
LIPIcs Leibniz International Proceedings in Informatics

Automata and temporal logic over
arbitrary linear time

Julien Cristau
LIAFA — CNRS & Université Paris 7

ABSTRACT. Linear temporal logic was introduced in order to reason about reactive systems. It is
often considered with respect to infinite words, to specify the behaviour of long-running systems.
One can consider more general models for linear time, using words indexed by arbitrary linear
orderings. We investigate the connections between temporal logic and automata on linear orderings,
as introduced by Bruyère and Carton. We provide a doubly exponential procedure to compute from
any LTL formula with Until, Since, and the Stavi connectives an automaton that decides whether
that formula holds on the input word. In particular, since the emptiness problem for these automata
is decidable, this transformation gives a decision procedure for the satisfiability of the logic.

1 Introduction

Temporal logic, in particular LTL, was proposed by Pnueli to specify the behaviour of re-
active systems [12]. The model of time usually considered is the ordered set of natural
numbers, and executions of the system are seen as infinite words on some set of atomic
propositions. This logic was shown to have the same expressive power as the first order
logic of order [11], but it provides a more convenient formalism to express verification prop-
erties. It is also more tractable: while the satisfiability problem of FO is non-elementary [17],
it was shown in [16] that the decision problem of LTL with Until and Since on ω-words is
PSPACE-complete. This logic has also strong ties with automata, with important work to
provide efficient translations to Büchi automata, e.g. [9].

Within this time model, a number of extensions of the logic and the automata model
have been studied. But one can also consider more general models of time: general linear
time could be useful in different settings, including concurrency, asynchronous communi-
cation, and others, where using the set of integers can be too simplistic. Possible choices
include ordinals, the reals, or even arbitrary linear orderings. In terms of expressivity, while
LTL with Until and Since is expressively complete (i.e. equivalent to FO) on Dedekind-
complete orderings (which includes the ordering of the reals as well as all ordinals), this
does not hold in the general case. Two more connectives, the future and past Stavi opera-
tors, are necessary to handle gaps [10] when considering arbitrary linear orderings.

Over ordinals, LTL with Until and Since has been shown to have a PSPACE-complete
satisfiability problem [7]. Over the ordering of the real numbers, satisfiability of LTL with
until and since is PSPACE-complete, but satisfiability of MSO is undecidable. Over general
linear time, first order logic has been shown to be decidable, as well as universal monadic
second order logic. Reynolds shows in [14] that the satisfiability problem of temporal logic
with only the Until connective is also PSPACE-complete, and conjectures that this might stay
true when adding the Since connective. The upper bound in [7] is obtained by reducing the
satisfiability of LTL formulae to the accessibility problem in an appropriate automata model,

c© Julien Cristau; licensed under Creative Commons License-NC-ND.
Foundations of Software Technology and Theoretical Computer Science (Kanpur) 2009.
Editors: Ravi Kannan and K. Narayan Kumar; pp 133–144
Leibniz International Proceedings in Informatics (LIPIcs), Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany.
Digital Object Identifier: 10.4230/LIPIcs.FSTTCS.2009.2313

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62914965?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

134 AUTOMATA AND TEMPORAL LOGIC OVER ARBITRARY LINEAR TIME

accepting words indexed by ordinals. In this paper, we focus on the general case of arbitrary
linear orderings, using the full logic with Until, Since and both Stavi connectives. Our aim
is to investigate the connections between LTL and automata in this setting.

Automata on linear orderings were introduced by Bruyère and Carton [2]. This model
extends traditional finite automata using “limit” transitions to handle positions with no suc-
cessor or predecessor, furthering Büchi’s model of automata on words of ordinal length [4].
Carton showed in [5] that accessibility over scattered ordering is decidable in polynomial
time, and in [13] it was shown that these automata can be complemented over countable
scattered linear orderings. The accessibility result can be extended to arbitrary orderings [6].

From any formula in this logic, we define an automaton which determines whether the
formula holds on its input word. Satisfiability of the formula is reduced to accessibility in
this automaton, and that way we get decidability of the satisfiability problem of LTL with
Until, Since and the Stavi operators for any rational subclass.

Section 2 presents some definitions about linear orderings, linear temporal logic, and
the model of automata used. Section 3 introduces our main result, an algorithm to translate
any LTL formula into a corresponding automaton. Section 4 discusses the expressivity of
the logic and automata considered, and looks at some natural fragments.

2 Definitions

2.1 Linear orderings

We first recall some basic definitions about orderings, and introduce some notations. For a
complete introduction to linear orderings, the reader is referred to [15]. A linear ordering J

is a totally ordered set (J, <) (considered modulo isomorphism). The sets of integers (ω), of
rational numbers (η), and of real numbers with the usual orderings are all linear orderings.

