
Exact Quantum Query Algorithm for Error

Detection Code Verification

Alina Vasilieva

Faculty of Computing, University of Latvia
Raina bulv. 29, LV-1459, Riga, Latvia

alina.vasilieva@gmail.com

Abstract. Quantum algorithms can be analyzed in a query model to
compute Boolean functions. Function input is provided in a black box,
and the aim is to compute the function value using as few queries to the
black box as possible. A repetition code is an error detection scheme that
repeats each bit of the original message r times. After a message with
redundant bits is transmitted via a communication channel, it must be
verified. If the received message consists of r -size blocks of equal bits,
the conclusion is that there were no errors. The verification procedure
can be interpreted as an application of a query algorithm, where input is
a message to be checked. Classically, for N -bit message, values of all N

variables must be queried. We demonstrate an exact quantum algorithm
that uses only N /2 queries. 1

1 Introduction

Quantum computing is an exciting alternative way of computation, which is
based on the laws of quantum mechanics. This branch of computer science is
developing rapidly; various computational models exist, and this is a study of
one of them.

Let f(x1, x2, ..., xN) : {0, 1}
N

→ {0, 1} be a Boolean function. We consider
the black box model (also known as the query model), where a black box contains
the input X = (x1, x2, ..., xN) and can be accessed by querying xi values. The
goal is to compute the value of the function. The complexity of a query algorithm
is measured by the number of questions it asks. The classical version of this model
is known as decision trees [1]. This computational model is widely applicable in
software engineering. For instance, a database can be considered a black box,
and, to speed up application performance, the goal is to reduce the number of
database queries.

Quantum query algorithms can solve certain problems faster than classical
algorithms. The quantum query model differs from the quantum circuit model [2–
4], and algorithm construction techniques for this model are less developed. The
problem of quantum query algorithm construction is very non-trivial. Although

1 This research is supported by the European Social Fund project Nr.
2009/0138/1DP/1.1.2.1.2/09/IPIA/VIAA/004, Nr. ESS2009/77

Mathematical and Engineering Methods in Computer Science (MEMICS), Znojmo, Czech Republic, 2009.
Petr Hliněný, Vashek Matyáš, Tomáš Vojnar (Eds.)
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany
Digital Object Identifier: 10.4230/DROPS.MEMICS.2009.2343

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62915025?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

there are many lower bound and upper bound estimations of quantum query
algorithm complexity [2, 5–7], there are very few examples of original quantum
query algorithms.

In this paper, we demonstrate an exact quantum query algorithm for resolv-
ing a specific problem. The task is to verify a codeword message that has been
encoded using repetition code for detecting errors [8] and has been transmitted
across a communication channel. Considered repetition code duplicates each bit
of the message. The verification procedure can be considered as an application
of a query algorithm, where the codeword to be checked is contained in a black
box. To verify the message in the classical way, we would need to access all bits.
That is, for a codeword of length N, all N queries to the black box would be
required. We will demonstrate an exact quantum query algorithm that requires
N /2 queries only.

An exact algorithm always produces a correct answer with 100% probability.
Another variation is to use a bounded-error model, where an error margin of 1/3
is allowed. It is well known that in the bounded-error model, a large difference
between classical and quantum computation is possible. The complexity gap
can be exponential as, for instance, in the case of Shor’s algorithm [9]. Another
famous example is Grover’s search algorithm that achieves a quadratic speed up
[10]. However, in certain types of computer software, we cannot allow even a small
probability of error, for example, in spacecraft, aircraft, or medical software. For
this reason, the development of exact algorithms is extremely important.

Regarding exact quantum algorithms, the maximum speedup achieved as of
now is half the number of queries compared with a classical deterministic case
[11]. The major open question is: is it possible to reduce the number of queries by
more than 50%? In this paper, we present an algorithm that achieves a borderline
gap of N /2 versus N.

2 Preliminaries

This section contains definitions and provides theoretical background on the
subject.

2.1 2.1 Error Detection and Repetition Codes

In this article, we investigate a problem related to information transmission
across a communication channel. The bit message is transmitted from a sender
to a receiver. During that transfer, information may be corrupted. Because of
the noise in a channel or adversary intervention some bits may disappear, or
may be reverted, or even added. Various schemes exist to detect errors during
transmission. In any case, a verification step is required after transmission. The
received codeword is checked using defined rules and, as a result, a conclusion is
made as to whether errors are present.

We consider a repetition error detection scheme known as repetition codes.
A repetition code is a (r, n) coding scheme that repeats each n-bit block r times

2

[8]. Verification procedure for repetition code is the following - we need to check
if in each group of r consecutive blocks of size n all blocks are equal.

