM
SIGPLAN conference on History of programming languages, New York, NY, USA,
ACM (2007) 6–1–6–26

6. Peyton Jones, S., Gordon, A., Finne, S.: Concurrent haskell. In: POPL ’96: Pro-
ceedings of the 23rd ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages, New York, NY, USA, ACM (1996) 295–308

7. Loogen, R., Ortega-mallén, Y., Peńamaŕı, R.: Parallel functional programming in
eden. J. Funct. Program. 15(3) (2005) 431–475

8. Hammond, K., Michaelson, G.: Hume: A domain-specific language for real-time
embedded systems. In Pfenning, F., Smaragdakis, Y., eds.: Generative Program-
ming and Component Engineering, Second International Conference, GPCE 2003,
Erfurt, Germany, September 22-25, 2003, Proceedings. Volume 2830 of Lecture
Notes in Computer Science., Springer (2003) 37–56

9. Nyström, J.H., Trinder, P.W., King, D.J.: Evaluating distributed functional lan-
guages for telecommunications software. In: ERLANG ’03: Proceedings of the 2003
ACM SIGPLAN workshop on Erlang, New York, NY, USA, ACM (2003) 1–7

10. Specht, E., Redin, R.M., Carro, L., Lamb, L.d.C., Cota, E.F., Wagner, F.R.: Anal-
ysis of the use of declarative languages for enhanced embedded system software
development. In: SBCCI ’07: Proceedings of the 20th annual conference on Inte-
grated circuits and systems design, New York, NY, USA, ACM (2007) 324–329

11. Kollár, J., Porubän, J., Václav́ık, P.: From eager pfl to lazy haskell. Computers
and Artificial Intelligence 25(1) (2006)

12. Běhálek, M., Šaloun, P.: Parallel process functional language. In: SOFSEM 2007:
Theory and Practice of Computer Science, 33rd Conference on Current Trends in
Theory and Practice of Computer Science, Harrachov, Czech Republic, January
20-26, Proceedings Volume II. (2007) 1–12

13. Běhálek, M., Šaloun, P.: Simulation of embedded applications implemented in em-
bedded process functional language. In: First International Conference on Com-
putational Intelligence, Modelling, and Simulation, Brno, Czech Republic, IEEE
Computer Society (7-9 September 2009) 253–258