Let J and K be two linear orderings. One defines the reversed ordering −J as the order-
ing obtained by reversing the relation < in J, and the ordering J + K as the disjoint union
J ⊔ K extended with j < k for any j ∈ J and k ∈ K. For example, −ω is the ordering of
negative integers. −ω + ω is the usual ordering of Z, also denoted by ζ.

A non-empty subset K of an ordering J is an interval if for any i < j < k in J, if i ∈ K and
k ∈ K then j ∈ K. In order to define the runs of an automaton, we use the notion of cut. A cut

of an ordering J is a partition (K, L) of J such that for any k ∈ K and l ∈ L, k < l. We denote
by Ĵ the set of cuts of J. This set is equipped with the order defined by (K1, L1) < (K2, L2)
if K1 (K2. This ordering can be extended to J ∪ Ĵ in a natural way ((K, L) < j iff j ∈ L).
Notice that Ĵ always has a smallest and a biggest element, respectively cmin = (∅, J) and
cmax = (J, ∅). For example, the set of cuts of the finite ordering {0, 1, . . . , n − 1} is the
ordering {0, 1, . . . , n}, and the set of cuts of ω is ω + 1.

For any element j of J, there are two successive cuts c−j and c+
j , respectively ({i ∈ J |

i < j}, {i ∈ J | j ≤ i}) and ({i ∈ J | i ≤ j}, {i ∈ J | j < i}). A gap in an ordering J is a cut c

which is not an extremity (cmax or cmin), and has neither a successor nor a predecessor.
Given an alphabet Σ, a word of length J is a sequence (aj)j∈J of elements of Σ indexed

by J. For example, (ab)ω is a word of length ω; the sequence abωabωa is a word of length
ω + ω + 1, and (abω)ω is a word of length ω2.

JULIEN CRISTAU FSTTCS 2009 135

2.2 Temporal logic

We use words over linear orderings to model the behaviour of systems over linear time.
To express properties of these systems, we consider linear temporal logic. The set of LTL
formulae is defined by the following grammar, where p ranges over a set AP of atomic
propositions: ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ϕUϕ | ϕSϕ | ϕU ′ϕ | ϕS ′ϕ

Besides the usual boolean operators, we have four temporal connectives. The U connec-
tive is called “Until”, and S is called “Since”. U ′ and S ′ are respectively the future and past
Stavi connectives. Other usual connectives such as “Next” (X), “Eventually” (F), “Always”
(G) can be defined using these, as we see below.

These formulae are interpreted on words over the alphabet 2AP. A letter in those words
is the set of atomic propositions that hold at the corresponding position. Let x = (xj)j∈J a
word of length J. A formula ϕ is evaluated at a particular position i in x; we say that ϕ holds
at position i in x, and we write x, i |= ϕ, using the following semantics:

x, i |= p if p ∈ xi

x, i |= ¬ψ if x, i 6|= ψ

x, i |= ψ1 ∨ ψ2 if x, i |= ψ1 or x, i |= ψ2

x, i |= ψ1Uψ2 if there exists j > i such that x, j |= ψ2,

and for any k such that i < k < j, we have x, k |= ψ1

x, i |= ψ1Sψ2 if −x, i |= ψ1Uψ2 where −x is the reversed word (aj)j∈−J

x, i |= ψ1U
′ψ2 if there exists a gap c ∈ Ĵ verifying three properties:

(1) x, j |= ψ1 for any position j such that i < j < c

(2) there is no interval starting at c where ψ1 is always true

(i.e. ∀c < k ∃c < j < k x, j |= ¬ψ1), and

(3) ψ2 is always true in some interval starting at c

x, i |= ψ1S
′ψ2 if −x, i |= ψ1U

′ψ2 (it is the corresponding past connective)

Note that we use a “strict” semantic for the Until operator, contrary to a common defi-
nition, which would be:

x, i |= ψ1U
nsψ2 if there exists j ≥ i such that x, j |= ψ2 and x, k |= ψ1 for any i ≤ k < j.

In the strict version, the current position i is not considered for either the ψ1 or the ψ2 part of
the definition. Using the strict or non-strict version makes no difference when considering
ω-words, but in the case of arbitrary orderings, the strict Until is more powerful, as noted
by Reynolds in [14].

The formula “Next ϕ”, or X ϕ, is equivalent to ⊥U ϕ. “Eventually ϕ”, noted F ϕ, is
ϕ ∨ (⊤U ϕ), and “always ϕ”, noted G ϕ, can be expressed as ¬(F (¬ϕ)).

Given a word x of length J, the truth word of ϕ on x is the word vϕ(x) of length J over
the alphabet {0, 1} where the position j is labelled by 1 iff x, j |= ϕ. A formula is valid if its
truth word on any input only has ones. A formula is satisfiable if there exists an input word
such that the truth word contains a one.

