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ABSTRACT. The paper focuses on the structure of fundamental sequences of ordinals smaller than
ε0. A first result is the construction of a monadic second-order formula identifying a given structure,
whereas such a formula cannot exist for ordinals themselves. The structures are precisely classified
in the pushdown hierarchy. Ordinals are also located in the hierarchy, and a direct presentation is
given.

A recurrent question in computational model theory is the problem of model checking,

i.e. the way to decide whether a given formula holds in a structure or not. When studying

infinite structures, first-order logic only brings local properties whereas second-order logic

is most of the time undecidable, so monadic second-order logic or one of its variants is often

a balanced option. In the field of countable ordinals, results of Büchi [3] and Shelah [15]

both brought decidability of the monadic theory via different ways. This positive outcome

is tainted with the following property : the monadic theory of a countable ordinal only

depends on a small portion of it, called the ω-tail [3, Th. 4.9]. In other words, many ordinals

greater than ωω share the same monadic theories and cannot be distinguished.

Another class of structures enjoying a decidable monadic second-order theory is the

pushdown hierarchy [6], which takes its source in the Muller and Schupp characterization of

transition graphs of pushdown automata [11]. In the same way, each level of the hierarchy

has two characterizations : an internal by higher-order pushdown automata [4], and an

external presentation by graph transformations [5]. This paper will use the latter by the

means of monadic interpretation and treegraph operations.

The original motivation of this paper was the localization of ordinals smaller than ε0 in

the hierarchy. Because of the above property, ordinals themselves are not easy to manipu-

late with monadic interpretations. There is therefore a need of structures as expressive as

ordinals (in terms of interpretations) but having additional properties, such as the existence

of a monadic formula precisely identifying the structure.

A well-known object answers to this request. Each countable limit ordinal may be

defined as the limit of a so-called fundamental sequence. For ordinals smaller than ε0, it

is easy to have a unique definition for this sequence using the Cantor normal form. We

note α ≺ β when α is in the fundamental sequence of β or α + 1 = β. When restricted to

ordinals smaller than λ, we call the resulting structure the covering graph of λ. In Section

2, we present precisely this structure and give some of its properties. In particular, the out-

degree of its vertices is studied intensively. This eventually yields a specific formula for

each covering graph.

Section 3 locates the covering graph of any ordinal α smaller than ε0 in the level n of the

hierarchy, where n is the largest size of the ω-tower smaller than α. The result also applies

to ordinals themselves. This was already shown for ordinals up to ωωω
in [1]. In Section 4,

the result in strengthened by proving that covering graphs are not in the lower levels; the
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question is still open for ordinals. Eventually, we produce a direct presentation for towers

of ω through prefix-recognizable relations of order n, but involving a more technical proof.

Similar attempts of characterization of ordinals has been made in the field of automatic-

ity [8, 10], but in the other way around : word- and tree-automatic ordinals are shown to be

respectively less than ωω and ωωω
.

1 Definitions

In this paper, ordinals are often considered from a graph theory point of view. The set of

vertices of α is the set of ordinals smaller than α, and the set of arcs is the relation <.

1.1 Graphs

Graphs are finite or infinite sets of labeled arcs. A Σ-graph is a set G ⊆ V × Σ × V, where

V (or VG if unclear) is the support, i.e. a finite or countably infinite set of vertices, and Σ a

finite set of labels. An element (p, a, q) of G is called an arc and noted p
a

−→ q. Each label

a ∈ Σ is associated to a relation Ra = {(p, q) | p
a

−→ q} on V. A finite sequence of arcs

p
a1−→ . . .

an−→ q is a path and noted p
a1 ...an−−−→ q. This is extended to languages with p

L
−→ q iff

∃u ∈ L such that p
u
−→ q. Isomorphism between graphs is noted ≃.

The monadic second-order (MSO) logic is defined as usual; see for instance [9]. We take a

set of (lowercase) first-order variables and a set of (uppercase) second-order variables. For a

given set of labels Σ, atomic formulas are x ∈ X, x = y and x
a

−→ y for all a ∈ Σ and x, y, X

variables. Formulas are then closed by the propositional connectives ¬,∧ and the quantifier

∃. Graphs are seen as relational structures over the signature consisting of the relations

{Ra}a∈Σ. The set of closed monadic formulas satisfied by a graph G is noted MTh(G).

