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Abstract. It is folklore particularly in numerical and computer sciences
that, instead of solving some general problem f : A → B, additional
structural information about the input x ∈ A (that is any kind of promise
that x belongs to a certain subset A′ ⊆ A) should be taken advantage
of. Some examples from real number computation show that such dis-
crete advice can even make the difference between computability and
uncomputability. We turn this into a both topological and combinato-
rial complexity theory of information, investigating for several practical
problems how much advice is necessary and sufficient to render them
computable.
Specifically, finding a nontrivial solution to a homogeneous linear equa-
tion A · x = 0 for a given singular real n× n-matrix A is possible when
knowing rank(A) ∈ {0, 1, . . . , n−1}; and we show this to be best possible.
Similarly, diagonalizing (i.e. finding a basis of eigenvectors of) a given
real symmetric n× n-matrix A is possible when knowing the number of
distinct eigenvalues: an integer between 1 and n (the latter corresponding
to the nondegenerate case). And again we show that n–fold (i.e. roughly
logn bits of) additional information is indeed necessary in order to ren-
der this problem (continuous and) computable; whereas finding some
single eigenvector of A requires and suffices with Θ(logn)–fold advice.

1 Introduction

Recursive Analysis, that is Turing’s [Turi36] theory of rational approximations
with prescribable error bounds, is generally considered a very realistic model of
real number computation [BrCo06]. Much research has been spent in ‘effectiviz-
ing’ classical mathematical theorems, that is replacing mere existence claims

i) “for all x, there exists some y such that . . . ” with
ii) “for all computable x, there exists some computable y such that . . . ”

Cf. e.g. the Intermediate Value Theorem in classical analysis [Weih00, Theo-
rem 6.3.8.1] or the Krein-Milman Theorem from convex geometry [GeNe94].
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Note that Claim ii) is non-uniform: it asserts y to be computable whenever x is;
yet, there may be no way of converting a Turing machine M computing x into a
machine N computing y [Weih00, Section 9.6]. In fact, computing a function
f : x 7→ y is significantly limited by the sometimes so-called Main Theorem, re-
quiring that any such f be necessarily continuous: because finite approximations
to the argument x do not allow to determine the value f(x) up to absolute error
smaller than the ‘gap’ lim supt→x f(t) − lim inft→x f(t) in case x is a point of
discontinuity of f . In particular any non-constant discrete-valued function on
the reals is uncomputable—for information-theoretic (as opposed to recursion-
theoretic) reasons. Thus, Recursive Analysis is sometimes criticized as a purely
mathematical theory, rendering uncomputable even functions as simple as Gauß’
staircase [Koep01].

1.1 Motivating Examples

On the other hand many applications do provide, in addition to approximations
to the continuous argument x, also certain promise or discrete ‘advice’; e.g.
whether x is integral or not. And such additional information does render many
otherwise uncomputable problems computable:

Example 1. The Gauß staircase is discontinuous, hence uncomputable. Re-
stricted to integers, however, it is simply the identity, thus computable. And
restricted to non-integers, it is computable as well; cf. [Weih00, Exercise 4.3.2].
Thus, one bit of additional advice (“ integer or not”) suffices to make b · c : R→ Z
computable.

Also many problems in analysis involving compact (hence bounded) sets are
discontinuous unless provided with some integer bound; compare e.g. [Weih00,
Section 5.2]. For a more involved illustration from computational linear alge-
bra, we report from [ZiBr04, Section 3.5] the following

Example 2. Given a real symmetric d × d matrix A (in form of approxima-
tions An ∈ Qd×d with |A − An| ≤ 2−n), it is generally impossible, for lack of
continuity and even in the multivalued sense, to compute (approximations to)
any eigenvector of A.
However when providing, in addition to A itself, the number of distinct eigenval-
ues (i.e. not counting multiplicities) of A, finding the entire spectral resolution
(i.e. an orthogonal basis of eigenvectors) becomes computable.

