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ABSTRACT.
We clarify the role of Kolmogorov complexity in the area of randomness extraction. We show that a
computable function is an almost randomness extractor if and only if it is a Kolmogorov complexity
extractor, thus establishing a fundamental equivalence between two forms of extraction studied in
the literature: Kolmogorov extraction and randomness extraction. We present a distribution Mk
based on Kolmogorov complexity that is complete for randomness extraction in the sense that a
computable function is an almost randomness extractor if and only if it extracts randomness from
Mk.

1 Introduction
The problem of extracting pure randomness from weak random sources has received in-
tense attention in the last two decades producing several exciting results. The main goal in
this topic is to give explicit constructions of functions that are known as randomness extrac-
tors; functions that output almost pure random bits given samples from a weak source of
randomness which may be correlated and biased. Randomness extractors have found ap-
plications in several areas of theoretical computer science including complexity theory and
cryptography. The body of work on randomness extractors is vast and we do not attempt
to list them here. Instead, we refer the readers to survey articles by Nisan and Ta-Shma [10]
and Shaltiel [13], and Rao’s thesis [11] for an extensive exposition on the topic (with the
caveat that some of the recent advances are not reported in these articles).

We will focus on a type of randomness extractors known as multi-source extractors.
These are multi-input functions with the property that if the inputs come from independent
distributions with certain guaranteed randomness, typically measured by their minentropy,
then the output distribution will be close to the uniform distribution. A distribution over
n-bit strings is said to have minentropy k, if any element in the support of the distribution
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has a probability ≤ 2−k. A function f : {0, 1}n × {0, 1}n → {0, 1}m is a 2-source extractor
for minentropy k if for any two independent distributions X and Y on {0, 1}n with minen-
tropy k, the output f (X, Y) is statistically close to the uniform distribution. It is known that
such extractors exist for all minentropy levels with optimal parameters [3, 4], but explicitly
constructing 2-source extractors for sources with low minentropy is a very active research
question.

While minentropy characterizes the amount of randomness present in a probability
distribution, Kolmogorov complexity characterizes the amount of randomness present in
individual strings. The Kolmogorov complexity of a string x, denoted by K(x), is the the
length of the shortest program that outputs x. If K(x) = m, then x can be viewed as contain-
ing m bits of randomness. A string x is Kolmogorov random if its Kolmogorov complexity is
close to the length of x. A natural notion that arises is that of Kolmogorov extractors: explicit
functions that extract Kolmogorov complexity from strings that need not be Kolmogorov
random. More formally, a 2-string Kolmogorov extractor for complexity k is a function
f : Σn × Σn → Σm such that K( f (x, y)) is close to m whenever K(x), K(y) ≥ k and x and y
are Kolmogorov independent (K(xy) ' K(x) + K(y)). Kolmogorov extractors have recently
been of interest to researchers [1, 5, 14, 15]. One of the main observations that emerged from
this research is that a randomness extractor is also a Kolmogorov extractor. In particular, in
[5], the authors show that the construction due to Barak, Impagliazzo and Wigderson [2] of
a multisource extractor is also a Kolmogorov extractor. Zimand takes this approach further
and gives constructions of Kolmogorov extractors in other settings [14, 15]. Thus, this line
of research uses randomness extractors as a tool in Kolmogorov complexity research. How-
ever, the role of Komogorov complexity in the area of randomness extraction has not yet
been explored by researchers. We take a step in this direction.