Given a binary relation R, the in-degree (respectively out-degree) of x is the cardinality

of {y | yRx} (resp. {y | xRy}). The output degree in a graph G of x ∈ V is the cardinal of

{y | ∃a, (x, a, y) ∈ G}. The output degree of a graph is the maximal output degree of its

vertices if it exists.

1.2 Ordinals

For a general introduction to ordinal theory, see [14, 13]. An order is a well-order when each

non-empty subset has a smallest element. Ordinals are well-ordered by the relation ∈, and

satisfy ∀x(x ∈ α ⇒ x ⊂ α). Since any well-ordered set is isomorphic to a unique ordinal, we

will often consider an ordinal up to isomorphism. In terms of graphs, the set of labels of an

ordinal is a singleton often noted Σ = {<} and the graph respects the following monadic

properties :

(strict order)

{

∀p, q(¬(p
<

−→ q ∧ q
<

−→ p))

∀p, q, r((p
<

−→ q ∧ (q
<

−→ r) ⇒ p
<

−→ r)

(total order) ∀p, q(p
<

−→ q ∨ q
<

−→ p ∨ p = q)

(well order) ∀X 6= ∅ ∃x(x ∈ X ∧ ∀y(y ∈ X ⇒ (x
<

−→ y ∨ x = y)))
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The ordinal arithmetics define operations on ordinals such as addition, multiplication,

exponentiation. The bound of ordinals investigated here is ε0, the smallest ordinal such that

ε0 = ωε0 ; therefore the declaration “< ε0” is implicit through the rest of the paper. To sim-

plify the writing of towers of ω, the notation ⇑ is used to note the iteration of exponentiation

ie. a ⇑ b = aa...a
}

b times. In particular, a ⇑ 0 = 1 is the (right) exponentiation identity.

Classic operations are not commutative in ordinal theory : for instance ω + ω2 = ω2
<

ω2 + ω. This leads to many writings for a single ordinal. Fortunately, all ordinals smaller

than ε0 may uniquely be written in the Cantor normal form (CNF)

α = ωα0 + · · · + ωαk

where αk ≤ · · · ≤ α0 < α. An alternative we will call reduced Cantor normal form (RCNF) is

α = ωα0 .c0 + · · · + ωαk .ck where αk < · · · < α0 < α and c1, . . . , ck are non-zero integers. To

express ordinals smaller than ε0 from natural numbers and ω, the only operations needed

are thus addition and exponentiation.

2 Covering graphs

In this section, we define the covering graph of an ordinal as the graph of successor and

fundamental sequence relations. Then, we prove some of its important properties. One of

them is the finite degree property, which is worked out to bring a specific monadic formula

for each covering graph, thus allowing to differentiate them.

2.1 Fundamental sequence

The cofinality [14] of any countable ordinal is ω. To each limit ordinal α we may associate a

ω-sequence whose bound is α. For α ≤ ε0, α = β + ωγ with β < α, γ < α and ωγ is the last

term in the CNF of α, we define the fundamental sequence (α[n])n<ω as follows :

α[n] =

{

β + ωγ′
.(n + 1) if γ = γ′ + 1

β + ωγ[n] otherwise.

We define α′ ≺ α whenever there is k such that α′ = α[k], or if α′ + 1 = α.

For instance, the fundamental sequence of ω is the sequence of integers starting from

1. The sequence of ωω is therefore (ω, ω2, ω3, . . . ). The fundamental sequence merged with

the successor relation yields for instance

0 ≺ 1 ≺ ω ≺ ω + 1 ≺ ω.2 ≺ ω2 ≺ ωω.

Taking the transitive closure of this relation gives back the original order, so there no infor-

mation loss.

Lemma 1 The transitive closure of ≺ is <.

Moreover, the relation is crossing-free as described below, which is a helpful technical

tool.

Lemma 2 If α1 < λ1 < α2, α1 ≺ α2 and λ1 ≺ λ2, then λ2 ≤ α2.

This is the forbidden case :

α1
((

λ1
((

α2 λ2
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Figure 1: covering graph of ωω.