1.2 Complexity Measure of Non-Uniform Computability

We are primarily interested in problems over real Euclidean spaces Rd, d ∈
N. Yet for reasons of general applicability to arbitrary spaces U of continuum
cardinality, we borrow from Weihrauch’s TTE framework [Weih00, Section 3]
the concept of so-called representations, that is, encodings of all elements u ∈ U
as infinite binary strings; and a realizer of a function f : U → V maps encodings
of u ∈ U to encodings of f(u) ∈ V . A notation is basically a representation of a
merely countable set.
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Definition 3. a) A function f :⊆ A→ B between topological spaces A and B
is k-wise continuous if there exists a covering (equivalently: a partition) ∆
of dom(f) =

⋃
D∈∆D with Card(∆) = k such that f |D is continuous for

each D ∈ ∆. Call Ct(f) := inf{k : f is k-wise continuous} the cardinal of
discontinuity of f .

b) A function f :⊆ A → B between represented spaces (A,α) and (B, β) is
(α, β)–computable with k-wise advice if there exists an at most countable
partition ∆ of Card(∆) = k and a notation δ of ∆ such that the mapping f∆ :
(a,D) 7→ f(a) is (α, δ, β)–computable on dom(f∆) := {(a,D) : a ∈ D ∈ ∆}.
Call Cc(f) = Cc(f, α, β) := min{k : f is (α, β)–computable with k-wise advise}
the complexity of non-uniform (α, β)–computability of f .

c) A function f :⊆ A → B is nonuniformly (α, β)–computable if, for every
α–computable a ∈ dom(f), f(a) is β-computable.

So continuous functions are exactly the 1-wise continuous ones; and computabil-
ity is equivalent to (weak or strong) computability with 1-wise advice. Also we
have, as an extension of the Main Theorem of Recursive Analysis, the following
immediate

Observation 4. If α, β are admissible representations in the sense of [Weih00,
Definition 3.2.7], then every k-wise (α, β)–computable function is k-wise con-
tinuous (but not vice versa); that is Ct(f) ≤ Cc(f) holds.
More precisely, every k-wise (α, β)–computable possibly multivalued function
f :⊆ A ⇒ B has a k-wise continuous (α, β)–realizer in the sense of [Weih00,
Definition 3.1.3.4].

The above examples illustrate some interesting discontinuous functions to be
computable with k-wise advice for some k ∈ N. Specifically Example 2, diagonal-
ization of real symmetric n×n–matrices is n–wise computable; and Theorem 20
below will show this value n to be optimal.

Remark 5. We advertise Computability with Finite Advice as a generalization
of classical Recursive Analysis:
a) It constitutes a hybrid approach to both discrete and continuous computation.
b) It complements Type-2 oracle computation: In the discrete realm, every func-
tion f : N → N becomes computable when employing an appropriate oracle;
whereas in the Type-2 case, exactly the continuous functions f : R → R are
computable relative to some oracle. On the other hand, 2-wise advice can make
a continuous function computable which without advice has unbounded degree of
uncomputability; see Proposition 6d).
c) Discrete advice avoids a common major point of criticism against Recursive
Analysis, namely that it denounces even simplest discontinuous functions as un-
computable;
d) and such kind of advice is very practical: In applications additional discrete
information about the input is often actually available and should be used. For
instance a given real matrix may be known to be non-degenerate (as is often ex-
ploited in numerics) or, slightly more generally, to have k eigenvalues coincide



272 Martin Ziegler

for some known k ∈ N.
e) The topology of the members of the collection ∆ from Definition 3 can usu-
ally be chosen not too wild: compare the examples considered below. In practice,
we consider the discrete advice to arise with the input itself. For instance the
band-width of a given matrix A may be known as 3 because A comes from a
finite element triangular grid approach. Hence the collection ∆ need not even be
explicit (since it is usually far from unique, anyway; compare Remark 11), nor
required effective in any sense.

1.3 Related Work, in particular Kolmogorov Complexity

Several approaches have been pursued in literature to make also discontinuous
functions accessible for computability investigations.

Exact Geometric Computation considers the arguments x as exact rational num-
bers [LPY05].