In this article, we examine verification of the (2,1) repetition code. The ver-
ification process can be expressed naturally as a computing Boolean function in
a query model. We assume that the codeword to be checked is located in a black
box. We define the Boolean function to be computed by the query algorithm as
follows.

Definition 1. The Boolean function V ERIFYN (X), where N = 2k, X =
(x1, x2, ..., x2k) is defined to have a value of ”1” Iff variables are equal by pairs:

V ERIFY2k(X) =

{

1, if x1 = x2 & x3 = x4 & x5 = x6 & ... & x2k−1 = x2k

0, otherwise

2.2 Classical Decision Trees

The classical version of the query model is known as decision trees [1]. A black
box contains the input X = (x1, x2, ..., xN) and can be accessed by querying xi

values. The algorithm must be able to determine the value of a function correctly
for arbitrary input. The complexity of the algorithm is measured by the number
of queries on the worst-case input. For more details, see the survey by Buhrman
and de Wolf [1].

Definition 2. [1] The deterministic complexity of a function f, denoted by D(f),
is the maximum number of questions that must be asked on any input by a
deterministic algorithm for f.

Definition 3. [1] The sensitivity sx(f) of f on input X = (x1, x2, ..., xN) is
the number of variables xi with the following property: f(x1, .., xi, .., xN) 6=
f(x1, .., 1 − xi, .., xN). The sensitivity of f is s(f) = maxxsx(f) .

It has been proved that D(f) ≥ s(f) [1].

Theorem 1. D(V ERIFYN) = N .

Proof. Check function sensitivity on any accepting input, for instance, on X =
1111..11. Inversion of any bit will invert the function value, because a pair of bits
with different values will appear. s(V ERIFYN) = N ⇒ D(V ERIFYN) = N .

2.3 Quantum Computing

This section briefly outlines the basic notions of quantum computing that are
necessary to define the computational model used in this paper. For more details,
see the textbooks by Nielsen and Chuang [3] and Kaye et al. [4].

An n-dimensional quantum pure state is a unit vector in a Hilbert space.
Let |0〉 , |1〉 , ..., |n − 1〉 be an orthonormal basis for Cn. Then, any state can be

expressed as |ψ〉 =
∑n−1

i=0
ai |i〉 for some ai ∈ C. Since the norm of |ψ〉 is 1, we

3

have
∑n−1

i=0
|ai|

2
= 1. States |0〉 , |1〉 , ..., |n − 1〉 are called basis states. Any state

of the form
∑n−1

i=0
ai |i〉 is called a superposition of basis states. The coefficient ai

is called an amplitude of |i〉. The state of a system can be changed by applying
unitary transformation. Unitary transformation U is a linear transformation on
Cn that maps vector of unit norm to vector of unit norm. The transpose of a
m × n matrix A is the n ×m matrix AT

i,j = Aj,i for 1 ≤ i ≤ n, 1 ≤ j ≤ n. We
denote the tensor product of two matrices by A⊗B.

The simplest case of quantum measurement is used in our model. It is the
full measurement in the computation basis. Performing this measurement on a
state |ψ〉 = a0 |0〉 + ...+ an−1 |n − 1〉 gives the outcome i with probability |ai|

2.
The measurement changes the state of the system to |i〉 and destroys the original
state.

2.4 Quantum Query Model

The quantum query model is the quantum counterpart of decision trees and
is intended for computing Boolean functions. For a detailed description, see
the survey by Ambainis [6] and textbooks by Kaye, Laflamme, Mosca [4] and
de Wolf [2]. A quantum computation with T queries is a sequence of unitary
transformations:

U0 → Q0 → U1 → Q1 → ...→ UT−1 → QT−1 → UT .

U ′
is can be arbitrary unitary transformations that do not depend on the

input bits. Q′
is are query transformations. A computation starts in the initial

state
∣

∣

∣

→
0
〉

. Then we apply U0, Q0, ..., QT−1, UT and measure the final state.

We use the following definition of query transformation: if an input is a
state |ψ〉 =

∑

i ai |i〉 , then an output is |φ〉 =
∑

i(−1)xkiai |i〉 , where we can
arbitrarily choose a variable assignment xki

for each basis state |i〉.
Each quantum basis state corresponds to the algorithm’s output. We assign a

value of a function to each output. The probability of obtaining result j ∈ {0, 1}
after executing an algorithm on an input X equals the sum of squared modulus
of all amplitudes, which correspond to outputs with value j.

Definition 4. [1] A quantum query algorithm computes f exactly if the output
equals f(x) with a probability p=1, for all x ∈ {0, 1}. The complexity is denoted
by QE(f).