2.2 Covering graphs

Let Gα = {λ1 ≺ λ2 | λ1, λ2 < α} be the graph of successor and fundamental sequence

relation, or covering graph of the ordinal α. For instance, a representation of Gωω is given in

Figure 1.

We first remark the finite out-degree of the covering graphs.

Lemma 3 For any ω ⇑ (n − 1) < α ≤ ω ⇑ n and n > 0, the out-degree of Gα is n.

In the following, we refine this property to get a characterisation of an ordinal by the

degree of its vertices. We define the degree word u(α) of a covering graph as follows. Con-

sider the greatest sequence σ of Gα starting from 0, i.e. σ0 = 0 and for k ≥ 0, σk+1 is the greatest

such that σk ≺ σk+1. The previous lemma ensures that {λ | σk ≺ λ} is finite, so σk+1 exists.

Such a sequence may be finite.

The degree word u(α) is a finite or infinite word over [0, n] when α ≤ ω ⇑ n, and its kth

letter is the out-degree of σk in Gα.

For instance, consider u(ωω). Its greatest sequence is (0, 1, ω, ω2, ω3, . . . ), where all

have degree 2 in Gωω except the first; so u(ωω) = 12ω . Now consider u(ω3 + ω2) : the

sequence is now

0, 1, ω, ω2, ω3, ω3 + 1, ω3 + ω, ω3 + ω + 1, . . .

which loops into (. . . , ω3 + ω.k, ω3 + ω.k + 1, . . . ) so u(ω3 + ω2) = 12221(21)ω .

Lemma 4 For any α ≤ ω ⇑ n, if α is successor then u(α) is a finite word of [0, n]∗; otherwise u(α)
is an ultimately periodic word of [1, n]ω.

PROOF (SKETCH). If α is successor, then since the greatest sequence is unbounded, the

predecessor of α is in it and the word is finite. Otherwise, we prove that α[k] is in the

greatest sequence of α for all finite k. The sequence of degrees from 0 to α[0] forms the static

part of the ultimately periodic word, whereas the sequences of degrees between α[k] and

α[k + 1] are always the same.
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Let <
n
lex be the lexicographic ordering on words on [0, n] based on standard order. De-

gree words differ for each ordinal.

Lemma 5 If α < α′ ≤ ω ⇑n, then u(α) <
n
lex u(α′).

PROOF. Consider n > 0, otherwise its degree word of α is the empty word. As before,

note that the greatest sequence is unbounded, and that σ0 = σ′
0 = 0. Thus if 0 < α < α′ and

σ′ is the greatest sequence of Gα′ , there is a smallest n > 0 such that σn 6= σ′
n, or σn doesn’t

exist whereas σ′
n does. In both cases, the output degree of σn−1 is less in Gα than in Gα′ , so

u(α) <
n
lex u(α′).

A ultimately periodic pattern can be captured by a monadic formula. This is the goal

of the the following lemma.

Lemma 6 For each finite or infinite word u over [0, n] and a given ordinal α, there is a monadic

formula ϕu such that Gα |= ϕu iff u = u(α).

PROOF. The fact that the degree word is finite or ultimately periodic permits to use a finite

number of variables. We consider the ultimately periodic case, and u(α) = uvω.

To simplify the writing, we consider the following shortcuts :

• τ(p, q) stands if q is the greatest such that p ≺ q;

• if the output degree of p is k, then ∂k(p) is true;

• root(X, p) and end(X, p) are true when p is co-accessible (resp. accessible) from each

vertex of X, with the entire path in X; root(p) looks for a root of the whole graph;

• inline(X) checks that X is a finite or infinite path;

• sizek(X) stands for |X| = k.

All these notations stand for monadic formulas. For instance, the inline(X) property is true

when there is a root in X and each vertex has output degree 1, and each except the root has

input degree 1.

Now we may write the formula ϕu. For this, we need two finite sets p1 . . . p|u| ∈ U for

the static part, q1 . . . q|v| ∈ V ′ for the beginning of the periodic part and an infinite set V with

V ′ ⊆ V. We check that p1 is the general root 0, and q1 the root of V, which is an infinite path.

Formulas τ and ∂k force the degree of the uv part. For the periodic part, each q ∈ V there

must be the root of a finite path Xq ⊆ V of size |v| + 1, which end has the same degree that

q.

The combination of Lemmas 5 and 6 yields the following theorem.

