
MAKING DYNAMIC MEMORY ALLOCATION
STATIC TO SUPPORT WCET ANALYSES1

Jörg Herter2 and Jan Reineke2

Abstract
Current worst-case execution time (WCET) analyses do not support programs using dynamic memory
allocation. This is mainly due to the unpredictable cache performance when standard memory allo-
cators are used. We present algorithms to compute a static allocation for programs using dynamic
memory allocation. Our algorithms strive to produce static allocations that lead to minimal WCET
times in a subsequent WCET analyses. Preliminary experiments suggest that static allocations for
hard real-time applications can be computed at reasonable computational costs.

1. Introduction

High cache predictability is a prerequisite for precise worst-case execution time (WCET) analyses.
Current static WCET analyses fail to cope with programs that dynamically allocate memory mainly
because of their unpredictable cache behavior. Hence, programmers revert to static allocation for
hard real-time systems. However, sometimes dynamic memory allocation has advantages over static
memory allocation. From a programmer’s point of view, dynamic memory allocation can be more
natural to use as it gives a clearer program structure. In-situ transformation of one data structure
into another one may reduce the necessary memory space from the sum of the space needed for both
structures to the space needed to store the larger structure.

But why do WCET analyses fail to cope with dynamic memory allocation? In order to give safe
and reasonably precise bounds on a program’s worst-case execution time, analyses have to derive
tight bounds on the cache performance, i.e., they have to statically classify the memory accesses
as hits or misses. Programs that dynamically allocate memory rely on standard libraries to allocate
memory on the heap. Standard malloc implementations, however, inhibit a static classification of
memory accesses into cache hits and cache misses. Such implementations are optimized to cause
little fragmentation and neither provide guarantees about their own execution time, nor do they pro-
vide guarantees about the memory addresses they return. The cache set that memory allocated by
malloc maps to is statically unpredictable. Consequently, WCET analyses cannot predict cache hits
for accesses to dynamically allocated memory. Additionally, dynamic memory allocators pollute the
cache themselves. They manage free memory blocks in internal data structures which they maintain
and traverse during (de)allocation requests. An unpredictable traversal of these data structures results
in an equally unpredictable influence on the cache.

While it seems that dynamic memory allocation prohibits a precise WCET analysis, the special re-

1This work is supported by the German Research Council (DFG) as part of the Transregional Collaborative Research
Center “Automatic Verification and Analysis of Complex Systems” (SFB/TR 14 AVACS), the German-Israeli Foundation
(GIF) in the “Encasa” project, and by the European Community’s Seventh Framework Programme FP7/2007-2013 under
grant agreement n◦ 216008 (Predator).

2Universität des Saarlandes, Saarbrücken, Germany, {jherter, reineke}@cs.uni-saarland.de

ECRTS 2009
9th International Workshop on Worst-Case Execution Time (WCET) Analysis
http://drops.dagstuhl.de/opus/volltexte/2009/2284

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62914909?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

quirements for hard real-time systems can be utilized to circumvent predictability issues introduced
by dynamic allocation. Hard-real time software contains no unbounded loops nor unbounded re-
cursion and hence no unbounded allocation. In this work, we show how information necessary for
WCET analysis on hard real-time systems (like the aforementioned loop and recursion bounds) can be
used to transform dynamic memory allocation into static memory allocation. Our proposed algorithm
statically determines a memory address for each dynamically allocated heap object such that

• the WCET bound calculated by the standard IPET method is minimized,

• as a secondary objective the memory consumption is minimized, and

• no objects that may be contemporaneously allocated overlap in memory.

We evaluate our approach on several academic example programs.

The following subsection gives an overview on related work, while Section 2 illustrates the impor-
tance of cache predictability for WCET analyses and the problems introduced by dynamic memory al-
location. In Section 3, we propose algorithms to compute static allocations from program descriptions
to substitute dynamic allocation by. Experimental results are given in Section 4, further improvements
of our approach are sketched in Section 5. Section 6 concludes the paper.