3 Computing V ERIFYN in a Quantum Query Model

In this section, we present the results of designing an exact quantum query al-
gorithm for Boolean function V ERIFYN (X). We start from the case of four
variables and then show how to extend the algorithm to verify N -bit codewords.
We have used a combinatorial approach to determine the structure of the algo-
rithm, and have used Mathematica [14] software to verify its correctness. In our
approach, we have tried to employ the full power of quantum parallelism, also
known as computing in a superposition.

4

3.1 Exact Quantum Query Algorithm for V ERIFY4

To familiarize the reader with the quantum query model and to build a base for
extension, we demonstrate an algorithm for verification of 4-bit codewords. The
algorithm flow is presented in Fig. 1.

Theorem 2. There exists an exact quantum query algorithm Q1 that computes
the Boolean function V ERIFY4(X) using two queries: QE(Q1) = 2 .

Fig. 1. Exact quantum query algorithm Q1 for computing V ERIFY4

The algorithm uses a 2-qubit quantum system. Each horizontal line corresponds
to the amplitude of the basis state. Computation starts with amplitude distri-
bution |START 〉 = (1, 0, 0, 0)

T
. Three large rectangles correspond to the 4 × 4

unitary matrices U0, U1 and U2. Two vertical layers of circles specify the queried
variable order for queries Q0 and Q1. Finally, four small squares at the end of
each horizontal line define the assigned function value for each basis state.

We demonstrate an example of computational flow for accepting input X=1100:

|final〉 = U2Q1U1Q0U0 (1, 0, 0, 0)
T

= U2Q1U1Q0

(

1√
2
, 0, 1√

2
, 0

)T

=

= U2Q1U1

(

− 1√
2
, 0,− 1√

2
, 0

)T

= U2Q1

(

− 1

2
,− 1

2
,− 1

2
,− 1

2

)T
=

= U2

(

− 1

2
,− 1

2
,− 1

2
,− 1

2

)T
= (-1, 0, 0, 0)

Measure
⇒ [ACCEPT : f(1100) = 1]

3.2 Exact Quantum Query Algorithm for V ERIFYN

This section describes a generalized algorithm for computing the Boolean func-
tion V ERIFYN . In the previous section, we demonstrated in detail the first
algorithm in the sequence. Now, we will show how to extend this approach to
verify codewords of length N.

Theorem 3. The Boolean function V ERIFYN (X) can be computed by an exact
quantum query algorithm using N/2 queries: QE(V ERIFYN) = N/2.

We introduce an algorithm that will construct all required transformation
matrices for a specified N. Then obtained transformations must be applied to
the initial state in a specified order.

5

The algorithm is described in Table 1. The algorithm was implemented using
Mathematica software, and its correctness was verified by a computer program.

Table 1. Exact quantum query algorithm for computing V ERIFYN

1. Setup

Boolean function to be computed: V ERIFYN = (x1, x2, ..., xN).
Number of queries: T = N/2. Number of qubits: T.

Number of amplitudes (dimension of Hilbert space): K = 2T = 2N/2.

2. Algorithm structure construction

FOR (i=1 to T) {
STEP 1: Calculate a set of indices:

|IND| = 2i; IND = {ind1, ind2, ..., ind2i} ;

IND =
{

j · K
2i + 1|j ∈

{

0, 1, ..., (2i − 1)
}}

STEP 2: Construct matrices Ui and Qi :

Initialize Ui with the identity matrix Ui = IK

Initialize Qi with the identity matrix Qi = IK

index=1;

WHILE(index < 2i) {

t1=IND[index] // indexth element from the set IND

t2=IND[index+1]

Replace elements of Ui and Qi:

Ut1,t1 = Ut1,t2 = Ut2,t1 = 1√
2

Ut2,t2 = − 1√
2

Qt1,t1 = (−1)X2i−1

Qt2,t2 = (−1)X2i

index = index + 2;

}
}

STEP 3: Final transformation - UFINAL = H⊗T , where H = 1√
2

(

1 1
1 −1

)

.

STEP 4: Initial state - |START 〉 = (1, 0, 0, ..., 0)T

STEP 5: Measurement - the only accepting state is

∣

∣

∣

→
0

〉

= |000...0〉.

3. Algorithm application

Execute the algorithm on input X by applying a constructed unitary and query
transformations in the following order:
|START 〉→U1 → Q1 → ... → QT → UT→UFINAL→[Measure].

3.3 Algorithm Analysis

To improve intuition and understanding, general algorithm for verification of
N -bit codeword can be visualized as an abstract tree (see Fig. 2). We start at
the top with state vector that has exactly one amplitude initialized to a=1 .