We ask the following question. Is it true that a Kolmogorov extractor is also a random-
ness extractor? While randomness extractors concern information-theoretic randomness,
Kolmogorov extractors concern computational randomness. Thus intuitively it appears that
Kolmogorov extractors are weaker objects than randomness extractors. Moreover, if we use
the strict definition of extraction, it is easy to come up with a counterexample to this con-
verse. Let f be a Kolmogorov extractor, then f ◦ 1 (output of f concatenated with bit 1)
is also a Kolmogorov extractor. But f ◦ 1 is not a randomness extractor for any function f
because it never outputs 50% of the strings - strings that end with 0. The reason for this
counterexample is that any Kolmogorov complexity measure is precise only up to a small
additive term. Consequently, a string x of length n is considered Kolmogorov random even
if its Kolmogorov complexity is only n − a(n) for a slow growing function a(n) such as a
constant multiple of log n [5]. Thus a more fruitful question is to ask whether a Kolmogorov
extractor is also an almost randomness extractor. An almost randomness extractor is like a
traditional randomness extractor except that we only require the output of an almost extrac-
tor to be close to a distribution with minentropy m−O(log n). For a traditional extractor, the
output has to be close to the uniform distribution - the only distribution with minentropy
m. Such almost extractors have been considered in the literature (see for example [12]).

Our first contribution is to show an equivalence between Kolmogorov extraction and
the above-mentioned slightly relaxed notion of randomness extraction. The following state-
ment is very informal and Section 3 is devoted to giving a precise statement with a proof.



HITCHCOCK, PAVAN, VINODCHANDRAN FSTTCS 2009 217

RESULT 1. A computable function f is a Kolmogorov extractor if and only if f is an almost random-
ness extractor.

A randomness extractor is a universal object in the sense that it should extract random-
ness from all distributions with certain minentropy. Can this universality be shifted to a
distribution? That is, is there a distribution D so that a computable function f is an extractor
if and only if f extracts randomness from D? We call such a distribution a complete distri-
bution for randomness extraction. Kolmogorov complexity has proved to be useful in the
discovery of distributions with a similar universality property in other areas of computer
science including average-case analysis [8] and learning theory [7].

Our second contribution is to present a complete distribution, based on Kolmogorov
complexity, for randomness extraction. Fix an input length n. For a number k consider
the distribution Mk that puts uniform weight on all strings of length n with Kolmogorov
complexity≤ k. Motivated by the proof of our first result we show that the distributionMk
is a complete distribution for almost extractors. The following statement is informal and the
full details are in Section 4.

RESULT 2. For any k, there is a k′ = k + O(log n) so thatMk′ is complete for almost extractors
with minentropy parameter k.

2 Preliminaries, Definitions, and Basic Results

Kolmogorov Extractors

We only review the essentials of Kolmogorov complexity and refer to the textbook by Li and
Vitányi [9] for a thorough treatment of the subject. For a string x ∈ {0, 1}∗, l(x) denotes the
length of x. We use the following standard encoding function where a pair 〈x, y〉 is encoded
as 1l(l(x))0l(x)xy. By viewing 〈x, y, z〉 as 〈x, 〈y, z〉〉, this encoding can be extended to 3-tuples
(and similarly for any k-tuple).

Let U be a universal Turing machine. Then for any string x ∈ {0, 1}∗, the Kolmogorov
complexity of x is defined as

K(x) = min{l(p) | U(p) = x},

that is, the length of a shortest program p that causes U to print x and halt. If we restrict
the set of programs to be prefix-free, then the corresponding measure is known as prefix-
free Kolmogorov complexity. These two complexity measures only differ by an additive
logarithmic factor. We will work with the above-defined standard measure. Since we are
flexible about additive logarithmic factors in this paper, our results will hold with the prefix-
free version also.

Kolmogorov extractors are computable functions which convert strings that have a guar-
anteed amount of Kolmogorov complexity into a Kolmogorov random string. We give a
general definition of Kolmogorov extractors involving a parameter for dependency between
the input strings. Consequently, instead of aiming for maximum complexity in the output
string, we will consider extractors which lose an additive factor equal to the dependency
in the inputs. The following notion of dependency we use is equivalent to the well-studied
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notion of mutual information in the Kolmogorov complexity literature up to an additive log
factor. However, we prefer to use the term dependency in this paper.

DEFINITION 1.[Dependency] For two strings x and y of the same length, the dependency
between x and y is

dep(xy) = K(x) + K(y)− K(xy).