136 AUTOMATA AND TEMPORAL LOGIC OVER ARBITRARY LINEAR TIME

Consider the formula ϕ = ¬a∧ (G ¬X a), with AP = {a}. If x = (a∅)ω (where a stands
for {a}), then vϕ(x) = 0ω (at every position, either a is true or a is true in the successor). On
the other hand, if x = a∅ωa∅ωa, then vϕ(x) = 01ω01ω0: at positions 0, ω and at the last
position, a is true so the formula doesn’t hold; at all other positions, a is false, and there is
no position in the input word where X a holds.

The satisfiability problem for a formula ϕ consists in deciding whether there exists a word
w and a position i in w such that w, i |= ϕ. As FO is decidable, and every LTL formula can
be expressed using first order, satisfiability of LTL is decidable. Note however that in terms
of complexity FO is already non-elementary on finite words [17], which is not true of LTL.

2.3 Automata

On infinite words, Büchi automata can be used to decide satisfiability of LTL formulae. In
the case of words over linear orderings, a model of automata has been introduced in [2].
Instead of accepting or rejecting each input word, as in the case of ω-words, we use these
automata to compute the truth words corresponding to an LTL formula. Our model of
automata thus has an output letter on each transition, so they are actually letter-to-letter
transducers, which make composition easier (see Section 3.1).

An automaton is a tuple A = (Q, Σ, Γ, δ, I, F) where Q is a finite set of states, Σ is a
finite input alphabet, Γ is a finite output alphabet, I and F are subsets of Q, respectively the
set of initial and final states, and δ ⊆ (Q × Σ × Γ × Q) ∪ (2Q × Q) ∪ (Q × 2Q) is the set of
transitions. We note:

• p
a|b
−→ q if (p, a, b, q) ∈ δ (successor transition)

• P → q if (P, q) ∈ δ (left limit transition)
• q → P if (q, P) ∈ δ (right limit transition).

Consider a word x = (qj)j∈J over Q. We define the left and right limit sets of x at
position j ∈ J as the sets of labels that appear arbitrarily close to j (respectively to its left and
to its right). Formally:

limj− x = {q ∈ Q | ∀k < j ∃i k < i < j ∧ qi = q}
limj+ x = {q ∈ Q | ∀k > j ∃i j < i < k ∧ qi = q}

Note that limj− x is non-empty if and only if the transition to j is a left limit, and similarly
for limj+ x if the transition from j is a right limit. These sets help define the possible limit
transitions in a run.

Given an automaton A, an accepting run of A on a word x = (xj)j∈J is a word ρ of
length Ĵ over Q such that:

• ρcmin ∈ I and ρcmax ∈ F;

• for each i ∈ J, there exists yi ∈ Γ such that ρc−i

xi|yi
−−→ ρc+

i
;

• if c ∈ Ĵ has no predecessor, limc− ρ → ρc, and if c ∈ Ĵ has no successor, ρc → limc+ ρ.

EXAMPLE 1. The first automaton in Figure 1 outputs 1 at each position immediately fol-
lowed by a 1 in the input word, and 0 at other positions.

The second automaton accepts input words whose length is a linear ordering without
first or last element, and without two consecutive elements (i.e. dense orderings). The
notation P → q0, q1 means that there is a transition P → q0 and a transition P → q1.

JULIEN CRISTAU FSTTCS 2009 137

q0

q1

q2

−|1

−|0

1|1

1|00|1

0|0

Limits: P → q0 q0 → P q2 → P

for any P ⊆ {q0, q1, q2}

q0

q1 q2
−|−

Limits: {q1, q2}, {q0, q1, q2} → q0, q1

q1, q2 → {q1, q2}, {q0, q1, q2}

Figure 1: Example automata

In [5], Carton proves that the accessibility problem on these automata can be solved in
polynomial time, when only considering scattered orderings. This result can be extended
to arbitrary orderings [6] as it is done for rational expressions in [3]. The idea is to build
an automaton over finite words which simulates the paths in the initial automaton and re-
members their contents. In order to handle the general case (as opposed to only scattered
orderings), the added operation is called “shuffle”: sh(w1, . . . , wn) = Πj∈J xj where J is a
dense and complete ordering without a first or last element, partitioned in dense subor-
derings J1 . . . Jn, such that xj = wi if j ∈ Ji. Looking at automata, this means that if there
are paths from p1 to q1 with content P1, . . . , from pn to qn with content Pn, and transitions
from P1 ∪ · · · ∪ Pn to each pi, transitions from each qi to P1 ∪ · · · ∪ Pn, a transition from p to
P1 ∪ · · · ∪ Pn and a transition from P1 ∪ · · · ∪ Pn to q, then there is a path from p to q.