Special encodings of discontinuous functions motivated by spaces in Functional
Analysis, are treated e.g. in [ZhWe03]; however these do not admit eval-
uation.

Weakened notions of computability may refer to stronger models of computation
[ChHo99]; provide more information on (e.g. the binary encoding of, rather
than rational approximations with error bounds to) the argument x [Mori02,MTY05];
or expect less information on (e.g. no error bounds for approximations to)
the value f(x) [WeZh00].

A taxonomy of discontinuous functions, namely their degrees of Borel measura-
bility, is investigated in [Brat05,Zie07a,Zie07b]:
Specifically, a function f :⊆ A → B is continuous (=Σ1–measurable) iff,
for every closed T ⊆ B, its preimage f−1[T ] is closed in dom(f) ⊆ A; and
f is computable iff this mapping T 7→ f−1[T ] on closed sets is (ψd>, ψ

d
>)–

computable. A degree relaxation, f is called Σ2–measurable iff, for every
closed T ⊆ B, f−1[T ] is an Fδ-set.

Wadge degrees of discontinuity are an (immense) refinement of the above, namely
with respect to so-called Wadge reducibility ; cf. e.g. [Weih00, Section 8.2].

Levels of discontinuity are studied in [HeWe94,Her96a,Her96b]:
Take the set X0 ⊆ dom(f) of points of discontinuity of f ; then the set
X1 ⊆ X0 of points of discontinuity of f |X0

and so on: the least index k for
which Xk is empty is f ’s level of discontinuity.

Our approach superficially resembles the third and last ones above. A minor
difference, they correspond to ordinal measures whereas the size of the partition
considered in Definition 3 is a cardinal. As a major difference we now establish
these measures as logically largely independent:

Proposition 6. a) There exists a 2-wise computable function f : [0, 1] →
{0, 1} which is not measurable nor on any level of discontinuity.

b) There exists a ∆2–measurable function f : [0, 1] → [0, 1] with is not k-wise
continuous for any finite k.



Real Computation with Least Discrete Advice (Extended Abstract) 273

c) If f is on the k-th level of discontinuity, it is (k + 1)-wise continuous.
d) There exists a continuous, 2-wise computable function f :⊆ [0, 1] → [0, 1]

which is not computable, even relative to any prescribed oracle.
e) Every k-wise computable function is nonuniformly computable; whereas there

are nonuniformly computable functions not k-wise computable for any k ∈ N.

Conditions where nonuniform computability does imply (even) 1-wise computabil-
ity have been devised in [Brat99]. Further related research includes

Computational Complexity of real functions; see e.g. [Ko91] and [Weih00, Sec-
tion 7]. Note, however, that Definition 3 refers to a purely information-
theoretic notion of complexity of a function and is therefore more in the
spirit of

Information-based Complexity in the sense of [TWW88]. There, on the other
hand, inputs are considered as real number entities given exactly; whereas
we consider approximations to real inputs enhanced with discrete advice.

Finite Continuity is being studied for Darboux Functions in [MaPa02,Marc07]. It
amounts to d-wise continuity for some d ∈ N according to Definition 3a).

Kolmogorov Complexity has been investigated for finite strings and, asymptoti-
cally, for infinite ones; cf. e.g. [LiVi97, Section 2.5] and [Stai99]. Also a kind
of advice is part of that theory in form of conditional complexity [LiVi97,
Definition 2.1.2].

We quote from [LiVi97, Exercise 2.3.4abe] the following

Fact 7. An infinite string σ̄ = (σn)n∈ω ∈ Σω is computable (e.g. printed onto a
one-way output tape by some so-called Type-2 or monotone machine; cf. [Weih00,Schm02])

a) iff its initial segments σ̄1:n := (σ1, . . . σn) have Kolmogorov complexity O(1)
conditionally to n, i.e., iff C(σ̄1:n|n) is bounded by some c = c(σ̄) ∈ N
independent of n.

b) Equivalently: the uniform complexity Cu(σ̄1:n) := C(σ̄1:n;n) in the sense of
[LiVi97, Exercise 2.3.3] (that is the complexity of the function {1, . . . , n} 3
i 7→ σi from [LiVi97, Exercise 2.1.12] but additionally relativized to the size
n of the domain) is bounded by some c for infinitely many n.