DEFINITION 2.[Kolmogorov Extractor] An (n, m(n), k(n), α(n)) Kolmogorov extractor is
a uniformly computable family { fn}n of functions fn : Σn × Σn → Σm(n) where there is
a constant c such that for all n, for all x, y ∈ Σn with K(x) ≥ k(n), K(y) ≥ k(n), and
dep(xy) ≤ α(n), we have

K( fn(x, y)) ≥ m(n)− dep(xy)− c log n.

The computability restriction is required to make the definition nontrivial. Otherwise
it is easy to come up with Kolmogorov extractors: for any pair of inputs at length n, just
output a fixed string of length m(n) that has maximal Kolmogorov complexity.

Randomness Extractors

Randomness extractors are functions which convert weak random sources to a distribution
that is statistically close to the uniform distribution. A weak random source is characterized
by its minentropy which is defined as follows.

DEFINITION 3. For a probability distribution X over a universe S, the minentropy of X is

− log
(

max
s∈S

X(s)
)

= min
s∈S

(
log

1
X(s)

)
.

Here we are writing X(s) for the probability that distribution X assigns to outcome s.
For an event T ⊆ S, X(T) = ∑s∈T X(s) is the probability of T under X.

DEFINITION 4. For any two distributions X and Y on a universe S, their statistical distance
|X−Y| is

|X−Y| = max
T⊆S
|X(T)−Y(T)| = 1

2 ∑
s∈S
|X(s)−Y(s)|

. If |X−Y| ≤ ε, we say X and Y are ε-close to each other.

DEFINITION 5.[Almost Randomness Extractor] An (n, m(n), k(n), ε(n)) almost random-
ness extractor is a family { fn}n of functions fn : Σn×Σn → Σm(n) where there is a constant c
such that for all n, for every pair of independent distributions X and Y over Σn with minen-
tropy at least k(n), the distribution fn(X, Y) is ε(n)-close to a distribution with minentropy
at least m(n)− c log n. Moreover, f is uniformly computable.

A distribution X over Σn is called a flat distribution if it is uniform over some subset of
Σn. For a flat distribution X, we will use X also to denote the support of the distribution X.
The following useful theorem due to Chor and Goldreich [3] states that every function that
extracts randomness from flat distributions is a randomness extractor.
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THEOREM 6.[3] Let f be a function from Σn × Σn to Σm. Suppose for every pair of indepen-
dent flat distributions X and Y with minentropy k, f (X, Y) is ε-close to having minentropy
m− c log n. Then f is a (n, m, k, ε) almost randomness extractor.

Let D be a distribution over Σm induced by a distribution over Σn×Σn. We call D a nice
distribution if for all z ∈ Σm, D(z) is a rational number of the form p/q with q ≤ 22n. This
restriction allows us to effectively cycle through all nice distributions. For any distribution
D with minentropy k, there is a nice distribution D′ with the same minentropy so that the
statistical distance between D and D′ is at most 1/2n. Because of this we will assume that
distribution are nice whenever necessary.

The following lemma due to Guruswami, Umans, and Vadhan [6] is useful to obtain a
bound on the minentropy of a distribution. We will state it for nice distributions although
the original statement and the proof do not have such a restriction. Their proof can be easily
modified to prove this case also.

LEMMA 7.[6] Let D be a nice distribution and s be an integer. Suppose that for every set S of
size s, D(S) ≤ ε. Then D is ε-close to a nice distribution with minentropy at least log(s/ε).

Remarks and Clarifications

Although it is typical requirement for the extractors to be efficiently computable, the only
requirement we need in our proofs is that the extractors are computable. Hence, we will not
mention any resource restrictions here. Here we only focus on extractors with 2 inputs. The
connection we prove here also holds for extractors with k inputs for any constant k ≥ 2 with
identical proofs. Although the parameters in the definition of the extractors depend on the
input length n, we will omit it in the rest of the paper. For instance, a (n, m(n), k(n), α(n))
Kolmogorov extractor will be denoted as an (n, m, k, α) extractor. In addition, we also as-
sume that the parameters that depend on input length n are computable functions of n.
Finally, henceforth by a randomness extractor we mean an almost randomness extractor
unless otherwise mentioned.