1.1. Related Work

There are two other approaches to make programs that dynamically allocate memory more analyz-
able with respect to their WCET. In [4] we proposed to utilize a predictable memory allocator to
overcome the problems introduced by standard memory allocators. Martin Schoeberl proposes differ-
ent (hardware) caches for different data areas [10]. Hence, accesses to heap allocated objects would
not influence cached stack or constant data. The cache designated for heap allocated data would be
implemented as a fully-associative cache with an LRU replacement policy. For such an architecture
it would be possible to perform a cache analysis without knowledge of the memory addresses of the
heap allocated data. However, a fully-associative cache, in particular with LRU replacement, cannot
be very big, due to technological constraints.

2. Caches, Cache Predictability, and Dynamic Memory Allocation

Caches are used to bridge the increasing gap between processor speeds and memory access times. A
cache is a small, fast memory that stores a subset of the contents of the large but slow main memory.
It is located at or near the processor. Due to the principle of locality, most memory accesses can be
serviced by the cache, although it is much smaller than the main memory. This enables caches to
drastically improve the average latency of memory accesses. To reduce cache management and data
transfer overhead, the main memory is logically partitioned into a set of memory blocks of size b.
Memory blocks are cached as a whole in cache lines of equal size. When accessing a memory block,
the system has to determine whether the memory block is currently present in the cache or if it needs
to be fetched from main memory. To enable an efficient look-up, each memory block can be stored in
a small number of cache lines only. For this purpose, caches are partitioned into equally-sized cache
sets. The size of a cache set, i.e., the number of cache lines it consists of, is called the associativity k
of the cache. At present, k ranges from 1 to 32. Since the number of memory blocks that map to a set

2

is usually far greater than the associativity of the cache, a so-called replacement policy must decide
which memory block to replace upon a cache miss. Cache analyses [2] strive to derive tight bounds
on the cache performance. To obtain such bounds, analyses have to classify memory accesses as
cache hits or cache misses. A memory access constitutes a cache hit if it can be served by the cache.
And analogously, cache miss denotes a memory access that cannot be served by the cache; instead
the requested data has to be fetched from main memory. The better the classification of accesses
as cache hits or cache misses is, the tighter are the obtained bounds on the cache performance. To
classify memory accesses, a cache analysis needs to know the mapping of program data to cache sets.
Otherwise, it does not know which memory blocks compete for the cache lines of each cache set.
Using standard dynamic memory allocators, like for instance [7], no knowledge about the mapping of
allocated data structures to cache sets is statically available. Assume, for example, a program would
allocate 6 memory blocks to hold objects of a singly-linked list. Two possible mappings from cache
sets to those objects, assuming a 4-way cache-associative cache with 4 cache sets, are given in Figure
1 (a) and (b), respectively.

Sets

Lines

Sets

Lines

(a) (b)
Figure 1. Two possible cache mappings of 6 dynamically allocated objects organized in a singly-linked list.

For the mapping in Figure 1 (a) a further traversal of the list would result in no cache hits at all. Given
the mapping depicted in Figure 1 (b), a subsequent traversal of the list would result in 6 cache hits. A
conservative cache analysis with no knowledge about the addresses of allocated memory has no other
option than to classify all accesses to allocated memory as cache misses, while during actual program
runs potentially all accesses may be cache hits. In modern processors, turning off the cache can easily
cause a thirty-fold increase in execution time [6], hence, conservatively treating all accesses as cache
misses yields very imprecise and thus useless analysis results.

There is a second problem due to dynamic memory allocators besides the resulting inability to guar-
antee cache hits for the dynamically allocated data. Due to the unpredictable mapping of such data
to cache sets, knowledge derived about the caching of statically allocated data is lost if dynamically
allocated data is accessed. As it is not known to which cache set newly allocated memory maps to,
the analysis has to conservatively treat such memory as potentially mapping to every cache set and
evicting cached content from these sets.