3 Translation between formulae and automata

Over ω-words, problems on temporal logics are commonly solved using tableau meth-
ods [20], or automata-based techniques [19]. In this work we extend the correspondence
between LTL and automata to words over linear orderings. Our main result is Theorem 2.

THEOREM 2. For every LTL formula ϕ, there is an automaton Aϕ which given any input
word x outputs the truth word vϕ(x).

Moreover, this automaton Aϕ can be effectively computed, and has a number of states
exponential in the size of ϕ. Because we can compute the product of Aϕ with any given au-
tomaton and check for its emptiness, we get Corollary 3, which states that given a temporal
formula and a rational property (i.e. an automaton on words over linear orderings), we can
check whether there exists a model of the formula which is accepted by the automaton.

COROLLARY 3. The satisfiability problem for any rational subclass is decidable.

The idea is to build Aϕ by induction on the formula. We construct an elementary au-
tomaton for each logical connective. We use composition and product operations to build
inductively the automaton of any LTL formula from elementary automata. All automata
used in this proof have the particular property that there exists exactly one accepting run
for each possible input word, i.e. they are non-deterministic, but also non-ambiguous. This
property is preserved by composition and product.

The structure of the proof is the following: we define the composition and product op-
erators on automata, then we present the elementary automata that are needed to encode
logical connectives. Finally, we give the inductive method to build the automaton corre-
sponding to a formula from elementary ones.

138 AUTOMATA AND TEMPORAL LOGIC OVER ARBITRARY LINEAR TIME

3.1 Product, composition and elementary automata

Let A1 = (Q1, Σ, Γ, δ1, I1, F1) and A2 = (Q2, Σ′, ∆, δ2, I2, F2) be two automata. The prod-
uct consists in running both automata with the same input alphabet in parallel, and out-
putting the combination of their outputs. If A1’s output alphabet and A2’s input alphabet
are the same, the composition consists in running A2 over A1’s output. We use the notation
π1(a, b) = a and π2(a, b) = b for the first and second projections.

DEFINITION 4. Suppose that A1 and A2 have the same input alphabet, i.e. Σ = Σ′. The
product of A1 and A2 is the automaton A1 ×A2 = (Q1 × Q2, Σ, Γ × ∆, δ, I1 × I2, F1 × F2),
where δ contains the following transitions:

• (q1, q2)
a|b,c
−−→ (q′1, q′2) if q1

a|b
−→ q′1 and q2

a|c
−→ q′2,

• (q1, q2) → P if q1 → π1(P) and q2 → π2(P),
• P → (q1, q2) if π1(P) → q1 and π2(P) → q2.

DEFINITION 5. Suppose now that the output alphabet of A1 is the input alphabet of A2, i.e.

Γ = Σ′. The composition of A1 and A2 is the automaton A2 ◦ A1 = (Q1 × Q2, Σ, ∆, δ, I1 ×
I2, F1 × F2). The transitions in δ are:

• (q1, q2)
a|c
−→ (q′1, q′2) if q1

a|b
−→ q′1 and q2

b|c
−→ q′2,

• (q1, q2) → P if q1 → π1(P) and q2 → π2(P),
• P → (q1, q2) if π1(P) → q1 and π2(P) → q2.

Recall that LTL formulae are given by ϕ := p | ¬ϕ | ϕ ∨ ϕ | ϕUϕ | ϕU ′ϕ | ϕSϕ | ϕS ′ϕ.
For each atomic proposition p we construct an automaton Ap which, given a word x, out-
puts vp(x). For each logical connective of arity n, we construct an automaton with input
alphabet {0, 1}n , and output alphabet {0, 1}. The input word is the tuple of truth words of
the connective’s variables, the output is the truth word of the complete formula. For tempo-
ral connectives, we only describe the automata corresponding to U and U ′. For the “past”
connectives, the automata are the same with all transitions (successor and limits) reversed,
and initial and final states swapped.

For any p ∈ AP, the automaton Ap is ({q}, 2AP, {0, 1}, δ, {q}, {q}) where δ = {(q
a|0
−→

q | p 6∈ a} ∪ {q
a|1
−→ q | p ∈ a} ∪ {q → {q}, {q} → q}. This automaton simply outputs 1 at

positions where p is true, and 0 everywhere else. Note that the run is uniquely determined
by the input word; such a transducer is called non-ambiguous.