Definition 8. a) For σ̄ ∈ Σω, write C(σ̄) := supn C
(
σ̄1:n|n

)
and C(σ̄|τ̄) :=

supn C
(
σ̄1:n|n, τ̄

)
, where the Kolmogorov complexity conditional to an infinite

string is defined literally as for a finite one [LiVi97, Definition 2.1.1].
b) Similarly, let Cu(σ̄|τ̄) := supn Cu

(
σ̄1:n|τ̄

)
.

c) For a represented space (A,α) and a ∈ A, write C(a) := inf{C(σ̄) : α(σ̄) =
a} and Cu(a) := inf{Cu(σ̄) : α(σ̄) = a}.

Note that we purposely do not consider some normalized form like C(σ̄1:n|n)/n/n/n
in order to establish the following

Proposition 9. A function F :⊆ Σω → Σω is computable with finite advice
iff the Kolmogorov complexity Cu

(
F (σ̄)|σ̄

)
is bounded by some c independent of

σ̄ ∈ dom(F ).
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2 Complexity of Nonuniform Computability

Lemma 10. a) Let f : A→ B be d-wise continuous (computable) and A′ ⊆ A.
Then the restriction f |A′ is again d-wise continuous (computable).

b) Let f : A → B be d-wise continuous (computable) and g : B → C be k-
wise continuous (computable). Then g ◦ f : A → C is d · k-wise continuous
(computable).

c) If f : A→ B is (α, β)–computable with d-wise advice and α′ � α and β � β′,
then f is also (α′, β′)–computable with d-wise advice.

A minimum size partition ∆ of dom(f) to make f computable on each D ∈ ∆
need not be unique: Alternative to Example 1, we

Remark 11. Given a ρ–name of x ∈ R and indicating whether bxc ∈ Z is even
or odd suffices to compute bxc:
Suppose bxc = 2k ∈ 2Z (the odd case proceeds analogously). Then x ∈ [2k, 2k +
1). Conversely, x ∈ [2k− 1, 2k+ 2), together with the promise bxc ∈ 2Z, implies
bxc = 2k. Hence, given (qn) ∈ Q with |x − qn| ≤ 2−n, k := 2 ·

⌊
q1/2 + 1

4

⌋
(calculated in exact rational arithmetic) will yield the answer. ut

2.1 Witness of k-wise Discontinuity

Recall that the partition ∆ in Definition 3 need not satisfy any (e.g. topological
regularity) conditions. The following notion turns out as useful in lower bounding
the cardinality of such a partition:

Definition 12. a) A d-dimensional flag F in a topological Hausdorff space X
is a collection

x, (xn)
n
, (xn,m)

n,m
, (xn,m,`)n,m,`

, . . . , (xn1,...,nd
)
n1,...,nd

of a point and of (multi-)sequences† in X such that, for each (possibly empty)
multi-index n̄ ∈ Nk (0 ≤ k < d), it holds xn̄ = lim

m→∞
xn̄,m.

b) F is uniform if furthermore, again for each n̄ ∈ Nk (0 ≤ k < d) and for each
1 ≤ ` ≤ d− k, it holds xn̄ = lim

m→∞
xn̄,m,...,m︸ ︷︷ ︸

` times

.

c) For f :⊆ X → Y and x ∈ dom(f) a witness of discontinuity of f at x is a
sequence xn ∈ dom(f) such that limn→∞ f(xn) exists but differs from f(x).

d) For f :⊆ X → Y , a witness of d-wise discontinuity of f is a uniform d-
dimensional flag F in dom(f) such that, for each k = 0, 1, . . . , d − 1 and
for each n̄ ∈ Nk and for each 1 ≤ ` ≤ d − k,

(
xn̄,m,...,m︸ ︷︷ ︸

` times

)
m

is a witness of

discontinuity of f at xn̄.