Also the manner in which dynamic allocators determine free memory addresses significantly de-
creases cache predictability. Unused memory blocks are managed in some internal data structure or
data structures by the allocators. Upon allocation requests, these structures are traversed in order to
find a suitable free block. This traversal is in general statically unpredictable and leads to an equally
unpredictable cache pollution as all memory blocks visited during traversal are loaded into the cache.
As it is unpredictable which and also how many free blocks are considered upon an allocation request,
the response time of the request is also not predictable. Only upper bounds with potentially high over-
estimations can be given for the execution time of a call of the memory allocation procedure. For a

3

WCET analysis that relies on tight execution time bounds this is highly undesirable.

In summary, WCET analyses face three problems when dynamic memory allocation is employed: (1)
the mapping to cache sets of allocated data is unpredictable, (2) malloc itself causes unpredictable
cache pollution, and (3) no bounds on the response times of malloc are guaranteed.

3. Precomputing Static Memory Addresses

To avoid the described problems with dynamic memory allocators, we propose to utilize available
knowledge about the program used in a WCET analysis to substitute dynamic memory allocation
by static allocation. For hard real-time applications, a good memory mapping has to enable the
computation of small WCET bounds.

What do we mean by a memory mapping? We partition the main memory into memory blocks the
size of a cache line, s.t. each block maps into exactly one cache set, i.e., the memory blocks are
aligned with the cache sets. As we will later address the memory at the granularity of memory blocks
and never below, memory address (i − 1) refers to the i-th memory block. Analogously to the main
memory, we also partition the program’s dynamically allocated memory into blocks the size of a
cache line which we call heap allocated objects. A memory mapping assigns to each heap allocated
object a memory block.

A heap allocated object may contain several or just a fraction of a single program object(s). If a
program object does not fit into a single heap allocated object, it has to be spread over several. Heap
allocated objects holding a single program object have to be placed consecutively in memory. To
this end, we introduce heap allocated structures: ordered sets of heap allocated objects. The heap
allocated objects of a heap allocated structure shall be mapped to consecutive memory addresses.

We can relate heap allocated structures either to dynamically allocated program objects, like for exam-
ple single nodes of a binary search tree, or to entire data structures built from dynamically allocated
objects, like for example a linked list consisting of several node objects. What relation we choose
depends on the program we want to analyze. For example, it may be advantageous to consider a
linked list structure to be a single heap allocated structure, while for larger objects organized in a tree
structure we might want to consider each single object a heap allocated structure.

Hence, formally, a memory mapping m is a function that maps each heap allocated memory object
to a memory address: m =

⋃
oi,j∈O{oi,j 7→ ai,j} where oi,j ∈ O is a heap allocated object, ai,j its

memory address, and (i, j) ∈ I ×Ji an index for elements of O, the set of all heap allocated objects.
Furthermore, I denotes an index set for the set of heap allocated structures and, for all i ∈ I, Ji an
index set for the set of (heap allocated) objects of structure i.

What we want to compute for a program P is a memory mapping that allows for a WCET bound on
P of

min
memory

mapping m

WCET(P, m)

by using as little memory as possible.

4

WCET Computation by IPET How can we compute WCET(P, m)? As proposed by Li and Ma-
lik, the longest execution path of a program can be computed by implicit path enumeration techniques
(IPET) [8]. Their approach formulates the problem of finding the longest execution path as an integer
linear program (ILP). Given the control-flow graph G(P) = (V, E, s, e) of a program P and loop
bounds bk for the loops contained in P , this ILP is constructed as follows. First, we introduce two
types of counter variables: xi—the execution frequency of basic block Bi—for counting the number
of executions of basic block Bi ∈ V and yj for storing the number of traversals of edge Ej ∈ E. We
can then represent and describe the possible control flow by stating that the start and end node of the
control-flow graph are executed exactly once (1). Each node is executed as often as the control flow
enters and leaves the node ((2) and (3)). And finally, equation (4) incorporates loop bounds into our
ILP representation of the program’s control flow. For each loop l with an (upper) iteration bound of
bl, we add a constraint ensuring that each outgoing edge of the first block b within the loop is taken at
most as often as the the sum over all ingoing edges to b times the loop bound bl.