Why is there a dependency parameter in the definition of Kolmogorov extractor? Our
aim is to establish a tight connection between randomness extractors and Kolmogorov ex-
tractors. Randomness extractors typically have four parameters; input length n, output
length m, minentropy bound k, and the error parameter ε. Except for the error parameter,
there is an obvious mapping of parameters between Kolmogorov and randomness extrac-
tors. But there appears to be no natural notion of “error” in Kolmogorov extraction. What is
a choice for the parameter in the definition of Kolmogorov extractor analogous to the error
parameter? Our theorems indicate that the dependency is a good choice.

3 The Equivalence

3.1 Kolmogorov Extractor is a Randomness Extractor

In this subsection we show that for appropriate settings of parameters, a Kolmogorov ex-
tractor is also a randomness extractor. First we will give a simple argument for the special
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case when the dependency parameter is O(log n). In this case we get a inverse polyno-
mial error for the randomness extractor. We will only give a sketch of the proof since the
subsequent theorem for the general case subsumes this case.

A Special Case

The proof of this special case is a simple application of the following well known coding
theorem.

THEOREM 8.[Coding Theorem] Let D be a probability distribution over {0, 1}∗ that is com-
putable by a program P, there is a constant c such that

1
2K(x) ≥

c
2|P|

D(x).

THEOREM 9. Let f be a (n, m, k, α) Kolmogorov extractor with α = O(log n). Then f is a
(n, m, k′, ε) almost randomness extractor where k′ = k + O(log n) and ε = 1/poly(n).

PROOF. We provide a proof sketch. Let c be the constant associated with the Kolmogorov
extractor f . That is, K( f (x, y)) ≥ m− c log n− dep(xy) provided K(x) ≥ k, K(y) ≥ k, and
dep(xy) ≤ α.

We will show that for every pair of flat distributions X and Y with minentropy k′,
f (X, Y) is ε-close to a nice distribution with minentropy at least m− (c + 6) log n. Then by
Theorem 6, it will follow that f is an almost randomness extractor for minentropy k′. For the
purpose of contradiction, suppose there are flat distributions X and Y with minentropy k′

so that f (X, Y) is ε far from all nice distributions with minentropy at least m− (c + 6) log n.
Let X and Y be the first such distributions (in some fixed ordering of distributions).

The number of flat distributions with minentropy k′ is finite, and the number of nice
distributions over Σm with minentropy at least m− (c + 6) log n is also finite. Thus there is
a program p which given n as input, produces the distributions X and Y. Thus the size of p
is at most 2 log n for large enough n. Let D denote the distribution f (X, Y).

The idea of the rest proof is as follows. Consider the following set S.

S = {〈x, y〉 ∈ X×Y | K(x) ≥ k, K(y) ≥ k, and dep(xy) ≤ 10 log n}.

First using a simple counting argument it is easy to show that S is a large set and hence
probability of the complement of S with respect to X × Y is small. Since f is a Kolmogorov
extractor, for all elements (x, y) ∈ S, K(z) is close to m where z = f (x, y). Since D is
computable, by the coding theorem, it follows that D(z) ≤ 1/2m−O(log n). Thus, except for
a small fraction of strings in f (S), the strings in the range of f satisfies the minentropy
condition. Hence D must be close to a distribution with minentropy m− c log n.

The General Case

We now state and prove the theorem for a general setting of parameters. The proof follows
the line of argument of the proof of the special case. But we will use Lemma 7 instead of the
coding theorem.
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THEOREM 10. Let f be a (n, m, k, α) Kolmogorov extractor. Then f is a (n, m, k′, ε) almost
randomness extractor where

(a) if k′ − k > α− 4 log n + 1, then ε ≤ 1
2α−4 log n−1 .

