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ABSTRACT. Graph isomorphism is an important and widely studied computational problem with
a yet unsettled complexity. However, the exact complexity is known for isomorphism of various
classes of graphs. Recently, [8] proved that planar isomorphism is complete for log-space. We extend
this result further to the classes of graphs which exclude K3,3 or K5 as a minor, and give a log-space
algorithm.
Our algorithm decomposes K3,3 minor-free graphs into biconnected and those further into tricon-
nected components, which are known to be either planar or K5 components [20]. This gives a tricon-
nected component tree similar to that for planar graphs. An extension of the log-space algorithm of
[8] can then be used to decide the isomorphism problem.
For K5 minor-free graphs, we consider 3-connected components. These are either planar or isomor-
phic to the four-rung mobius ladder on 8 vertices or, with a further decomposition, one obtains
planar 4-connected components [9]. We give an algorithm to get a unique decomposition of K5

minor-free graphs into bi-, tri- and 4-connected components, and construct trees, accordingly. Since
the algorithm of [8] does not deal with four-connected component trees, it needs to be modified in a
quite non-trivial way.

1 Introduction

The graph isomorphism problem GI consists of deciding whether there is a bijection be-

tween the vertices of two graphs, preserving the adjacencies among vertices. It is an impor-

tant problem with a yet unknown complexity. The problem is clearly in NP and is also in

SPP [2]. It is unlikely to be NP-hard [5, 16], because otherwise the polynomial time hierar-

chy collapses to the second level. As far as lower bounds are concerned, GI is hard for DET
[18], the class of problems NC1-reducible to the determinant [6].
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While this enormous gap has motivated a study of isomorphism in general graphs, it

has also induced research in isomorphism restricted to special cases of graphs where this

gap can be reduced. Tournaments are an example of directed graphs where the DET lower

bound is preserved [21], while there is a quasi-polynomial time upper bound [4]. The com-

plexity of isomorphism is settled for trees [11, 12], partial 2-trees [1], and for planar graphs

[8]. We extend the result of [8] to isomorphism of K3,3 and K5 minor-free graphs. The pre-

viously known upper bound for these graph classes is P due to [14]. Both of these graph

classes include planar graphs, and hence are considerably larger than the class of planar

graphs.

We consider undirected graphs without parallel edges and loops, also known as simple

graphs. For directed graphs or graphs with loops and parallel edges, there are log-space

many-one reductions to simple undirected graphs (cf. [10]). Our log-space algorithm relies

on the following properties of K3,3 and K5 minor-free graphs:

• The 3-connected components of K3,3 minor-free graphs are either planar graphs or

complete graphs on 5 vertices i.e. K5’s [20].

• The 3-connected components of K5 minor-free graphs are either planar or V8’s (where

V8 is a four-rung mobius ladder on 8 vertices) or the following holds. The 4-connected

components of the remaining non-planar 3-connected components are planar [9].

There is a related result [17] where reachability in K3,3 and K5 minor-free graphs are

reduced to reachability in planar graphs under log-space many-one reductions. The ba-

sic idea is that the non-planar components are transformed into new planar components.

This technique preserves the reachability properties but not the isomorphism. We give a

log-space algorithm to get these decompositions in a canonical way, and construct the bicon-

nected and triconnected component trees for K3,3 minor-free graphs. Then we extend the

log-space algorithm of [8] for isomorphism testing and canonization of two such graphs.

The isomorphism of K5 minor-free graphs is more complex, as in addition it has bi-, tri- and

four-connected component trees. This needs considerable modifications and new ideas.

The rest of the paper is organized as follows: Section 2 gives the necessary definitions

and background. Section 3 gives the decomposition of K3,3 and K5 minor-free graphs and

proves the uniqueness of such decompositions. In Section 4 we give a log-space algorithm

for isomorphism and canonization of K3,3 and K5 minor-free graphs. We omit some proofs

due to space constraints and refer to full version of the paper for those proofs.

2 Definitions and Notations

For U ⊆ V let G \ U be the induced subgraph of G on V \ U. Let S ⊆ V with |S| = k. S is a k-

separating set if G \ S is not connected. The vertices of a k-separating set are called articulation

point (or cut vertex) for k = 1, separating pair for k = 2, and separating triple for k = 3. G

is k-connected if it contains no (k − 1)-separating set, i.e. there are k vertex-disjoint paths

between any pair in G. A 1-connected graph is simply called connected and a 2-connected

graph biconnected. The connected components of G \ S are called the split components of S.