xi = 1 if Bi = s ∨Bi = e (1)∑
j∈J

yj = xk where J = {j | Ej = (·, Bk)} (2)∑
j∈J

yj = xk where J = {j | Ej = (Bk, ·)} (3)

yl ≤ bl ·

(∑
j∈J

yj

)
where J = {j | Ej is loop entry edge to l} (4)

The WCET bound is then obtained using the objective function:

max
∑

i∈{i|Bi∈V }

xic
m
i

where cm
i is an upper bound on the WCET of basic block Bi for a given memory mapping m.

WCET-optimal Memory Mapping A WCET-optimal memory mapping yields a WCET bound
equal to

min
memory

mapping m

max
∑

i∈{i|Bi∈V }

xic
m
i (5)

However, this problem is no ILP anymore.
We propose the following heuristic approach to compute approximate solutions to (5). Initially, we
start with a memory mapping m that uses minimal memory. We then compute the WCET of the
program for the memory mapping m using an IPET as described above. An improved mapping can
then be obtained by selecting the basic block Bi whose penalty due to conflict misses has the greatest
contribution to the WCET bound and modifying m such that cm

i is minimized. The last step can be
repeated until no further improvements can be achieved.
Algorithm 1 implements this strategy as a hill climbing algorithm that internally relies on methods to

5

compute a bound on the WCET of a program using an IPET approach (WCETIPET()), to compute an
initial memory optimal mapping (mem opt()), and to compute a block optimal mapping for a given
basic block (block opt()). To enable our hill climbing algorithm to escape local maxima, we allow
for a certain number of side steps. With side steps, we mean that the algorithm is allowed to select an
equally good or even worse mapping if no improved mapping can be found during an iteration. The
maximum number of allowed side steps should be at least the number of program blocks in order to
allow the optimization of each block. In our experiments, we set the maximum number of side steps
to 2 · |B|, where |B| is the number of program blocks.

An ILP formulation to implement WCETIPET() has already been introduced. We can also implement
mem opt() and block opt() as ILPs as follows.

Memory Optimal Mapping Let ai,j be an integer variable of an ILP storing the memory address
of the j-th heap allocated object of heap allocated structure i. Again, with memory address, we do
not mean the physical address, but rather the ai,j-th memory block by partitioning the memory into
blocks of the size of a cache line. For all i, j, i′, j′ s.t. the j-th object of structure i may be allocated
at the same time as the j′-th object of structure i′, we add two constraints:

ai′,j′ + 1− ai,j − bi,j,i′,j′ · C ≤ 0 (6)
ai′,j′ − (ai,j + 1) + (1− bi,j,i′,j′) · C ≥ 0 (7)

where the ba,b,c,d are auxiliary binary variables and C a constant larger than the value any expression
within the ILP can take. Such a C may be computed statically. These constraints ensure that parts
of structures allocated at the same time do not reside at the same memory address. To enforce a
consecutive placement of parts of the same structure, we add for all i, j

ai,j+1 = ai,j + 1 (8)

Computation of the largest used memory address ā is done by the following constraints for all i, j:

ai,j < ā (9)

We want to minimize our memory consumption, hence we use the following objective function in
order to minimize the largest address in use:

min ā (10)

6

Algorithm 1: Hill climbing algorithm to compute a suitable memory mapping
Data: functions WCETIPET(), mem opt(), and block opt(); sideSteps number of allowed side

steps
Result: near WCET-optimal memory mapping for dynamically allocated objects
mappingbest ← mem opt();
mappingcurr ← mappingbest;
while sideSteps > 0 do

calculate WCETIPET(mappingcurr);
select basic block b with largest WCET contribution due to conflict misses;
mappingtmp ← block opt(mappingcurr, b);
if WCETIPET(mappingtmp) < WCETIPET(mappingcurr) then