Figures 2(a) and 2(b) show the automata corresponding to the negation (¬) and dis-
junction (∨) connectives. Their limit transitions are {q} → q and q → {q}. Again, these
automata admit exactly one run for each input word.

q0|1 1|0

(a) Automaton for negation

q0, 0|0 0, 1|1 1, 0|1 1, 1|1

(b) Automaton for disjunction

JULIEN CRISTAU FSTTCS 2009 139

3.2 Automaton for U

The difficulty starts with the “Until” connective (U). We recall that ϕUψ holds at position i

in a word w if there exists j > i such that ψ holds at j, and such that ϕ holds at every position
k such that i < k < j.

We build an automaton AU with input alphabet {0, 1}2 and output alphabet {0, 1}.
On an input word of the form (vϕ(w), vψ(w)) for some word w, we want the output to be
vϕUψ(w). Let J = |w|, and c ∈ Ĵ. We distinguish five different situations. For each of them
the figure describes an example, where “|” represents the cut c, and each • represents a
position in the input word.

0. c is followed by a position where ϕ and ψ are true. input
output

· · · •
1
|

1,1
• · · ·

1. c = c−j , and j is such that ϕ is false and ψ is true. input
output

· · · •
1
|

0,1
• · · ·

2. other cases where ϕUψ is true at c. input
output

· · · •
1
|

1,−
︷︸︸︷

· · ·
−,1
• · · ·

3. c is followed by a position where both ϕ and ψ are false. input
output

· · · •
0
|

0,0
• · · ·

4. other cases where ϕUψ is false at c. If c = c−j then the input at position j is (1, 0).

input
output

· · · •
0
|

1,0
︷︸︸︷

· · ·
0,0
• · · · · · · •

0
|

1,0
︷︸︸︷

· · ·

{(1,−),(0,1)}
︷ ︸︸ ︷

· · · · · · · · ·

The structure of the automaton AU and the limit transitions are given by Figure 2. This
automaton has five states q0 to q4 corresponding to the situations described above. Given
any two states q and q′ there exists a transition q → q′ except from q2 to q3 or q4 and from
q4 to q0, q1 or q2. The input label of successor transitions is determined by the origin node:
(1, 1) for q0, (0, 1) for q1, (0, 0) for q3, and (1, 0) for q2 and q4. The output label is 1 on
transitions leading to q0, q1 or q2, and 0 on transitions leading to q3 or q4. All states are
initial, while q4 is the only final state.

LEMMA 6. Let ϕ and ψ two formulae. Let x and y be the truth words of ϕ and ψ on a word
w of length J. The output of AU on (x, y) is the truth word of ϕUψ on w.

PROOF. Let ρ be the word of length Ĵ on Q defined by
• if xj = yj = 1, then ρ(c−j) = q0;
• if xj = 0 and yj = 1 then ρ(c−j) = q1;
• if xj = yj = 0 then ρ(c−j) = q3;
• otherwise, if there exists j > c such that yj = 1 and for all i such that c < i < j, xi = 1,

then ρ(c) = q2;
• otherwise, ρ(c) = q4.

We show that ρ is a run of AU on the input (x, y), that this run is unique, and that the
corresponding output word is indeed the truth word of ϕUψ on w.

By definition, ρ ends in the final state q4. Let c ∈ Ĵ. If ρ(c) is q0, q1 or q3, then c = c−j for
some j and the successor transition from c to the next cut is allowed by the automaton. If
ρ(c) = q2, and c = c−j for some j, then xj = 1 and yj = 0, and ρ(c+

j) is q0, q1 or q2. Similarly

140 AUTOMATA AND TEMPORAL LOGIC OVER ARBITRARY LINEAR TIME

q0 q1

q2

q3

q4

1, 1/1 0, 1/1

1, 0/1

0, 0/0

1, 0/0

1, 1/1

1, 1/0

0, 0/1

0, 1/1

0, 0/0

P → q0, q1, q2, q3, q4

if q0, q1 or q3 ∈ P

{q2} → q0, q1, q2

{q4} → q3, q4

q2 → {q0}, {q2}, {q0, q2}
q4 → P if q1 or q3 ∈ P

q4 → {q4}

Figure 2: Automaton for U

if ρ(c−j) = q4, then xj = 1 and yj = 0, and ρ(c+
j) can be q3 or q4. Every successor transition

in ρ is thus allowed by AU .
We now prove the same for limit transitions. If a left limit transition leads to a cut c,

then either ψ is true arbitrarily close to the left of c (in which case the corresponding limit
set contains q0 or q1), or it is always false (and the limit set is {q2} or a subset of {q3, q4}). If
the limit set contains q0, q1 or q3, any state for c is allowed. If the limit set is {q2}, the cut c

can’t be labelled by q3 or q4 without violating the definition of ρ. Conversely, if the limit set
is {q4}, ρ(c) is necessarily q3 or q4. Let’s now consider a right limit transition starting at a
cut c. The label of this cut can only be q2 or q4. In the first case, ϕ must be true everywhere in
the limit set, which is thus a subset of {q0, q2}. In the second case, either ϕ is false infinitely
often in the limit, or ψ is always false. This means that the limit set contains q1 or q3, or is
restricted to {q4}. This shows that ρ is a run of AU on the input (x, y).