Theorem 7 For α 6= α′ smaller than ε0, we have MTh(Gα) 6= MTh(Gα′).

As a consequence, there is no generic monadic interpretation (see next section for def-

inition) from an ordinal greater than ωω to its covering graph. Below this limit, there is an

interpretation, because it is possible to distinguish successive limit ordinals.

3 The pushdown hierarchy

In this section, the pushdown hierarchy will only be defined by monadic interpretations and

the treegraph operation. For other definitions, see for instance [4]. In particular, each level

can be defined as the set of transition graphs (up to some closure operation) of finite-state

higher-order pushdown automata of level n (n-hopda), hence the name.



102 COVERING OF ORDINALS

A major property shared by this class of graphs is the decidability of their monadic

theories. Since it is also the case for countable ordinals [15, 3], it is natural to examine the

intersection. Here, covering graphs and ordinals are located at each level of the hierarchy.

3.1 Definitions

A monadic interpretation I is a finite set {ϕa(x, y)}a∈Γ of monadic formulas with two free first

order variables. The interpretation of a graph G ⊆ V ×Σ ×V by I is a graph I(G) = {p
a

−→
q | p, q ∈ V ∧ G � ϕa(p, q)} ⊆ V × Γ × V. It is helpful to have Γ = Σ to allow iteration

process. The set of monadic interpretations I is closed by composition.

A particular case of monadic interpretation is inverse rational mapping. The alphabet

Σ̄ is used to read the arcs backwards : p
ā

−→ q iff q
a

−→ p. An inverse rational mapping is

an interpretation such that ϕa(p, q) := p
La−→ q where La is a regular language over Σ ∪ Σ̄.

For instance, the transitive closure of Ra for a label a is a monadic interpretation. By

Lemma 1, there is therefore an immediate monadic interpretation from Gα to α. An impor-

tant corollary of Lemma 7 is that the reverse cannot exist, or there would be a monadic

formula identifying a specific ordinal smaller than ε0, which is contradictory to the result of

Büchi [3, Th. 4.9] cited in introduction.

For a more complex illustration of a monadic interpretation, we notice that the degree

word allows the restriction from a greater ordinal.

Lemma 8 If α < α′, there is a MSO interpretation I such that Gα = I(Gα′).

PROOF. Following the definition, we look for an interpretation I = {ψ≺}. We use again

the fact that the degree word is unique and MSO-definable. Defining the greatest sequence

of Gα provides a MSO marking on G ′
α, which bounds the set of vertices. More precisely, let

Ψu(p) be an expression similar to ϕu of the Lemma 6 but where the part τ(pi, pi+1) ∧ δui
(pi)

has been replaced by τui
(pi, pi+1) meaning “pi+1 is the uth

i such that pi ≺ pi+1”; the same

goes for the qj and for τ(p|u|, q1) ∧ δu|u|
(p|u|). Also add the condition that p is a part of the

sequence : (
∨

i p = pi)∨ p ∈ V. Then Ψu(p) is a marking of the greatest sequence associated

to u. For a given α, I simply adds the condition of co-accessibility to a vertex marked by

Ψu(α).

ψ≺(p, q) := p
≺

−→ q ∧ ∃r (Ψ
u(α)(r) ∧ q

≺∗

−→ r)

Gα = {p
≺

−→ q | p
≺

−→ q ∈ Gα′ ∧ ∃r (Ψ
u(α)(r) ∧ q

≺∗

−→ r)}

The treegraph Treegraph(G) of a graph G is the set {p
a

−→ q} ⊆ V∗
G × (ΣG ∪ {#}) × V∗

G

where (p, q) ∈ V∗
G are sequences of vertices of G, and a ∈ ΣG either if p = wu, q = wv and

u
a

−→ v ∈ G, or if a = #, p = wu and q = wuu. One can also see the treegraph as the

fixpoint of the operation which, to each vertex which is not starting point of an # arc, adds

this arc leading to the location of this vertex in a copy of G. The starting graph is called the

root graph.

One way to define the pushdown hierarchy (see [5] for details) is as follows.

• H0 is the class of graphs with finite support,
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• Hn = I ◦ Treegraph(Hn−1).