mappingcurr ← mappingtmp;
if WCETIPET(mappingtmp) < WCETIPET(mappingbest) then

mappingbest ← mappingtmp;
end

else
sideSteps← sideSteps− 1;
mappingcurr ← mappingtmp;

end
end

Block Optimal Mapping To get a block optimal memory mapping with respect to potential conflict
cache misses, we modify the ILP used to compute a memory usage optimal mapping as follows. We
first compute the cache sets to which memory blocks are mapped that are accessed in the basic block
we want to optimize the mapping for.
Let #cs denote the number of cache sets and csa,i,j denote binary variables set to 1 iff the j-th block
of structure i is mapped to cache set a. The following set of constraints (for each a, i, j, s.t. a is
a cache set and block j of structure i is accessed in the considered basic block) sets these csa,i,j

accordingly. However, several auxiliary variables have to be set previously. Let oi,j denote the j-th
block of structure i. Then ai,j stores the cache set to which oi,j is mapped, and ni,j stores the result of
an integer division of the address of oi,j by #cs. Furthermore, ya,i,j is set to |a − csi,j| and ltza,i,j to
0 iff a− csi,j < 0.

ai,j − ni,j ·#cs− csi,j = 0 (11)
ni,j ≥ 0 (12)
csi,j ≥ 0 (13)

csi,j −#cs + 1 ≤ 0 (14)
a− csi,j − ltza,i,j · C ≤ 0 (15)

a− csi,j + (1− ltza,i,j) · C ≥ 0 (16)
a− csi,j ≤ ya,i,j (17)

− (a− csi,j) ≤ ya,i,j (18)
a− csi,j + (1− ltza,i,j) · C ≥ ya,i,j (19)
− (a− csi,j) + ltza,i,j · C ≥ ya,i,j (20)

7

Finally, we assign csa,i,j using the following constraints:

ya,i,j − C · (1− csa,i,j) ≤ 0 (21)
ya,i,j − (1− csa,i,j) ≥ 0 (22)

We compute the number of potential cache misses pa resulting from accessing cache set a using the
following constraints for all cache sets a; ba being auxiliary binary variables, and k denoting the
associativity of the cache: (∑

i,j

csa,i,j

)
− k − ba · C ≤ 0 (23)(∑

i,j

csa,i,j

)
− k + (1− ba) · C ≥ 0 (24)

0 ≤ pa (25)(∑
i,j

csa,i,j

)
− (1− ba) · C ≤ pa (26)

The objective function itself is replaced by

min C ·
∑

0≤a<k

pa + ā (27)

with the intention of minimizing the number of conflict misses that may occur during execution of
the considered basic block. However, if the number of cache sets increases, the ILP to compute the
block optimal mapping becomes intractable independently of the number of heap objects. Experi-
ments suggest that for target hardware with 256 or more cache sets solutions to the ILPs cannot be
computed in reasonable time anymore. Computing block optimal mappings using ILP formulations
also introduces severe complexity issues for programs with a large number of heap allocated memory
blocks. In order to enable the analysis of larger programs and/or programs for hardware with more
cache sets, we propose to replace the block optimal ILP by a heuristic algorithm. Consider a simulated
annealing [5] algorithm as sketched in Algorithm 2. The neighborhood N(m) of a memory mapping
m can be defined as the set of all memory mappings, s.t. the address of exactly 1 structure s differs
in its address in m by 1. Formally speaking, for a memory mapping m =

⋃
oi,j∈O{oi,j 7→ ai,j}, the

neighborhood is defined as N(m) =
{
m⊕ {oi,j 7→ a′i,j}||ai,j − a′i,j| = 1

}
. The evaluation function

to determine the costs of a memory mapping m is defined as

eval(m) = C2 ·memoryConflicts(m) + C · potentialConflictMisses(m) + maxAddr(m)

The first component ensures that memory mappings without memory conflicts are preferred. The
number of potential conflict misses is minimized by the second component. For mappings with
the same number of conflict misses, component three favors the ones with minimal memory con-
sumption. As maximal temperature we use TemperatureMAX = |O|2. The intention is to have
TemperatureMAX large enough to allow for almost random behavior at the beginning of each restart,
converging to a (local) optimum. The current cooling ratio is 1.2−|I|·restarts.