† The generally more appropriate concept is that of a Moore-Smith sequence or net.
However, being interested in second countable spaces, we may and shall restrict to
ordinary sequences. Similarly, the Hausdorff condition is invoked for mere conve-
nience.
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Observe that, since d is finite, we may always (although not effectively) proceed
from a flag to a uniform one by iteratively taking appropriate subsequences. In
fact, sub(multi)sequences of d-flags and of witnesses of discontinuity are again
d-flags and witnesses of discontinuity.

Lemma 13. Let X,Y be Hausdorff, f : X → Y a function, and suppose there
exists a witness of d-wise discontinuity of f . Then Ct(f) > d.

2.2 First Example: Matrix Rank

Observe that for an N×M -matrix A and d := min(N,M), rank(A) is an integer
between 0 and d; and knowing this number makes rank trivially computable.
Conversely, such (d+ 1)–fold information is necessary by Lemma 13 and

Example 14. Consider the space RN×M of rectangular matrices and let d :=
min(N,M). For i ∈ {0, 1, . . . , d} write

Ei :=

i∑
j=1

(
(0, · · · , 0, 1︸︷︷︸

j-th

, 0, · · · , 0︸︷︷︸
n-th

)† ⊗ (0, · · · , 0, 1︸︷︷︸
j-th

, 0, · · · , 0︸︷︷︸
m-th

)
)
.

X := 0, Xn1,...,ni
:= E1/n1 + E2/n2 + · · · + Ei/ni

has lim
m→∞

Xn1,...,ni,m,...,m = Xn1,...,ni
, hence constitutes a uniform d-dimensional

flag. Moreover, rank(Ei) = i = rank(Xn1,...,ni
) 6= i + ` = rank(Xn1,...,ni,m,...,m︸ ︷︷ ︸

` times

)

shows it is a witness of d-wise discontinuity of rank : RN×M → {0, 1, . . . , d}. ut

3 Multivalued Functions, i.e. Relations

Many applications involve functions which are ‘non-deterministic’ in the sense
that, for a given input argument x, several values y are acceptable as output;
recall e.g. Items i) and ii) in Section 1. Also in linear algebra, given a singular
matrix A, we want to find some (say normed) vector v such that A ·v = 0. This
is reflected by relaxing the mapping f : x→ y to be not a function but a relation
(also called multivalued function); writing f : X ⇒ Y instead of f : X → 2Y \{∅}
to indicate that for an input x ∈ X, any output y ∈ f(x) is acceptable. Many
practical problems have been shown computable as multivalued functions but
admit no computable single-valued so-called selection; cf. e.g. [Weih00, Exer-
cise 5.1.13], [ZiBr04, Lemma 12 or Proposition 17]. On the other hand, even
relations often lack computability merely for reasons of continuity—and appro-
priate additional discrete advice renders them computable, recall Example 2.

3.1 Dis-/Continuity for Multivalued Mappings

Like single-valued computable functions (recall the Main Theorem), also com-
putable relations satisfy certain topological conditions. However for such multi-
valued mappings, literature knows a variety of easily confusable notions [ScNe07].
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Hemicontinuity for instance is not necessary for real computability. It may be
tempting to regard computing a multivalued mapping f as the task of calculat-
ing, given x, the set-value f(x) [Spre08]. In our example applications, however,
one wants to capture that a machine is permitted, given x, to ‘nondeterminis-
tically’ choose and output some value y ∈ f(x). Note that this coincides with
[Weih00, Definition 3.1.3]. In particular we do not insist that, upon input x,
all y ∈ f(x) occur as output for some nondeterministic choice—as required in
[Brat03, Section 7]. Instead, let us generalize Definition 12 as follows:

Definition 15. Fix some possibly multivalued mapping f :⊆ X ⇒ Y and write
dom(f) := {x ∈ X : f(x) 6= ∅}. Call f continuous at x ∈ X if there is some y ∈
f(x) such that for every open neighbourhood V of y there exists a neighbourhood
U of x such that f(z) ∩ V 6= ∅ for all z ∈ U .