For instance, H1 is the class of prefix-recognizable graphs [7] and further Hn classes have

been proved to correspond to an extension of prefix-recognizability on higher-order stacks

[4].

3.2 Building covering graphs

We note p
a•
−→ q for the longest possible path labeled by a, and p

S
−→ q a shortcut for the

successor relation, i.e.

p
a•
−→ q := p

a∗
−→ q ∧ ¬∃r (q

a
−→ r)

p
S

−→ q := p
≺

−→ q ∧ ¬∃r(p
≺

−→ r ∧ r
≺∗

−→ q).

Now let I = {ϕ≺} and M(p) respectively be the interpretation and marking

ϕ≺(p, q) := M(p) ∧ M(q) ∧ p
≺̄•#
−−→ q ∨ p

#̄•S#
−−→ q ∨ p

#̄≺#
−−→ q

M(p) := ∃r : ∀q (r
(≺+#+≺̄)∗

−−−−−−→ q) ∧ r
≺∗#(≺̄∗#)∗

−−−−−→ p

The marking M(p) allows to start anywhere on the root graph, but as soon as a #-arc

has been followed, ≺-arcs can only be followed backwards. We consider only goals of a

#-arc.

The ϕ≺(p, q) formula states the relation on these vertices, leaving three choices : either

to follow ≺-arcs as long as possible (in practice, until a copy of 0) and go down one #-arc; or

on the contrary, to follow # backwards as long as possible, then take the successor and one

#-arc; or just to follow one # backwards, one ≺ and one #.

Lemma 9 Gωα = I ◦ Treegraph(Gα).

For instance consider Gω, which is an infinite path. A representation of its treegraph is

given below (plain lines for ≺, dotted lines for #). The circled vertices are the ones marked

by M and therefore they are the only ones kept by the interpretation ϕ. We are allowed to go

anywhere on the root Gω structure, but as soon as we follow # we can only go backwards.

This reflects the construction of a power of ω as a decreasing sequence of ordinals : we may

start by any, but afterwards we only may decrease.

Lemma 10 If α < ω ⇑ (n + 1), then Gα ∈ Hn.
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PROOF. For any finite α, Gα is in fact a finite path labeled by ≺ and is in H0. By Lemma

9 iterated n times, every ω...ω
k

with n times ω and 1 < k < ω is in Hn. Smaller ordinals are

captured by a restriction as in Lemma 8.

This proves the decidability of the monadic theory of the covering graphs. By transitive

closure (Lemma 1), ordinals are also captured.

Theorem 11 If α < ω ⇑ (n + 1), then α ∈ Hn.

The decidability of the monadic theory of these ordinals is well-known, but this result

also shows that ordinals below ε0 can be expressed by finite objects, namely higher-order

pushdown automata. Following the steps of a well-chosen automaton (up to an operation

called the ε-closure) builds exactly an ordinal. This approach is explained in Section 5.

4 Strictness of the hierarchy for covering graphs

In this section, we strengthen Lemma 10 by proving that covering graphs cannot be in any

level of the hierarchy. Let exp(x, n, k) be a tower of exponentiation of x of height n with

power k on the top, where n and k are integers.

exp(x, n, k) = k if n = 0

= xexp(x,n−1,k) otherwise.

In the following section, this function will be used in the cases x = 2 and x = ω.

We examine the tree Tn of trace (from the root) {anbexp(2,n,k)}. It has the form below

with f (k) = exp(2, n, k). The horizontal arcs are labeled by a and the vertical arcs by b.
0 ...k

f(k)

For any n, there is such a tree which is not in the level n of the hierarchy [2].

Proposition 1 For n ≥ 1, T3n /∈ Hn.

Finding a monadic interpretation from Gα to T3n is therefore enough to prove Gα /∈ Hn.

In fact, Lemma 8 already states that if ω ⇑3n + 1 ≤ α, then there is an interpretation from Gα

to Gω⇑3n+1; so the interpretation from Gω⇑3n+1 to T3n is enough for a whole class of ordinals.

We sketch this interpretation.