Although, a memory optimal mapping can be computed by our ILP formulation for most programs,
this procedure can be easily replaced by a similar simulated annealing heuristic.

8

Algorithm 2: Simulated annealing algorithm to compute a suitable block optimal mapping
Result: memory mapping with minimal potential conflict misses for program block b
restarts← 0;
mappingbest ← mem opt();
while restarts < RESTARTS do

mappingcurr ← mem opt();
Temperature← TemperatureMAX ;
while Temperature > TemperatureMIN do

compute the set N(mappingcurr) of neighboring mappings of mappingcurr;
foreach mappingtmp ∈ N(mappingcurr) do

if eval(mappingtmp) < eval(mappingbest) then
mappingbest ← mappingtmp;

end

set mappingcurr to mappingtmp with probability e
eval(mappingcurr)−eval(mappingtmp)

Temperature ;
end
Temperature← Temperature · Cooling Ratio;

end
restarts← restarts + 1;

end

4. Experiments

Our preliminary experiments consider as target platforms the PowerPC MPC603e and a simpler toy
architecture (DTA): a 2-way set-associative cache with 2 cache sets. The PowerPC CPU utilizes
separated 4-way set-associative instruction and data caches of 16 KB, organized in 128 cache sets
with a cache line size of 32 bytes.

Unfortunately, we lack a collection of real-life programs on which we could evaluate our algorithm.
We therefore consider a typical textbook example used to motivate the use of dynamic memory al-
location. When transforming one data structure into another, dynamic memory allocation can lead
to a memory consumption smaller than the sum of the memory needed to hold both structures by
freeing each component of the first data structure as soon as its contents are copied to the second
structure. Suppose you have a data structure A consisting of n objects and each object occupies l
memory blocks. How much memory is needed to transform this structure into a structure B with n
objects each occupying k memory blocks? Assuming that k ≥ l, a moments thought reveals that we
need n · k + l memory blocks for this transformation. We tried our algorithm on several program
descriptions, where data structures consisting of n heap objects are transformed into other structures
consisting of an equal number of objects of larger size (Structure-copy(n)). In all instances, the com-
puted solution used n · k + l memory blocks. In Structure-copy(3)ex we added an additional program
block to Structure-copy(3) in which the first and the last block of the first structure as well as the last
block of the second structure are accessed. On the simplified hardware the memory optimal mapping
for this program is not WCET-optimal anymore. The new WCET-optimal memory uses one addi-
tional memory address to resolve the potential conflict misses in the additional program block. Our
algorithm successfully discovered that.

As a more complex example, consider a program as sketched in Figure 2 (b). Here, allocating all 5

9

blocks sequentially is memory and WCET-optimal for the PPC hardware. However, the best memory
mapping for our toy hardware would be to allocate the memory block for data structure 3 before that
of structure 2. Again, our algorithm discovers that.

BB
1

BB
2

BB
i

BB
i+1

...

...
...

data structure 1
size n blocks

data structure 2
size 2n blocks

BB
1

BB
2

BB
3

BB
4

data structure 1
data structure 2
data structure 3

(a) Structure-copy(n) (b) If-branch

Figure 2. (Basic-)Block Graph with data accesses for some example programs.