For ordinary (i.e. single-valued) functions f , dom(f) amounts to the usual no-
tion; and such f is obviously continuous (at x) iff it is continuous (at x) in
the original sense. Indeed, Lemma 18a) below is an immediate extension of the
Main Theorem of Recursive Analysis, showing that any computable multivalued
mapping is necessarily continuous.

Lemma 10a) literally applies also to multivalued mappings f : A ⇒ B. We
failed to similarly fully generalize Lemma 10b); but already the following partial
generalization turns out as useful:

Lemma 16. a) Let f : A→ B be single-valued and g : B ⇒ C multivalued. If f
is d-wise continuous (computable) and g is k-wise continuous (computable),
then g ◦ f : A⇒ C is d · k-wise continuous (computable).

b) Let f : A ⇒ B and g : B ⇒ C be multivalued. If f is d-wise continuous
(computable) and g is continuous (computable), then g ◦ f : A⇒ C is again
d-wise continuous (computable).

Definition 17. a) For x ∈ dom(f), a witness of discontinuity of f at x is a
sequence (xn) ∈ dom(f) converging to x such that, for every y ∈ f(x) there
is some open neighbourhood V of y disjoint from f(xn) for infinitely many
n ∈ N.

b) A uniform d-dimensional flag F in X is a witness of d-wise discontinuity of
f if, for each 0 ≤ k < d and for each n̄ ∈ Nk and for each 1 ≤ ` ≤ d− k and
for each y ∈ f(xn̄),

(
xn̄,m,...,m︸ ︷︷ ︸

` times

)
m

is a witness of discontinuity of f at xn̄.

If multivalued f admits a witness of discontinuity at x, then f is not continuous.
Conversely, if X is first-countable, discontinuity of f at x yields the existence of
a witness of discontinuity at x. Also, witnesses of 1-wise discontinuity coincide
with witnesses of discontinuity; and they generalize the definition from the single-
valued case. Lemma 18 below extends Lemma 13 in showing that a witness of
d-wise discontinuity of f inhibits d-wise computability.
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Lemma 18. Let (A,α) and (B, β) be effective metric spaces‡ with corresponding
Cauchy representations and f :⊆ A⇒ B a possibly multivalued mapping.

a) If f admits a witness of discontinuity, then it is not (α, β)–continuous.
b) If f admits a witness of d-wise discontinuity, f is not d-wise (α, β)–continuous.

4 Applications to Effective Linear Algebra

Based on Lemma 13b), we now determine the complexity of non-uniform com-
putability for several concrete standard problems in linear algebra and in par-
ticular of Example 2. But first consider the problem of solving a system of linear
equations; more precisely of finding a nonzero vector in the kernel of a given
singular matrix. It is for mere notational convenience that we formulate for the
case of real matrices: complex ones work just as well.

Theorem 19. Fix n,m ∈ N, d := min(n,m− 1), and consider the space Rn×m
of n × m matrices, considered as linear mappings from Rm to Rn. Then the
multivalued mapping

LinEq : A 7→ kernel(A)\{0}, dom(LinEq) := {A ∈ Rn×m : rank(A) ≤ d}

is well-defined and has complexity Ct(LinEq) = Cc(LinEq, ρn×m, ρm) = d+ 1.

Concerning diagonalization of symmetric real matrices, we can prove

Theorem 20. Fix d ∈ N and consider the space R(d
2) of real symmetric d × d

matrices. Then the multivalued mapping

Diag : R(d
2) 3 A 7→

{
(w1, . . . ,wd) basis of Rd of eigenvectors to A

}
has complexity Ct(Diag) = Cc

(
Diag, ρ(d

2), ρd×d
)

= d.

The lack of continuity of the mapping Diag is closely related to inputs with
degenerate eigenvalues [ZiBr04, Example 18]. In fact our below proof yields a
witness of d-wise discontinuity by constructing an iterated sequence of symmetry
breakings in the sense of Mathematical Physics. On the other hand even in the
non-degenerate case, Diag is inherently multivalued since any permutation of a
basis constitutes again a basis.