Queries and unitary transformations are formed and combined in such a
way, that if values of function variables are equal by pairs, then in the final state

6

Fig. 2. Visualization of the quantum query algorithm as an abstract tree

vector signs of all amplitudes will be identical. At the same time, the first row
of matrix UFINAL consists of equal elements + 1

2T/2
. It means that application

of UFINAL will join together all amplitudes and results in the state vector with

a = 1 in the first position. So, the measurement will output the state
∣

∣

∣

→
0
〉

with

100% probability. This is the accepting state ⇒ V ERIFYN (X) = 1.
If algorithm is executed on rejecting input, i.e., there is at least one pair

of variables with different values, then after all T queries number of + 1

2T/2
and

− 1

2T/2
amplitudes in state vector will be equal. This is provided by the algorithm

structure. After multiplication with UFINAL the value of the first amplitude will

be zero, so there is no probability to obtain
∣

∣

∣

→
0
〉

state after the measurement.

4 Application for a String Equality Problem

Described quantum algorithm can be adapted for solving such computational
problem as testing if two binary strings are equal. This is a well-known task,
which can be used as a subroutine in various algorithms.

Quantum algorithm for the Boolean function V ERIFYN checks whether
variables are equal by pairs, i.e., x1 = x2 & x3 = x4 & x5 = x6 & ... & x2k−1 =
x2k. On the other hand, we can consider that our algorithm is checking whether
two binary strings, Y = x1x3x5...x2k−1 and Z = x2x4x6...x2k , are equal. There-
fore, presented quantum algorithm can be easily used not only to verify repetition
codes, but also for checking the equality of binary strings.

7

5 Conclusion

In this paper, we investigated the verification of error detection codes. We have
represented the verification procedure as an application of a query algorithm to
an input codeword contained in a black box. We have presented an exact quan-
tum query algorithm, which allows verifying a codeword of length N using only
N /2 queries to the black box. This algorithm saves exactly half the number of
queries comparing to the classical case. This result repeats the largest difference
between classical deterministic and quantum exact algorithm complexity for a
total Boolean function known today in this model.

We see many possibilities for future research in the area of quantum query
algorithm design. The most significant open question still remains: is it possible
to increase exact algorithm performance more than two times using quantum
tools? We believe that it may be possible. Next, there are many computational
tasks waiting for efficient solution in a quantum setting. Regarding the veri-
fication of repetition codes, we would like to be able to verify not only (2,1)
code, but also an arbitrary (r, n) code. Another fundamental goal is to develop a
framework for building efficient ad-hoc quantum query algorithms for arbitrary
Boolean functions.

References

1. H. Buhrman and R. de Wolf: Complexity Measures and Decision Tree Complexity:
A Survey. Theoretical Computer Science, v. 288(1): 21-43 (2002).

2. R. de Wolf: Quantum Computing and Communication Complexity. University of
Amsterdam (2001).

3. M. Nielsen, I. Chuang: Quantum Computation and Quantum Information. Cam-
bridge University Press (2000).

4. P.Kaye, R.Laflamme, M.Mosca: An Introduction to Quantum Computing. Oxford
(2007).

5. A.Ambainis: Quantum query algorithms and lower bounds (survey article). In Pro-
ceedings of FOTFS III, Trends on Logic, vol. 23 (2004), pp. 15-32.

6. A.Ambainis and R. de Wolf: Average-case quantum query complexity. Journal of
Physics A 34, pp. 6741-6754 (2001).

7. A.Ambainis: Polynomial degree vs. quantum query complexity. Journal of Com-
puter and System Sciences 72, pp. 220-238 (2006).

8. T. M. Cover and J. A. Thomas: Elements of Information Theory. pp. 209-212,
Wiley-Interscience, (1991).

9. P. W. Shor: Polynomial time algorithms for prime factorization and discrete log-
arithms on a quantum computer. SIAM Journal on Computing, 26(5):1484-1509
(1997).

10. L. Grover: A fast quantum mechanical algorithm for database search. In Proceed-
ings of 28th STOC’96, pp. 212. -219 (1996).

11. A.Ambainis. Personal communication, April 2009.
12. D. Deutsch and R. Jozsa: Rapid solutions of problems by quantum computation.

In Proceedings of the Royal Society of London, volume A 439, pp. 553-558 (1992).
13. R. Cleve, A. Ekert, C. Macchiavello, and M. Mosca: Quantum algorithms revisited.

In Proceedings of the Royal Society of London, volume A 454, pp. 339-354 (1998).
14. Wolfram Research, Mathematica, http://www.wolfram.com/

8