DEFINITION 1. The biconnected component tree. We define nodes for the biconnected
components and articulation points. There is an edge between a biconnected component



S. DATTA, P. NIMBHORKAR, T. THIERAUF, F. WAGNER FSTTCS 2009 147

node and an articulation point node if the articulation point is contained in the correspond-
ing component. The resulting graph is a tree, the biconnected component tree T B(G).

A graph is triconnected if it is either 3-connected, a cycle or a 3-bond. A k-bond is a

pair of vertices connected by k edges. A separating pair {a, b} is called 3-connected if there

are three vertex-disjoint paths between a and b. In the rest of the paper a separating pair is

always considered to be a 3-connected separating pair.

DEFINITION 2. The triconnected component tree. Define nodes for the triconnected com-
ponents and (3-connected) separating pairs for a biconnected graph G. There is an edge
between a triconnected component node and a separating pair node if the separating pair
is contained in the corresponding component. In a triconnected component, the vertices of
a separating pair are connected by a virtual edge. If a separating pair is connected in the

original graph G then there is a node for a 3-bond connected to the separating pair node.
The resulting graph is a tree, the triconnected component tree T T(G).
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Figure 1: Decomposition of biconnected component B into triconnected components, and

G2 further into four-connected components. Virtual edges are indicated by dashed lines.

There is a 3-bond connected to τ2 because {w2, w3} is an edge in G2.

For a component tree T, the size of an individual component node C of T is the number of

nodes in C. The vertices of the separating sets are counted in in every component where

they occur. The size of the tree T, denoted by |T|, is the sum of the sizes of its component

nodes. The size of T is at least as large as the number of vertices in graph(T), the graph

corresponding to the component tree T. Let TC be T when rooted at node C. A child of C is

called a large child if |TC| > |T|/2. #C denotes the number of children of C.

A graph H is a minor of a graph G if and only if H can be obtained from G by a finite

sequence of edge-removal and edge-contraction operations. A K3,3-free graph (K5-free graph)

is an undirected graph which does not contain a K3,3 (or K5) as a minor.

For two isomorphic graphs we write G ∼= H. A canon for G is a sorted list of edges with

renamed vertices f (G), such that for all graphs G, H we have G ∼= H ⇔ f (G) = f (H). We

also use canon with respect to some fixed starting edge. A code of G is the lexicographically

sorted list of edges when given an arbitrary labeling of vertices.

By L we denote the languages computable by a log-space bounded Turing machine.
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3 Decomposition into triconnected components

3.1 Decomposition of K3,3-free graphs

We consider the decomposition of biconnected K3,3-free graphs into triconnected compo-

nents. The decomposition is unique [19] and has the following form.

LEMMA 3. [3] Each triconnected component of a K3,3-free graph is either planar or exactly
the graph K5.

We state a more general result below, which is used in our decomposition:

LEMMA 4. In a simple undirected biconnected graph G, the removal of 3-connected separat-
ing pairs gives a unique decomposition, irrespective of the order in which they are removed.
This decomposition can be computed in log-space.

Miller and Ramachandran [13] showed that the triconnected component tree of a K3,3-

free graph can be computed in NC2. Thierauf and Wagner [17] describe a construction that

works in log-space. This now follows from Lemma 4:

COROLLARY 5. For a biconnected K3,3-free graph, the triconnected planar components and
K5 components can be computed in log-space.

3.2 Decomposition of K5-free graphs

We decompose the given K5-free graph into 3-connected and 4-connected components. It

follows from a theorem of Wagner [22] that besides planar components we obtain the fol-

lowing non-planar components that way:

• the four-rung Mobius ladder (also called V8), a 3-connected graph on 8 vertices, which

is non-planar because it contains a K3,3.

• The remaining 3-connected non-planar components are further decomposed into 4-

connected components which are all planar.

Khuller [9] described a decomposition of K5-free graphs with a clique-sum operation.

If two graphs G1 and G2 each contain cliques of equal size, the clique-sum of G1 and G2 is

a graph G formed from their disjoint union by identifying pairs of vertices in these two

cliques to form a single shared clique, and then possibly deleting some of the clique edges.

A k-clique-sum is a clique-sum in which both cliques have at most k vertices.