Program (Target) Hardware Memory-/Block-Optimal Algorithm Analysis Time (min/max/avg) ms
Structure-copy(3) DTA ILP/ILP 23/64/38.5
Structure-copy(3) DTA ILP/Simulated Annealing 22/82/49.6
Structure-copy(3) PPC603e ILP/ILP 23/79/43.2
Structure-copy(3) PPC603e ILP/Simulated Annealing 23/89/43.6

Structure-copy(3)ex DTA ILP/ILP 73/164/100.1
Structure-copy(3)ex DTA ILP/Simulated Annealing 29/52/35.7
Structure-copy(3)ex PPC603e ILP/ILP 23/32/24.9
Structure-copy(3)ex PPC603e ILP/Simulated Annealing 23/30/24.8

If-branch DTA ILP/ILP 43,332/44,005/43,755
If-branch DTA ILP/Simulated Annealing 26/35/28.5
If-branch PPC603e ILP/ILP 17/41/20.7
If-branch PPC603e ILP/Simulated Annealing 17/25/18.4

Structure-copy(100) DTA Simulated Annealing/Simulated Annealing 9,118/9,710/9,362.3
Structure-copy(100) PPC603e Simulated Annealing/Simulated Annealing 9,025/9,629/9,345.1
Structure-copy(500) PPC603e Simulated Annealing/Simulated Annealing 260,401/276,797/268,932.7

Figure 3. Running times of example analyses each executed 10 times on a 2.66 GHz Core 2 Duo with 2 GB RAM.

5. Improvements and Future Work

Our algorithms rely on solving ILPs whose complexity might significantly increase with the number
of data structures or more precisely with the number of ai,j variables. However, many programs allo-
cate objects on the heap, although these objects do not survive the function frame they are allocated
in. Hence, such heap objects might be allocated on the stack, in which case they would not contribute
to the complexity of our algorithm. Escape analysis is a static analysis that determines which heap
allocated objects’ lifetimes are not bounded by the stack frame they are allocated in [1, 3]. By al-
locating objects on the stack that do not escape the procedure they are created in, 13% to 95% of a
programs heap data can be moved onto the stack [1]. Incorporating an escape analysis and a program
transformation moving heap objects onto the stack might therefore significantly reduce the complex-
ity of our algorithm for real-life programs. Therefore, we are currently developing a novel, precise
escape analysis based on shape analysis via 3-valued logic [9].

10

6. Conclusions

Transforming dynamic allocation into static allocation circumvents the main problems of WCET
analyses introduced by the unpredictability of memory allocators. Preliminary benchmarks and ex-
periments suggest that such a transformation can be computed with reasonable efforts. However,
whether it is feasible to fully automate the process of transforming dynamic allocation to static allo-
cation, i.e., also automatically generate program descriptions, and at what computational costs still
remains to be seen.

References

[1] BLANCHET, B. Escape Analysis for Object-Oriented Languages: Application to Java, SIGPLAN
Not. Vol. 10, 1999.

[2] FERDINAND, C. and WILHELM, R. Efficient and Precise Cache Behavior Prediction for Real-
Time Systems, Real-Time Systems, 17(2-3):131–181, 1999.

[3] GAY, D. and STEENSGAARD, B. Fast Escape Analysis and Stack Allocation for Object-Based
Programs, CC’00, 82–93, 2000.

[4] HERTER, J., REINEKE, J., and WILHELM, R. CAMA: Cache-Aware Memory Allocation for
WCET Analysis, WiP Session of ECRTS’08, 24–27, July 2008.

[5] KIRKPATRICK, S., GELATT, C.D., and VECCHI, M.P. Optimization by Simulated Annealing,
Science, Number 4598, 671–680, 1983.

[6] LANGENBACH, M., THESING, S., and HECKMANN, R. Pipeline Modeling for Timing Anal-
ysis, Proceedings of the Static Analyses Symposium (SAS), volume 2477, 2002.

[7] LEA, D. A Memory Allocator, Unix/Mail, 6/96, 1996.

[8] LI, Y.S. and MALIK, S. Performance Analysis of Embedded Software Using Implicit Path Enu-
meration, Proceedings of the 32nd ACM/IEEE Design Automation Conference, 456–461, 1995.

[9] SAGIV, M., REPS, T., and WILHELM, R. Parametric Shape Analysis via 3-valued Logic, ACM
Transactions on Programming Languages and Systems, Vol. 24, No. 3, Pages 217–298, May 2002.

[10] SCHOEBERL, M. Time-predictable Cache Organization, STFSSD’09, March 2009.

11