(b) if k′ − k ≤ α− 4 log n + 1, then ε ≤ 1
2k′−k−2 .

PROOF. Let c be the constant associated with the Kolmogorov extractor f . That is, K( f (x, y)) ≥
m− c log n− dep(xy) provided K(x) ≥ k, K(y) ≥ k, and dep(xy) ≤ α.

We will show that for every pair of flat distributions X and Y with minentropy k′,
f (X, Y) is ε-close to a nice distribution with minentropy at least m − (c + 9) log n where
ε is as given in the statement of the theorem. Then by Theorem 6, it will follow that f is an
almost randomness extractor for minentropy k′. For the purpose of contradiction, suppose
there are flat distributions X and Y with minentropy k′ so that f (X, Y) is ε far from all nice
distribution with minentropy at least m− (c + 9) log n. Let X and Y be the first such distri-
butions (in some fixed ordering of distributions). For simplicity, we will denote the supports
of distributions X and Y also by X and Y, respectively. Let D denote the distribution f (X, Y).
D is a nice distribution.

The number of flat distributions with minentropy k′ is finite, and the number of nice
distributions over Σm with minentropy at least m− (c + 9) log n is also finite. Thus there is a
program p which given n, c and a code for f as input, produces the flat distributions X and
Y by brute-force search method. The size of p is at most 2 log n for large enough n. We will
split the rest of the proof into two cases.

Case (a). k′ − k > α− 4 log n + 1.

Define the “good set” S as

S = {〈x, y〉 ∈ X×Y | K(x) ≥ k, K(y) ≥ k, and dep(xy) ≤ α}.

Let S′ be the compliment of S within X × Y. That is S′ = X × Y \ S. We will bound the
size of S′. Observe that S′ is a subset of the union of following sets:

S1 = {〈x, y〉 ∈ X×Y | K(x) < k},

S2 = {〈x, y〉 ∈ X×Y | K(y) < k},

S3 = {〈x, y〉 ∈ X×Y | dep(xy) > α}.

Clearly, sizes of S1 and S2 are bounded by 2k+k′ . We will bound |S3|. Since the program
p produces X and Y and |X| = |Y| = 2k′ , every string in X ∪Y has Kolmogorov complexity
at most k′+ 2 log n. Thus for any 〈x, y〉 ∈ S3 we have that K(xy) = K(x)+ K(y)−dep(xy) ≤
2k′ + 4 log n− α. So |S3| ≤ 22k′+4 log n−α. Hence |S′| ≤ |S1 ∪ S2 ∪ S3| ≤ |S1|+ |S2|+ |S3| ≤
2k+k′+1 + 22k′+4 log n−α. Since k′ − k > α− 4 log n + 1, this sum is ≤ 22k′+4 log n−α+1. Thus we
have the following bound on the probability of S′.

CLAIM 11. If k′ − k > α− 4 log n + 1 then PrX×Y(S′) ≤ 1
2α−4 log n−1

We assumed that f is not an almost randomness extractor. That is the distribution is
ε-far from any nice distribution with minentropy m− (c + 9) log n. By Lemma 7, there is a
set U ⊆ Σm of size 2m−α−(c+4) log n such that D(U) > 1/2α−5 log n. Since a program of size
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2 log n produces distributions X and Y and f is computable, there is a program of size at
most 3 log n that produces the set U. Thus for all u ∈ U, K(u) < m− α− c log n.

Since PrX×Y(S′) ≤ 1
2α−4 log n−1 ≤ 1

2α−5 log n and D(U) > 1
2α−5 log n , there must exist a tuple

〈x, y〉 ∈ S so that f (x, y) ∈ U and for this tuple we have K( f (x, y)) < m − α − c log n.
This is a contradiction since f is a Kolmogorov extractor and for all elements 〈x, y〉 ∈ S,
K( f (x, y)) ≥ m− dep(xy)− c log n ≥ m− α− c log n.