Let Ck
n be the set of ordinals smaller than exp(ω, n, k) where each coefficient in RCNF is

at most 1, except for the top-most power :

• [0, k − 1] ∈ Ck
0,

• 0 ∈ Ck
n,

• if γ0, . . . , γh are all distinct ordinals of Ck
n−1, then ωγ0 + · · · + ωγh ∈ Ck

n.
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For instance, C3
1 = {0, 1, ω, ω + 1, ω2, ω2 + 1, ω2 + ω, ω2 + ω + 1};

C2
2 = {0, 1, ω, ω + 1, ωω, ωω + 1, ωω + ω, ωω + ω + 1,

ωω+1, ωω+1 + 1, ωω+1, + ω, ωω+1 + ω + 1,

ωω+1 + ωω, ωω+1 + ωω + 1, ωω+1 + ωω + ω, ωω+1 + ωω + ω + 1}.

The following lemma is only a matter of cardinality of powersets.

Lemma 12 The cardinality of the set Ck
n is exp(2, n, k).

We abusively note α + Ck
n for the set {α + γ | γ ∈ Ck

n}. The main difficulty of this

section is to define a monadic formula for this set.

Lemma 13 For n > 0, there is a monadic formula describing exp(ω, n, k) + Ck
n in Gα, for α greater

than exp(ω, n, k).2.

These ordinals are easy to capture by previous tools. The following lemma is a natural

corollary of the proof of Lemma 4, since exp(ω, n, k) ≺ exp(ω, n, k + 1).

Lemma 14 The greatest sequence of ω ⇑(n + 1) is ultimately the sequence (exp(ω, n, k))k≥1.

We may now state the main result of this section.

Theorem 15 If n > 0 and α ≥ ω ⇑3n + 1, then Gα /∈ Hn.

PROOF (SKETCH). If we concatenate the previous lemmas, it appears that

• since the greatest sequence of α is interpretable from Gα, we can extract the sequence

(exp(ω, 3n, k))k≥1 from Gω⇑3n+1, which will be the “horizontal path” of T3n;

• for each exp(ω, 3n, k) we can also capture the associated set exp(ω, 3n, k) + Ck
3n and

arrange it in path. This yields the “vertical path” hanging from exp(ω, 3n, k) and of

length exp(2, 3n, k).

Eventually, the monadic interpretation builds exactly T3n, which is the expected result.

The covering graph Gε0 can be defined and has unbounded degree, but has still the

property of Lemma 8 : it can give any smaller ordinal via monadic interpretation, which

yields the following result.

Corollary 16 Gε0 does not belong to the hierarchy.

From [2] we could actually extract the lower bound T2n /∈ Hn. The conjecture is that

Tn /∈ Hn, which would allow to locate exactly each covering graph in the hierarchy.

The Theorem 15 does not apply to ordinal themselves, since there we showed that there

is no interpretation from ordinals to covering graphs. Therefore, the question is still open,

which leads to Conjecture 1 at the end of this paper.

5 Higher-order stack description of ordinals

The graph on the level n of the hierarchy are also graphs (up to ε-closure) of higher-order

pushdown automata of level n [5], i.e. automata which use nested stacks of stacks of depth

n. The construction by monadic interpretations and unfolding could be translated into

a pushdown automata description. Instead of doing so, we use the equivalent notion of

prefix-recognizable relations [4] from scratch. This notion offers a natural encoding of ordi-

nals by their Cantor normal form. Nonetheless, the associated proof is still heavy.
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5.1 Short presentation

This section sketches a particular case of prefix-recognizable graphs. For a complete de-

scription, see [4]. We only consider 1-stacks (usual stacks) over an alphabet of size 1, i.e.

integers. The empty 1-stack is therefore noted 0. For all n > 1, a n-stack is a non-empty

finite sequence of (n − 1)-stacks, noted [a1, . . . , am]n. The operations Ops1 on a 1-stack are

push1(i) := i + 1,

pop1(i + 1) := i.

For n > 1, the set Opsn of operations on a n-stack include

copyn([a1, . . . , am]n) := [a1, . . . , am, am]n
popn([a1, . . . , am]n) := [a1, . . . , am−1]n

f ([a1, . . . , am]n) := [a1, . . . , f (am)]n

where f is any operation on k-stacks, k < n.

The 2-stack containing only 0 is noted [ ]2, and the n-stack containing only [ ]n−1 is

noted [ ]n. Let also be an identity operation id defined on all stacks.