If G can be constructed by repeatedly taking k-clique-sums starting from graphs iso-

morphic to members of some graph class G, then we say G ∈ 〈G〉k. The class of K5-free

graphs can be decomposed as follows.

THEOREM 6. [22] Let C be the class of all planar graphs together with the four-rung Mobius

ladder V8. Then 〈C〉3 is the class of all graphs with no K5-minor.

Theorem 6 and the following observations lead to Corollary 7:

• If we build the 3-clique-sum of two planar graphs, then the three vertices of the joint

clique are a separating triple in the resulting graph. Hence, the 4-connected compo-

nents of a graph which is built as the 3-clique-sum of planar graphs must all be planar.
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• The V8 is non-planar and 3-connected and cannot be part of a 3-clique sum, because it

does not contain a triangle as subgraph.

COROLLARY 7.(cf. [9]) A non-planar 3-connected component of a K5-free undirected graph
is either the V8 or its 4-connected components are all planar.

Similar to the decomposition algorithm of Vazirani [20], we decompose the K5-free

graph into triconnected components. That is, we first decompose it into biconnected com-

ponents and then the biconnected components further into triconnected components.

Unique decomposition of 3-connected K5-free graphs. Let G 6= V8 be a non-planar 3-

connected component of a K5-free graph, which needs to be decomposed into 4-connected

components. The decomposition by [17] is not unique up to isomorphism. Therefore we

describe a different way of decomposition. The main idea is to decompose G at only those

separating triples which cause the non-planarity.

DEFINITION 8. Let G be a 3-connected component of a graph G∗ and let τ ⊆ V(G) be a
separating triple. Then τ is called 3-divisive if in G∗ \ τ the component G is split into at
least three connected components.

Intuitively, to see that a 3-divisive separating triple τ causes always non-planarity, col-

lapse the split components of τ to single vertices and a K3,3 is obtained. If G is not the K3,3

then we can split G at one 3-divisive separating triple and all the other 3-divisive separating

triples remain. We prove now that the K3,3 is the only special case where this is different.

DEFINITION 9. Let G be an undirected K5-free 3-connected graph. Two 3-divisive sepa-
rating triples τ 6= τ′ are conflicting if τ is no 3-divisive separating triple in a 3-connected
component of (G \ τ′) ∪ τ.

In general there are no conflicting 3-divisive separating triples except for the K3,3. This

is important to obtain a decomposition for G which is unique up to isomorphism.

LEMMA 10. Let G be an undirected and 3-connected graph. There is a conflicting pair of
3-divisive separating triples in G if and only if G is the K3,3.

The four-connected component tree. If we fix one 3-divisive separating triple as root then

we get a unique decomposition for G up to isomorphism, also if G is the K3,3. We decompose

the given graph G at 3-divisive separating triples and obtain four-connected components. Two

vertices u, v belong to a four-connected component if for all 3-divisive separating triples τ the

following is true: At least one of u, v belongs to τ or there is a path from u to v in G \ τ. Note,

a four-connected component is planar and 3-connected.

We define a graph with nodes for the four-connected components and 3-divisive sep-

arating triples. A four-connected component node is connected to a 3-divisive separating triple

node τ if the vertices of τ are also contained in the corresponding four-connected component.

The resulting graph is a tree, the four-connected component tree T F(G). This unique decom-

position can be computed in log-space, because every computation step can be queried to

the reachability problem in undirected graphs which is in log-space [15].
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THEOREM 11. A unique decomposition of a 3-connected non-planar K5-free graph (not the
V8) into four-connected components can be computed in log-space.

The triconnected component tree of K5-free graphs. From Lemma 4, it follows that the

triconnected component tree of a K5-free graph is log-space computable (also see [8, 17]).

For technical reasons we make some changes to this tree structure. Let B be a biconnected

K5-free graph with G0 a triconnected non-planar component node in T T(B). In T T(B) there

is a separating pair node s for each edge which is part of a 3-divisive separating triple in G.

In T T(B) the node s is connected to the node G. We call s a leaf separating pair of T T(B) if it

is connected to only one component node. It can be seen that the set of leaf separating pairs

can be computed in log-space.

4 Canonization of K3,3-free and K5-free graphs

4.1 Isomorphism ordering and canonization of K3,3-free graphs

We decompose K3,3-free graphs as in Section 3.1 and extend [8] for K5-components.