Case (b). k′ − k ≤ α− 4 log n + 1.

The proof is very similar. Define the “good set” S as

S = {〈x, y〉 ∈ X×Y | K(x) ≥ k, K(y) ≥ k, and dep(xy) ≤ k′ − k + 4 log n}.

In this case, we can bound the size of S′ (the compliment of S within X×Y) by consid-
ering the following sets.

S1 = {〈x, y〉 ∈ X×Y | K(x) < k},

S2 = {〈x, y〉 ∈ X×Y | K(y) < k},

S3 = {〈x, y〉 ∈ X×Y | dep(xy) > k′ − k + 4 log n}.

Sizes of S1 and S2 are bounded by 2k+k′ . We will bound |S3|. Since the program p
produces X and Y and |X| = |Y| = 2k′ , every string in X ∪Y has Kolmogorov complexity at
most k′ + 2 log n. Thus for any 〈x, y〉 ∈ S3 we have that K(xy) = K(x) + K(y)− dep(xy) ≤
2k′ + 4 log n− (k′ − k + 4 log n) = k′ + k. So |S3| ≤ 2k′+k. Hence |S′| ≤ |S1|+ |S2|+ |S3| ≤
2k+k′+1 + 2k′+k ≤ 2k+k′+2. Thus in this case we have the following bound on the probability
of S′.

CLAIM 12. If k′ − k ≤ α− 4 log n + 1 then PrX×Y(S′) ≤ 1
2k′−k−2

We assumed that distribution D is ε-far from any nice distribution with minentropy
m− (c + 9) log n. By Lemma 7, there is a set U ⊆ Σm of size 2m−(k′−k+4 log n)−(c+4) log n such
that D(U) > 1/2k′−k−log n. Since a program of size 2 log n produces distributions X and
Y and f is computable, there is a program of size at most 3 log n that produces the set U.
Thus for all u ∈ U, K(u) < m− (k′ − k + 4 log n)− c log n. But since PrX×Y(S′) ≤ 1

2k′−k−2 ≤
1

2k′−k−log n and D(U) > 1
2k′−k−log n , there must exist a tuple 〈x, y〉 ∈ S so that f (x, y) ∈ U. This

contradicts the fact that f is a Kolmogorov extractor with the prescribed parameters.

3.2 Randomness Extractor is a Kolmogorov Extractor

In this subsection we show that an almost randomness extractor is also a Kolmogorov ex-
tractor. We follow the line of proof presented in [5] where it is shown that the construction
of a multisource extractor in [2] is also a Kolmogorov extractor. Here we note that in fact the
argument works even for almost randomness extractors.
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THEOREM 13. An (n, m, k, ε) almost extractor is also a (n, m, k′, α) Kolmogorov extractor for
α < log 1

ε − 6 log n and k′ = k + 3 log n.

PROOF. Let f : {0, 1}n × {0, 1}n → {0, 1}m be an (n, m, k, ε) almost extractor. Let c be the
the associated constant. That is, the minentropy guarantee of the output of f is m− c log n.

Let x1 and x2 be two strings with K(x1) = k1 ≥ k′, K(x2) = k2 ≥ k′ and dep(x1x2) ≤ α.
Let X1 and X2 be subsets of {0, 1}n with Kolmogorov complexity at most k1 and k2 respec-
tively. That is, X1 = {x ∈ {0, 1}n|K(x) ≤ k1} and X2 = {x ∈ {0, 1}n|K(x) ≤ k2}. We will
also use X1 and X2 to denote the flat distributions that put uniform weight on sets X1 and
X2 respectively (in the next section, we give specific notation for these distributions).

For t = m − dep(x1x2) − (c + 6) log n, let T ⊆ {0, 1}m be the set of strings with Kol-
mogorov complexity at most t. That is, T = {z | K(z) < t}. We will show that for all u, v
so that f (u, v) ∈ T, K(uv) < k1 + k2 − dep(x1x2). This will show the theorem as this will
imply f (x1, x2) 6∈ T and hence K( f (x1, x2)) > m− dep(x1x2)− (c + 6) log n.