The set Opsn forms a monoid with the composition operation. Let Reg(Opsn) the clo-

sure of the finite subsets of this monoid under union, product and iteration, i.e. the set

of regular expressions on Opsn. To each expression E ∈ Reg(Opsn) we associate the set of

n-stacks S(E) = E([ ]n) and the set of relations on stacks R(E) = {(s, s′)|s′ ∈ E(s)}.

Given E and a finite set (Ea)a∈Σ in Reg(Opsn), the graph of support S(F) and arcs s
a

−→
s′ iff (s, s′) ∈ R(Fa) is a prefix-recognizable graph of order n. General prefix-recognizable graphs

are exactly graphs of pushdown automata of the same order.

5.2 Towers of ω

We define the expressions dom and inc which respectively fix the domain of the structure

and the order relation. In the following we also will need an expression dec to perform the

symmetric of inc. In one word, we want the structure 〈S(dom(α)), R(dec(α)), R(inc(α))〉 to

be isomorphic to the structure 〈α, >, <〉.

For ω, we consider the set of all 1-stacks (i.e. integers). In this case, dom(ω) is obtained

by iterating push1 on the empty stack. The other operations are also straighforward.

dom(ω) := push∗
1

inc(ω) := push+
1

dec(ω) := pop+
1

We consider now any ordinal α. Let n be the smallest value such that dom(α), inc(α)
and dec(α) are all in Reg(Opsn−1).

Let tail(α) := copyn.(id + dec(α)). Informally, each ordinal γ < ωα is either 0 or may be

written as γ = ωγ0 + · · ·+ ωγk with γi < α; so we code γ as a sequence of stacks respectively

coding γ0 . . . γk. The tail operation takes the last stack (representing γk) and adds a stack

coding an ordinal ≤ γk, so that the CNF constraint is respected. For the relation <, inc
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either adds a decreasing sequence (by tail), or it first pops stacks, then increases a given one

before adding a tail.

dom(ωα) := dom(α).tail(α)∗

inc(ωα) := [pop∗
n.inc(α) + tail(α)].tail(α)∗

dec(ωα) := pop∗
n.[popn + dec(α).tail(α)∗]

We get this version of Theorem 11 restricted to towers of ω.

Theorem 17 The graph of ω ⇑ n is isomorphic to the prefix-recognizable graph of order n with

support S(dom(ω ⇑ n)) and one relation R(inc(ω ⇑ n)).

The proof of this proposition encodes exponentiation of ω, so the case of all ordinals

smaller than ε0 can be obtained by encoding also addition. This can be done with a greater

starting alphabet and using markers to differentiate each part of the addition.

6 Perspectives

We have defined covering graphs as graphs of fundamental sequence and successor rela-

tions and shown the existence of a formula identifying a covering graph among others, via

the degree word. Then, the covering graphs and the corresponding ordinals have been lo-

cated in the pushdown hierarchy according to the size in terms of tower of ω, in a strict way

for the covering graph case.

Theorem 11 raises the question of the strictness of the classification of ordinals in the

hierarchy. Theorem 15 naturally suggests that if α ≥ ω ⇑ n, then α does not belong to Hn−1,

and therefore ε0 is banned from the hierarchy.

Conjecture 1 ε0 does not belong to the hierarchy.

If this were proved, ε0 would actually be a good candidate for extending the hierarchy

above the Hn. Indeed, a current field of research is to capture as many structures with de-

cidable monadic theory as possible. A way to do so would be to find an operation extending

those used in this paper — interpretation and treegraph.

One can find definitions [16] of a canonical fundamental sequence for ordinals greater

than ε0 and therefore define covering graphs outside of the hierarchy. For instance, one can

take ε0[n] = ω ⇑(n + 1). In this way, covering graphs may be defined for a large number

of ordinals; but we conjecture that the Theorem 7 does not stand any more, i.e. for any

definition of fundamental sequence, there are two ordinals whose covering graphs have the

same monadic theories.

Also, the ability to differentiate covering graphs smaller than ε0 leads to check this

robustness for more difficult questions. One of them is selection in monadic theory, which

is negative for ordinals greater than ωω [12].

In another direction, it would be interesting to remove the well-ordering property and

to consider more general linear orderings. The orders of Q and Z are obviously prefix-

recognizable. We would like to reach structures of more complex orders.
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