We now show that a run on AU is uniquely determined by the input word. Let γ a run
of AU on (x, y). Because of the constraints on the successor transitions, a cut c is labelled by
q0, q1 or q3 in γ if and only if it is labelled by the same state in ρ.

Let’s suppose that a cut c is labelled by q2 in γ. Since q2 is not final, there exists c′ > c

labelled by some other state. If there is a first such cut, its label is necessarily q0 or q1 (by a
successor transition from q2 or a limit transition from {q2}). Otherwise, there is a transition
of the form q2 → {q0} or q2 → {q0, q2}. In both cases, c satisfies the condition for cuts
labelled by q2 in the definition of ρ. A similar argument shows that a cut labelled by q4 in γ

has the same label in ρ. The run of AU on a given input word is thus unique.

Finally, we show that the output word is really the truth word of ϕUψ. Let j an element
of J. First, suppose that w, j |= ϕUψ. If j has a successor k, and ψ is true at k, then yk = 1,
and AU outputs 1 at position j. Otherwise, there exists k > j such that w, k |= ψ (i.e. yk = 1),
and xℓ = 1 whenever j < ℓ < k. Thus, c+

j is labelled with q2, and AU once again outputs 1
at position j. Suppose now that w, j 6|= ϕUψ. If j has a successor k and xk = yk = 0, then c+

j

is labelled by q3, so the output at position j is 0. Otherwise, c+
j is labelled by q4, and once

again AU outputs 0.

JULIEN CRISTAU FSTTCS 2009 141

q2 q1

q0

q3

q7 q6

q5 q4 q8

q9

1,1/0

0,1/0

1,0/0

0,0/0

1,0/1

1,1/1

• P → q0, q1, q2 if P ∩ {q4, q5} 6=
∅ or P ⊆ {q0, q1, q2}

• P → q3 if P ⊆ {q0, q1, q2}
• P → q4, q5, q6, q7 if P 6⊆
{q0, q1, q2}

• P → q8 if P ∩ {q4, q5} 6= ∅

• P → q9 if P ∩ {q4, q5} = ∅

and P 6⊆ {q0, q1, q2}
• q0 → P if P ⊆ {q0, q1, q2}
• q3 → P if P ∩ {q1, q4, q6} = ∅

and q5 ∈ P

• q8 → P if P ∩ {q4, q5, q6, q7} 6=
∅

• q9 → P if P ∩ {q4, q5, q6, q7} 6=
∅ and either P ∩ {q4, q5} = ∅

or P intersects {q1, q4, q6}
Figure 3: Automaton for the future Stavi operator

3.3 Automaton for the future Stavi connective (U ′)

Let’s recall that ϕU ′ψ holds at position i if there exists a gap c > i such that ϕ holds at every
position i < j < c, the property ψ holds at every position in some interval starting at x, and
¬ϕ holds at positions arbitrarily close to c to the right.

The central point in this definition is the gap c, which corresponds to state q3 in the
automaton. States q0, q1 and q2 follow the positions, before q3, where the formula holds.
States q4, q5, q6, q7, q8 follow the positions where the formula doesn’t hold. If a run reaches
q0, q1 or q2, it has to leave this region through q3, and all successor transitions until then
have input label (1, 0) or (1, 1). The structure of this automaton is depicted in Figure 3. All
states except q3 and q9 are initial; q8 and q9 are final. Transitions from q1 and q7 have input
label (1, 1), transitions from q2 and q6 have input label (1, 0), transitions from q4 have input
label (0, 0), and transitions from q5 have input label (0, 1). The output is 1 for transitions to
q0, q1 and q2, and 0 for transitions to q4, q5, q6, q7 and q8.

We define a labelling ρ of the cuts of a word w on {0, 1}2 using the states of the automa-
ton as follows. A cut c is labelled with:

• q0 if it has no successor, ϕU ′ψ is true
• q1 if it is followed by a position labelled (1, 0), ϕU ′ψ is true
• q2 if it is followed by a position labelled (1, 1), ϕU ′ψ is true
• q3 if it is a gap, ϕU ′ψ is true before it and false afterwards
• q4 if it is followed by a position labelled (0, 0), ϕU ′ψ is false
• q5 if it is followed by a position labelled (0, 1), ϕU ′ψ is false
• q6 if it is followed by a position labelled (1, 0), ϕU ′ψ is false
• q7 if it is followed by a position labelled (1, 1), ϕU ′ψ is false
• q8 if it has no successor, ϕ doesn’t hold in the left limit if it has no predecessor, and

ϕU ′ψ is false
• q9 if it is a gap or is the last cut, ϕU ′ψ is false, and ϕ is true in some interval to the left

142 AUTOMATA AND TEMPORAL LOGIC OVER ARBITRARY LINEAR TIME

LEMMA 7. ρ defines the unique run of the automaton on its input word. If the input is
(vϕ(w), vψ(w)) for some word w, then the output of this run is vϕU ′ψ(w).