CLAIM 14. For all u ∈ X1 and v ∈ X2 so that f (u, v) ∈ T, K(uv) < k1 + k2 − dep(x1x2).

PROOF. It is clear that |Xi| ≤ 2ki . Since each string in the set 0(n−k){0, 1}k has Kolmogorov
complexity ≤ k + 2 log n + O(log log n) ≤ ki (for large enough n), we also have that |Xi| ≥
2k. Thus PrXi(x) ≤ 1

2k for any x ∈ Xi, Xi has minentropy at least k and f works for X1 × X2.
Consider the output distribution f (X1, X2) on {0, 1}m. Let us call this distribution D.

Since f is an almost extractor the distribution D is ε-close to a distribution with minentropy
m− c log n.

Since |T| ≤ 2t = 2m−dep(x1x2)−(c+6) log n and D is ε-close to a distribution with minen-
tropy m− c log n, we have the following.

PrD(T) ≤ |T|
2m × nc + ε

≤ 2−dep(x1x2)−6 log n + 2−α−6 log n

≤ 2−dep(x1x2)−6 log n+1

The last two inequalities follow because α ≤ log( 1
ε )− 6 log n and dep(x1x2) ≤ α.

Consider the set S = f−1(T) ∩ X1 × X2 ⊆ {0, 1}n × {0, 1}n. We will first bound |S|.
Every tuple from S gets a weight of ≥ 1/2k1+k2 according to the joint distribution X1 × X2.
Thus we have

|S|
2k1+k2

≤ Pr(X1,X2)(S)

= PrD(T)
≤ (2−dep(x1x2)−6 log n+1)

Hence |S| ≤ 2k1+k2−dep(x1x2)−6 log n+1.
The sets X1, X2, and T are recursively-enumerable and f is computable. Hence there

is a program that given n, k1, k2, dep(x1x2), a code for f , and c, enumerates the elements of
S. Hence for any 〈u, v〉 ∈ S, K(uv) ≤ log |S|+ 4 log n + O(log log n) ≤ log |S|+ 5 log n for
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large enough n. Since |S| ≤ 2k1+k2−dep(x1x2)−6 log n+1, K(uv) < k1 + k2 − dep(x1x2) and the
claim follows.

3.3 The Error Parameter vs the Dependency Parameter

Theorem 13 suggests that there is a nice logarithmic relation between error of an almost
extractor and the dependency parameter of the corresponding Kolmogorov extractor. In
particular, in Theorem 13, we show that an (n, m, k, ε) almost randomness extractor is a
(n, m, k′, α) Kolmogorov extractor for α = log(1/ε)−O(log n) for k′ slightly larger than k
(k′ = k + O(log n)). On the other hand, the parameters we get in the proof of the converse
direction (Kolmogorov extractor⇒ randomness extractor) are not fully satisfactory. Ideally
we would like to prove that every (n, m, k, α) Kolmogorov extractor is a (n, m, k′, ε) almost
randomness extractor with k′ = k + O(log n) and ε = 1/2α−O(log n) which will be a true
converse to Theorem 13. We note that this is not possible in general. In particular, we show
that for a (n, m, k, α) Kolmogorov extractor to be a (n, m, k′, ε) almost randomness extractor
with ε = 2α−O(log n), k′ has to be greater than k + α (upto a log factor).

THEOREM 15. Let f be a (n, m, k, α) Kolmogorov extractor. Then there exists a computable
function g which is also a (n, m, k, α) Kolmogorov extractor but g is not a (n, m, k′, ε) almost
randomness extractor for ε < 1

2k′−k+4 log n for any k′ where k′ < m + k− c log n for all constants
c.