Isomorphism ordering for K5-components. For a K5 component we have a node in the

triconnected component tree. There are 5! ways of labeling the vertices of a K5. The first two

vertices are from the parent separating pair. There remain 2 · 3! = 12 ways of labelling the

vertices, e.g. a = 1, b = 2, c = 3, d = 4, e = 5 is one possibility to label the vertices a, b, c, d, e.

The canonical description of the graph is then (1, 2)(1, 3), (1, 4), (1, 5), (2, 1), (2, 3), . . . , (5, 4).

The canonical descriptions of all these labelings are candidates for the canon of the K5. To

keep notation short, we say code instead of candidate for a canon.

For each code, the isomorphism ordering algorithm compares two codes edge-by-edge,

thereby going into recursion at child separating pairs and comparing their subtrees. If the

subtrees are not isomorphic, the larger code is eliminated. The comparison and the elimina-

tion of codes is done similarly as for the planar triconnected components in Datta et.al. [8].

The comparison takes O(1) space on the work-tape to keep counters for the not eliminated

codes. The orientation of a K5-component given to its parent depends on the direction of

{a, b} in the codes.

CLAIM 12. Let G0 be a K5-node in a triconnected component tree and let V(G0) = {a, b, c, d, e}
and (a, b) be the parent separating pair of G0. Either all minimum remaining codes start with

(a, b) (or reverse, (b, a)) or there is an equal number of codes starting with (a, b) and (b, a).

Once we can canonize K5-components, we can use the algorithm of [8] to check the

isomorphism ordering of triconnected and biconnected component trees.

THEOREM 13. A K3,3-free graph can be canonized in log-space.

4.2 Isomorphism order of K5-free graphs

Isomorphism order of K5-free 3-connected graphs

The isomorphism order of two triconnected component trees S and T rooted at separating

pairs s = {a, b} and t = {a′ , b′} is defined the same way as for planar graphs in [8] with one
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difference. When comparing nodes of the tree we first distinguish between the new types

of nodes. We define planar triconnected components <T V8-components <T non-planar

3-connected components. The isomorphism order for planar components is as in [8] and

refine it now for the new types of non-planar components.

Isomorphism order of subtrees rooted at V8-components: Consider SGi
and THj

rooted at

V8-component nodes Gi and Hj. We construct the codes of Gi and Hj and compare them bit-

by-bit. To canonize the V8-components, we traverse it starting from the parent separating

pairs {a, b} and {a′, b′} and then traversing the components as follows. We define the codes

with help of Hamiltonian cycles of the V8-component. We define E′ to be the set of edges

which are contained in four Hamiltonian cycles.

LEMMA 14. Each directed edge of a V8 appears in two or four Hamiltonian cycles.

Basically, there are two possible traversals of each Hamiltonian cycle starting from

{a, b}, one in each direction. We define the code for Gi and the starting edge (a, b) in this

direction as follows. We distinguish the situation whether {a, b} ∈ E′ or not. We will fix

one Hamiltonian cycle starting with (a, b). We rename the vertices in that order of their first

occurrence in the fixed Hamiltonian cycle exactly in that order. The code is then the list of

edges in lexicographical order with the new labels.

Isomorphism order of the 3-connected non-planar components

Let SGi
and THj

be trees rooted at 3-connected non-planar component nodes Gi and Hj which

are different to the V8. Let s = {a, b} and t = {a′, b′} be the parent separating pairs of Gi

and Hj, respectively. We are interested in the orientation given to s and t. After this, we

discuss the comparison algorithm of Gi with Hj. We further partition Gi and Hj into their

four-connected components and consider their trees T F(Gi) and T F(Hj).

Overview of the steps in the isomorphism order.

DEFINITION 15. For a four-connected component tree T, the size of an individual compo-
nent node C of T is the number nC of vertices in C. The separating triple nodes are counted

in every component where they occur. The size of the tree T, denoted by |T|, is the sum of
the sizes of its component nodes.