4.1 Finding Some Eigenvector

Instead of computing an entire basis of eigenvectors, we now turn to the problem
of determining just one arbitrary eigenvector to a given real symmetric matrix.
This turns out to be considerably less ‘complex’:

‡ Cf. [Weih00, Section 8.1] for a formal definition and imagine Euclidean spaces Rk

as major examples and focus of interest for our purpose.
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Theorem 21. For a real symmetric n× n-matrix A, consider the quantity

m := min
{

dim kernel(A− λ id) : λ ∈ σ(A)
}
∈ {1, . . . , n} .

Given d := blog2mc ∈ {0, 1, . . . , blog2 nc} and a ρ(n
2)–name of A, one can ρn–

compute (i.e. effectively find) some eigenvector of A.

The proof employs the following tool about computability of finite multi-sets.

Lemma 22. Let (x1, . . . , xn) denote an n-tuple of real numbers and consider
the induced partition I :=

{
{1 ≤ i ≤ n : xi = xj} : 1 ≤ j ≤ n

}
of the index

set {1, . . . , n} =: [n] according to the equivalence relation i ≡ j :⇔ xi = xj.
Furthermore let m := min

{
Card(I) : I ∈ I

}
.

a) Consider I ⊆ [n] with 1 ≤ Card(I) < 2m. Then the following implies I ∈ I:

xi 6= xj for all i ∈ I and all j ∈ [n] \ I . (1)

b) Suppose k ∈ N is such that k ≤ m < 2k. Then there exists I ∈ I with k ≤
Card(I) < 2k satisfying (1). Conversely every I ⊆ [n] with k ≤ Card(I) < 2k
satisfying (1) has I ∈ I.

c) Given a ρn–name of (x1, . . . , xn) and given k ∈ N with k ≤ m < 2k, one
can computably find some I ∈ I.

d) Given a ρn–name of (x1, . . . , xn) and given Card(I), one can compute I.

Claim c) can be considered a weakening of Claim d) which had been established
in [ZiBr04, Proposition 20].

Proof (Theorem 21). Compute according to [ZiBr04, Proposition 17] some
(ρn–name of an) n-tuple of eigenvalues (λ1, . . . , λn) of A, repeated according
to their multiplicities. Now due to [ZiBr04, Theorem 11], (some eigenvector
in) the eigenspace kernel(A − λi id) can be computably found when knowing
rank(A − λi id) (recall Theorem 19), that is the multiplicity of λi in the multi-
set (λ1, . . . , λn). To this end we apply Lemma 22c), observing k := 2d ≤ m < 2k
since d = blog2mc. ut

Theorem 23. The multivalued mapping

EVecn : R(n
2) 3 A 7→ {w eigenvector of A}

has complexity Ct(EVecn) = Cc

(
EVecn, ρ

(n
2), ρn

)
= blog2 nc+ 1.

5 Conclusion and Perspectives

We claim that a major source of criticism against Recursive Analysis misses
the point: Although computable functions f are necessarily continuous when
given approximations to the argument x only, most practical f ’s do become
computable when providing in addition some discrete information about x. Such
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‘advice’ usually consists of some very natural and mathematically explicit integer
value from a bounded range (e.g. the rank of the matrix under consideration)
and is readily available in practical applications.

We have then turned this observation into a complexity theory, investigat-
ing the minimum size (=cardinal) of the range this discrete information comes
from. And we have devised mathematical tools and used them to determine this
quantity for several simple and natural problems from linear algebra: calculat-
ing the rank of a given matrix, solving a system of linear equalities, diagonal-
izing a symmetric matrix, and finding some eigenvector to a given symmetric
matrix. The latter three are inherently multivalued. And they exhibit a con-
siderable difference in complexity: for input matrices of format n × n, usually
discrete advice of order Θ(n) is necessary and sufficient; whereas some single
eigenvector can be found using only Θ(log n)–fold advice: namely the quantity⌊

log2 min
{

dim kernel(A− λ id) : λ ∈ σ(A)
}⌋

. The algorithm exploits this data
based on some combinatorial considerations—which nicely complement the heav-
ily analytical and topological arguments usually dominant in proofs in Recursive
Analysis.
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