PROOF. We first show that ρ is a run. Successor transitions correspond almost directly to
the definitions of the labelling ρ, so let’s look at limit transitions. For left limits, the following
cases need to be considered:

• if a transition P → q0 is taken at a cut c, then either ϕ is true in the limit, and so ϕU ′ψ

is too, and P ⊆ {q0, q1, q2}, or it’s not, and either q4 or q5 appear in the limit
• the same reasoning applies for q1 and q2

• if c is labelled q3 then the incoming transition has to come from a subset of {q0, q1, q2}
since ϕU ′ψ is true in the limit.

• if a transition P → q4 is used, then ϕU ′ψ is not true in the limit (otherwise it would
still be true), and so P 6⊆ {q0, q1, q2}; the same applies for q5, q6, q7, q8 and q9

• if c is a left limit and is labelled q8 then the incoming transition comes from a set P

intersecting {q4, q5} because ¬ϕ is repeated
• if c is labelled q9 then q4 and q5 can’t appear in the left limit set (ϕ is true)

If c is a right limit cut, it can be labelled q0, q3, q8 or q9. The right-limit transition can be:
• if c is labelled q0, the limit transition has to go to a subset of {q0, q1, q2} since ϕU ′ψ

holds in the limit;
• if c is labelled with q3, the limit transition to its right leads necessarily to a set P not

including q1, q4 and q6 since ψ is always true, and including q5 because ¬ϕ is repeated;
• if c is labelled q8 or q9, the right limit set can’t be a subset of {q0, q1, q2} otherwise c

would have been labelled q0;
• if c is labelled q9 we have the additional condition that either ϕ holds in the limit (and

neither q4 nor q5 appears) or ψ doesn’t (and one of q1, q4 and q6 is in the limit).
The labelling of cuts defined above is thus a path of the automaton, and we only need to

show that it’s the only one, using the same method as for the AU . Moreover, the definition
of ρ means that the output is 1 whenever ϕU ′ψ holds, and 0 at all other positions.

3.4 Construction of Aϕ

Now that we have the basic blocks for our construction, we can build an automaton for
any formula ϕ. If ϕ is an atomic proposition p, we have Ap as in Section 3.1. If ϕ = ¬ψ,
then Aϕ = A¬ ◦ Aψ. If ϕ = ψ1 ∨ ψ2, then Aϕ = A∨ ◦ (Aψ1 ×Aψ2). If ϕ = ψ1Uψ2, then
Aϕ = AU ◦ (Aψ1 ×Aψ2). The same can be done for U ′ and for the past connectives.

The number of states of the resulting automaton is the product of the number of states
of all the elementary automata, and is thus exponential in the size of the formula. The actual
size of the automaton includes limit transitions, so can be doubly exponential in the size of
the formula, if those transitions are represented explicitly.

To check whether the formula ϕ is satisfiable by a model which is recognized by an
automaton B, we can compute the product of the automaton Aϕ with B, and check whether
a transition where Aϕ outputs 1 is accessible and co-accessible. This ensures that there exists
a successful run of the product automaton going through that transition, meaning that the
corresponding input word is accepted by B and there is a position where ϕ holds.

JULIEN CRISTAU FSTTCS 2009 143

i f

a b c

h

a′ b′ c′

1

0

1

1

1

1

1

0

0

0

0

0

0
0

Limit transitions:

P → a, h if P ⊆ {a, b, c, h}

c → P if P ⊆ {a, b, c, h}

P → a′, f for any P

c′ → P if P ∩ {a, b, c, h} = ∅

Figure 4: Automaton checking whether a gap exists in the future

4 Discussion

Logical characterization of automata. We have shown that any LTL, and thus FO, formula
can be represented as a non-ambiguous automaton with output. But one can also build such
an automaton where the output is the truth word of a property which can’t be expressed in
the first order. The automaton shown on Figure 4 outputs 1 whenever “there is a gap some-
where in the future” is true; that formula can’t be expressed in FO. It would be interesting to
find a logical characterisation of the properties that can be expressed using such automata.
Computational complexity. The exact complexity of the satisfiability problem for LTL on ar-
bitrary orderings remains open. We give a 2EXPSPACE procedure to compute an automaton
from a formula, whose emptiness can then be checked efficiently. A classical optimization
in similar problems is to compute the automaton on the fly, which saves a lot of complexity,
so an algorithm using this technique for LTL on arbitrary orderings would be interesting.
Expressive power. On finite and ω-words, LTL restricted to the unary operators (X , F ,
and their past counterparts) is equivalent to first-order logic restricted to two variables,
FO2(<, +1) [8]. Restricting even further to F and its reverse, we get a logic expressively
equivalent to FO2(<). In the case of finite words, FO2(<) corresponds to “partially ordered”
two-way automata [18]. The proof of equivalence between unary temporal logic and FO2