The isomorphism order of two four-connected component trees S and T rooted at 3-

divisive separating triples τ and τ′ where given an order order(τ) and order(τ′) is defined

Sτ ≤F Tτ′ if:

1. |Sτ | < |Tτ′ | or

2. |Sτ | = |Tτ′ | but #τ < #τ′ or

3. |Sτ | = |Tτ′ |, #τ = #τ′ = k, but (SF1
, . . . , SFk

) <F (TF′
1
, . . . , TF′

k
) lexicographically, where

we assume that SF1
≤F . . . ≤T SFk

and TF′
1
≤T . . . ≤T TF′

k
are the ordered subtrees of Sτ

and Tτ′ , respectively. For the isomorphism order between the subtrees SFi
and TF′

i
we

compare lexicographically the codes of Fi and F′
i and recursively the subtrees rooted at

the children of Fi and F′
i . Note, that these children are again separating triple nodes.

4. |Sτ | = |Tτ′ |, #τ = #τ′ = k, (SF1
≤F . . . ≤F SFk

) =F (TF′
1
≤F . . . ≤F TF′

k
), but the follow-

ing holds. For all i, the return value from the recursion of SFi
with TF′

i
is an orientation
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graph Xi and X′
i with V(Xi) = τ and V(X′

i) = τ′ and colored edges, respectively. We

compute a reference orientation graph X and X′ from all the Xi and X′
i . We compare lex-

icographically whether X with order(τ) < X′ with order(τ′). We describe the notion of

(reference) orientation graph and order(τ) below in more detail.

We say that two four-connected component trees Sτ and Tτ′ are equal according to the

isomorphism order, denoted by Sτ =F Tτ′ , if neither Sτ <F Tτ′ nor Tτ′ <F Sτ holds.

Orientation given to the parent separating pair by a non-planar component, not the V8.

Given two non-planar 3-connected components Gi and Hj and their trees T F(Gi) and T F(Hj).

There is a set of candidates for root separating triples such that we obtain the minimum

codes when the trees are rooted at them. For the canonization algorithm, the isomorphism

ordering algorithm is used as a sub-routine. For the isomorphism ordering procedure, we

give distinct colors to the parent separating pair and the parent articulation point in the

trees. We also have colors for the child separating pairs and child articulation points, ac-

cording to their isomorphism order. We recompute these colors by interrupting the current

isomorphism ordering procedure and going into recursion at the corresponding subtrees.

Finally, we just consider the first occurrence of the parent separating pair in all the

minimum codes. If the first occurrence is (a, b) in this direction in all the codes, then Gi

gives this orientation to the parent. Similarly for (b, a). If both (a, b) and (b, a) occur first in

different minimum codes, then there is no orientation given to the parent.

Isomorphism order of four-connected component trees. We describe what is different be-

tween isomorphism ordering for four-connected and triconnected component trees in Sec-

tion 4.2 (also see [8]). Instead of separating pairs we have 3-divisive separating

τSτ

. . .

. . .. . .

. . .

τ1 τlk
τl1

S1 Slk

. . .F1 Fk

SF1
SFk

triples. In the isomorphism order algorithm for

two triconnected component trees there was one

task, where the orientations of the separating

pairs were compared. An orientation of a pair

{a, b} in a triconnected component tree T{a,b}

is the set of permutations which partially map

T{a,b} to its canon. This is a subgroup of the sym-

metric group Sym({a, b}). For a four-connected

component tree Sτ, we consider the set of per-

mutations of the triple τ = {a, b, c}. This set

contains all partial automorphisms which par-

tially map Sτ to its canon. This is a subgroup of

the symmetric group Sym({a, b, c}). Instead of

3-connected planar components we have four-connected planar components in Sτ and Tτ′ .

Isomorphism order of two subtrees rooted at four-connected component nodes. We con-

sider the isomorphism order of two subtrees SFi
and TF′

j
rooted at four-connected component

nodes Fi and F′
j , respectively. We construct the codes of Fi and F′

j and compare them bit-by-

bit. To canonize Fi, we use the log-space algorithm from [7]. Besides Fi, the algorithm gets

as input a starting edge and a combinatorial embedding ρ of Fi. There are three choices of

selecting a starting edge {a, b}, {b, c}, {a, c} and two choices for the direction of each edge,

e.g. for {a, b} we have (a, b) and (b, a). Further, a 3-connected planar graph has two planar
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combinatorial embeddings [23]. There are 12 possible ways to canonize Gi.

We start the canonization of Gi and Hj in all the possible ways and compare these codes

bit-by-bit. Let C and C′ be two codes to be compared. The base case is that Fi and F′
j are leaf

nodes and therefore contain no further virtual edges. In this case we use the lexicographic

order between C and C′. If Gi and Hj contain a virtual edge, then this belongs to a child

separating triple and is treated in a special way when comparing C and C′:

First, if a virtual edge is traversed in the codes C or C′ but not in the other, then we

define the one without the virtual edge to be the smaller code.