PROOF. Let f be a (n, m, k, α) Kolmogorov extractor. Consider the set U ⊆ {0, 1}n defined
as U = {0, 1}k−3 log n0n−k+3 log n. For any string x ∈ U, K(x) < k. Define the function g as
follows: g(x, y) = 0m if x ∈ U and g(x, y) = f (x, y) otherwise.

Since membership in the set U is easy to decide and f is computable, g is computable.
Also, by definition of g, for all pair of strings x, y so that K(x) ≥ k, K(y) ≥ k and dep(x, y) ≤
α, g(x, y) = f (x, y). Hence g is a (n, m, k, α) Kolmogorov extractor.

Now consider two flat distributions X and Y of size 2k′ such that U ⊆ X. Let D denotes
the distribution g(X × Y). Notice that PrD(0m) ≥ PrX(x ∈ U) ≥ 1

2k′−k+3 log n . Now an easy
calculation (omitted because of space constraints) proves the theorem.

4 A Complete Distribution for Randomness Extraction
For integers k and n, letMn

k′ denote the distribution that places uniform weight on the set
{x ∈ {0, 1}n | K(x) ≤ k}. That is Mn

k is uniform over all the strings with Kolmogorov
complexity ≤ k. As n will be clear from the context, we will omit n from the notation
and call itMk. We show thatMk is a complete distribution for randomness extraction in
the sense that a computable function f is an almost randomness extractor if and only if it
extracts randomness from two independent copies ofMk.

This result is motivated by the proof of the equivalence theorem. Notice that in the
proof that a randomness extractor f is also a Kolmogorov extractor, we essentially show that
if f extracts randomness from the class of distributions {Ml}l≥k, then it is a Kolmogorov
extractor. The other implication shows that if f is a Kolmogorov extractor then it is also a
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randomness extractor. Thus intuitively we get that the class {Ml}l≥k is complete. Below
we give a simple argument for completeness.

THEOREM 16. A computable function f is a (n, m, k, ε) almost extractor if and only if there
is a constant c so that f (Mk′ ×Mk′) is ε′ close to a distribution with minentropy m− c log n
where k′ = k + 2 log n and ε′ = ε/n4.

PROOF. The set 0(n−k){0, 1}k is a subset of Mk since every strings in this set has Kol-
mogorov complexity ≤ k + log n + O(log log n) < k′. Hence Mk′ has minentropy ≥ k
and since f is an almost extractor for minentropy k it should also extract randomness from
Mk′ ×Mk′ .

For the other direction, let f be a function that extracts fromMk′ ×Mk′ . Hence there is
a constant c so that f (Mk′ ×Mk′) is ε′ close to a distribution with minentropy m− c log n.

For the sake of contradiction suppose f is not an almost extractor for minentropy k. Let
X and Y be first two flat distributions over {0, 1}n for which the distribution D = f (X, Y) is
ε-far from all nice distributions with minentropy m− (c + 4) log n. Observe that there is a
program p which given n, c, and a code for f produces the distributions X and Y. Thus for
any x ∈ X, we have K(x) ≤ k + log n + O(log log n) ≤ k′. Similarly for y ∈ Y. Hence we
have the following claim.

CLAIM 17. For all x ∈ X, K(x) ≤ k′. Similarly for all y ∈ Y, K(y) ≤ k′. Hence X ⊆Mk′ and
Y ⊆Mk′ .

We will show that for all T ⊆ {0, 1}m, PrD(T) ≤ |T|
2m × nc+4 + ε. This suffices to show

that D is ε-close to a distribution with minentropy m− (c + 4) log n.

PrD(T) = PrX×Y( f−1(T) ∩ X×Y)

=
| f−1(T) ∩ X×Y|

22k

≤ Pr f (Mk×Mk)(T)× n4

≤ (
|T|
2m nc + ε′)× n4

=
|T|
2m nc+4 + ε

The inequality second from the last is because of the assumption that f (Mk ×Mk) is
ε′ close to a distribution with minentropy m− c log n.
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