can be easily extended to the case of arbitrary linear orderings. It would be interesting to
find such a correspondence for arbitrary orderings as well, and to see if these restrictions
provide lower complexity results.
Mosaics technique. In his work on LTL(U), Reynolds uses “mosaics” to keep track of the
subformulas that need to be satisfied in particular intervals, and to find a decomposition
that shows the satisfiability of the initial formula. Unfortunately it is not clear if and how
this can be extended to handle a larger fragment of the logic.

5 Conclusion

We investigate linear temporal order with Until, Since, and the Stavi connectives over gen-
eral linear time, and its relationship with automata over linear orderings. We provide a
translation from LTL to a class of non-ambiguous automata with output, giving a 2EXPSPACE

144 AUTOMATA AND TEMPORAL LOGIC OVER ARBITRARY LINEAR TIME

procedure to decide satisfiability of a formula in any rational subclass. This leaves a number
of immediate questions, starting with the actual complexity for the satisfiability problem for
LTL, but also for some of its fragments, where some operators are excluded. While the full
class of automata over linear orderings is not closed under complementation [1], it might
still be possible to find a logical characterization for some interesting subclasses.

References

[1] N. BEDON, A. BÈS, O. CARTON, AND C. RISPAL. Logic and rational languages of
words indexed by linear orderings. CSR’08: 76–85.

[2] V. BRUYÈRE AND O. CARTON. Automata on linear orderings. MFCS’01: 236–247.
[3] A. BÈS AND O. CARTON. A Kleene theorem for languages of words indexed by linear

orderings. Int. J. Found. Comput. Sci., 17(3):519–542, 2006.
[4] J. R. BÜCHI. Transfinite automata recursions and weak second order theory of ordinals.

Proc. Int. Congress Logic, Methodology, and Philosophy of Science 2–23, 1965.
[5] O. CARTON. Accessibility in automata on scattered linear orderings. MFCS’02: 155–

164.
[6] O. CARTON, 2009. Private communication.
[7] S. DEMRI AND A. RABINOVICH. The complexity of temporal logic with until and since

over ordinals. LPAR’07: 531–545.
[8] K. ETESSAMI, M. Y. VARDI, AND T. WILKE. First-order logic with two variables and

unary temporal logic. Inf. Comput., 179(2):279–295, 2002.
[9] P. GASTIN AND D. ODDOUX. Fast LTL to Büchi automata translation. CAV’01: 53–65.

[10] D. M. GABBAY, A. PNUELI, S. SHELAH, AND J. STAVI. On the temporal basis of fair-
ness. POPL’80: 163–173.

[11] H. W. KAMP. Tense Logic and the Theory of Linear Order. PhD thesis, UCLA, 1968.
[12] A. PNUELI. The temporal logic of programs. FOCS’77: 46–57.
[13] C. RISPAL AND O. CARTON. Complementation of rational sets on countable scattered

linear orderings. Int. J. Found. Comput. Sci., 16(4):767–786, 2005.
[14] M. REYNOLDS. The complexity of the temporal logic with "until" over general linear

time. J. Comput. Syst. Sci., 66(2):393–426, 2003.
[15] J. G. ROSENSTEIN. Linear Orderings. Academic Press, New York, 1982.
[16] A. P. SISTLA AND E. M. CLARKE. The complexity of propositional linear temporal

logics. J. ACM, 32(3):733–749, 1985.
[17] L. J. STOCKMEYER. The Complexity of Decision Problems in Automata Theory and Logic.

PhD thesis, MIT, 1974.
[18] T. SCHWENTICK, D. THÉRIEN, AND H. VOLLMER. Partially-ordered two-way au-

tomata: A new characterization of DA. DLT’01: 239–250.
[19] M. Y. VARDI AND P. WOLPER. An automata-theoretic approach to automatic program

verification (preliminary report). LICS’86: 332–344.
[20] P. WOLPER. The tableau method for temporal logic: an overview. Logique et Analyse:

28–119, 1985.

This work is licensed under the Creative Commons Attribution-
NonCommercial-No Derivative Works 3.0 License.