Second, if C and C′ encounter the virtual edges {u, v} and {u′, v′} then we consider

only the child separating triples which do not have virtual edges considered earlier in the

codes C and C′. We order these triples according to the positions of all their virtual edges

in the codes. We call this order the position-order. W.l.o.g. let τi0 (in C) and τ′
j0

(in C′) be

the separating triples which come first in this position-order. For τi0 and τ′
j0

, we will define

below the reference orientation graphs X and X′ with V(X) = τi0 and V(X′) = τ′
j0

, respectively.

For all pairs in τi0 = {u, v, w} and τ′
j0

= {u′, v′, w′} we have virtual edges in C and C′.

We compare X and X′ with respect to the ordering of these virtual edges order(τi0) and

order(τ′
j0
) in the codes C and C′, respectively. This is described below in more detail. If we

find an inequality, say X < X′ then C is defined to be the smaller code. Proceed with the next

separating triples in the position-order until we ran through all of them.

We eliminate the codes which were found to be the larger codes at least once. In the

end, the codes that are not eliminated are the minimum codes. If we have minimum codes

for both Fi and F′
j then we define SFi

=F TF′
j
. The construction of the codes also defines an

isomorphism between the subgraphs associated to SFi
and TF′

j
, i.e. graph(SFi

) ∼= graph(TF′
j
).

For a single four-connected component this follows from [7]. If the trees contain several

components, then our definition of SFi
=F TF′

j
guarantees that we can combine the isomor-

phisms of the components to an isomorphism between graph(SFi
) and graph(TF′

j
).

Finally, we define the orientation given to the parent separating triple of Fi and F′
j as follows.

• We compute an orientation graph Xi with V(Xi) = τ.

• For each pair in τ when taken as starting edge for the canonization of SFi
which leads

to a minimum code (among all the codes for these edges) we have a directed edge in

E(Xi) with color (1).

• Also for the r-th minimum codes we have a directed edge in E(Xi) with color (r), for

all 1 ≤ r ≤ 6. Here, 6 is the number of directed edges in τ.

We define a new graph Xi with V(Xi) = τ and X′
j with V(X′

j) = τ′. For each of the

remaining minimum codes we have a unique starting edge which is also contained as a di-

rected edge in Xi or X′
j, respectively. Every subtree rooted at a four-connected component

node gives an orientation graph to the parent separating triple. If the orientation is consis-

tent, then we define Sτ =F Tτ′ and show that the corresponding graphs are isomorphic.

Isomorphism order of two subtrees rooted at separating triple nodes. We consider the

subtrees SF1
, . . . , SFk

and TF′
1
, . . . , TF′

k
. We order them SF1

≤F · · · ≤F SFk
and TF′

1
≤F · · · ≤F

TF′
k
, and verify that SFi

=F TF′
i

for all i. If we find an inequality then the one with the

smallest index i defines the order between Sτ and Tτ′ . For all i, assume now that SFi
=F
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TF′
i

and, inductively, the corresponding split components are isomorphic, i.e. graph(SFi
) ∼=

graph(TF′
i
). The next comparison concerns the orientation of τ and τ′. We already explained

above the orientation given by each of the SFi
’s to τ. We define a reference orientation for the

root nodes τ and τ′ which is given by their children. This is done as follows. We partition

(SF1
, . . . , SFk

) into classes of isomorphic subtrees, say I1 <F . . . <F Ip for some p ≤ k, and

similarly we partition (TF′
1
, . . . , TF′

k
) into I ′1 <F . . . <F I ′p. It follows that Ij and I ′j contain the

same number of subtrees for every j.

Consider the orientation given to τ by an isomorphism class Ij: For each child Fi which

belongs to Ij we compute an orientation graph Xi with vertices V(Xi) = τ. The orientation

graph is defined as above but with the following changes. Instead of colors (1), . . . , (6) we

have the colors (j, 1), . . . , (j, 6) for the edges. The reference orientation given to τ is defined

as follows. We define the orientation graph X with vertices V(X) = τ and edges E(X) =
⋃

1≤i≤k E(Xi) the disjoint union of the edges of the orientation graphs from all children of τ.

Thus, X has multiple edges. We call X the reference orientation graph for τ.

Comparison of two orientation graphs. For τ and τ′, the isomorphism ordering algorithm

compares X and X′ for isomorphism. Assume now τ and τ′ have isomorphic subtrees and

the nodes F and F′ as parents. In this situation we return from recursion with =F and give

the orientation graphs X and X′ to the parent. We went into recursion because the virtual

edges of τ and τ′ appeared in the same positions in the codes of the parent. In these codes,

we have a complete ordering on the vertices of τ and τ′. Let V(X) = {u, v, w} and let

order(τ) = u < v < w be an ordering of τ. We compute a list of counters for (X, order(τ)):

• We order the edges of X according to the order of their vertices, lexicographically. That

is, (u, v) < (u, w) < (v, u) < (v, w) < (w, u) < (w, v).

• Among directed edges with the same ends, we order them according to their color.

That is, an edge with color (i1, i2) comes before an edge with color (j1, j2) if (i1, i2) <

(j1, j2) lexicographically.

• We define a counter for the number of edges with the same ends and the same color.

For the edge (u, v) we have the counters c(u,v),1, . . . , c(u,v),6p. Note, we have at most 6p

colors because there are 6 colors for edges from orientation graphs of one isomorphism

class and there are p isomorphism classes.

• We order the counters according to the order of the edges. That is, we have a list of

counters L(X, order(τ)) = (c(u,v),1, c(u,v),2, . . . , c(u,v),6p, . . . , c(w,v),1, . . . , c(w,v),6p).

Note, among isomorphic graphs, there must be edges having the same color up to a

permutation of them. Counting the colored edges allows to combine the orientations of all

isomorphic subtrees. Note, if an orientation graph Xi for τ has two equal colored edges

then there is an automorphism that maps the one edge to the other same colored edge in

τ. The permutation of one edge completely fixes the whole automorphism of τ. Hence,

also when counting the edges from different orientation graphs X1 and X2, if w.l.o.g. there

are the edges (u, v) with colors 1 and 2 then the mapping of (u, v) to other edges com-

pletely fixes the whole automorphism among τ and whether X1 and X2 are swapped. With

an inductive argument, this can be generalized to the whole orientation graph X. Let X′

be the corresponding reference orientation graph for τ′. We define the isomorphism order

(X, order(τ)) < (X′, order(τ′)) exactly when L(X, order(τ)) < L(X′, order(τ′)) lexicographi-

cally. The preceding discussion leads to the following theorem.
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THEOREM 16. The 3-connected non-planar graphs G and H which contained 3-divisive
separating triples are isomorphic if and only if there is a choice of separating triples τ, τ′

in G and H such that Sτ =F Tτ′ when rooted at τ and τ′, respectively.

4.3 Complexity of the isomorphism order algorithm and canonization

For a log-space implementation, there are two tasks: We limit the number of choices for roots

of triconnected and four-connected component trees, and ensure that nothing is stored on

the work-tape while recursing on a large child. For the first task, we modify the algorithm of

[8] to accommodate non-planar 3-connected components. The two root finding procedures

are interdependent. We bound the number of roots for the four-connected component tree

with respect to the number of child separating pairs and child articulation points of tri- and

biconnected subtrees. The algorithm is based on an intricate case analysis which has to be

extended to work with respect to the three tree structures.

For the second task, we extend the ideas from [8], because for the analysis of large

children we consider the bi- tri- and four-connected component trees simultaneously. In the

trees, the recursion goes from depth d to d + 2 and large children are handled a priori at any

level.For the space requirement of our algorithm we get:

S(N) = maxj S
(

N
k j

)

+ O(log kj),

where kj ≥ 2 (for all j) is the number of bi-, tri- or four-connected subtrees having the

same size. Hence, S(N) = O(log N). It is helpful to imagine that we have three work-

tapes, which are used when we go into recursion at articulation point nodes, separating

pair nodes, and separating triple nodes respectively. We canonize K5-free graphs exactly

the same way as planar graphs. Thus we get

THEOREM 17. The isomorphism order between two K5-free graphs can be computed in
log-space. The canonization of K5-free graphs can be done in log-space.

Acknowledgment We thank V. Arvind, Bireswar Das, Raghav Kulkarni, Nutan Limaye,

Meena Mahajan and Jacobo Torán for helpful discussions.

References
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