Computable Separation in Topology, from T_{0} to T_{3}

Klaus Weihrauch
University of Hagen, Universitätsstr. 1, 58097 Hagen, Germany,
klaus.weihrauch@fernuni-hagen.de

Abstract

This article continues the study of computable elementary topology started in [7]. We introduce a number of computable versions of the topological T_{0} to T_{3} separation axioms and solve their logical relation completely. In particular, it turns out that computable T_{1} is equivalent to computable T_{2}. The strongest axiom $S C T_{3}$ is used in [2] to construct a computable metric.

1 Preliminaries

We use the representation approach to computable analysis [6] as the basis for our investigation. In particular, we use the terminology and concepts introduced in [7] (which can be considered as a revision and extension of parts from [6]).

Let Σ^{*} and Σ^{ω} be the sets of the finite and infinite sequences, respectively, of symbols from a finite alphabet Σ. A function mapping finite or infinite sequences of symbols from Σ is computable, if it can be computed by a Type- 2 machine, that is, a Turing machine with finite or infinite input and output tapes. On Σ^{*} and Σ^{ω} we use canonical tupling functions $\langle\cdot\rangle$ that are computable and have computable inverses. Computability on finite or infinite sequences of symbols is transferred to other sets by representations, where elements of Σ^{*} or Σ^{ω} are used as "concrete names" of abstract objects. For representations $\gamma_{i}: \subseteq Y_{i} \rightarrow M_{i}$ we consider the product representation defined by $\left[\gamma_{1}, \gamma_{2}\right]\langle p, q\rangle:=\left(\gamma_{1}\left(p_{1}\right), \gamma_{2}\left(p_{2}\right)\right)$. Let $Y=Y_{1} \times \ldots \times Y_{n}, M=M_{1} \times \ldots \times M_{n}$ and $\gamma: Y \rightarrow M, \gamma\left(y_{1}, \ldots, y_{n}\right)=$ $\gamma_{1}\left(y_{1}\right) \times \ldots \times \gamma_{n}\left(y_{n}\right)$. A partial function $h: \subseteq Y \rightarrow Y_{0}$ realizes the multi-function $f: M \rightrightarrows M_{0}$ if $\gamma_{0} \circ h(y) \in f(x)$ whenever $x=\gamma(y)$ and $f(x)$ exists. This means that $h(y)$ is a name of some $z \in f(x)$ if y is a name of $x \in \operatorname{dom}(f)$. The function f is $\left(\gamma, \gamma_{0}\right)$-computable, if it has a computable realization.

We will consider computable topological spaces as defined in [7]. Various similar definitions have been used, see, for example, $[4,3,5]$ and the references in [7]. In particular, the definition in [6] is slightly different. A computable topological space is a 4 -tuple $\mathbf{X}=(X, \tau, \beta, \nu)$ such that (X, τ) is a topological T_{0}-space, $\nu: \subseteq \Sigma^{*} \rightarrow \beta$ is a notation of a base β of $\tau, \operatorname{dom}(\nu)$ is recursive and $\nu(u) \cap \nu(v)=\bigcup\{\nu(w) \mid(u, v, w) \in S\}$ for all $u, v \in \operatorname{dom}(\nu)$ for some r.e. set $S \subseteq(\operatorname{dom}(\nu))^{3}$.

For the points, the open sets and the closed sets we use the representations δ, θ and ψ^{-}that are defined as follows. For $p \in \Sigma^{\omega}$ and $x \in X, \delta(p)=x$ iff p is
a list of all $u \in \operatorname{dom}(\nu)$ such that $x \in \nu(u), \theta(p)$ is the union of all $\nu(u)$ where u is listed by p, and $\psi^{-}(p):=X \backslash \theta(p)$.

2 Axioms of Computable Separation

For a topological space $\mathbf{X}=(X, \tau)$ with set \mathcal{A} of closed sets we consider the following classical separation properties:

Definition 1 (separation axioms).

$$
\begin{aligned}
& \left.\mathrm{T}_{0}:(\forall x, y \in X, x \neq y)(\exists W \in \tau)((x \in W \wedge y \notin W) \vee(x \notin W \wedge y \in W))\right), \\
& \mathrm{T}_{1}:(\forall x, y \in X, x \neq y)(\exists W \in \tau)(x \in W \wedge y \notin W), \\
& \mathrm{T}_{2}:(\forall x, y \in X, x \neq y)(\exists U, V \in \tau)(U \cap V=\emptyset \wedge x \in U \wedge y \in V), \\
& \mathrm{T}_{3}:(\forall x \in X, \forall A \in \mathcal{A}, x \notin A)(\exists U, V \in \tau)(U \cap V=\emptyset \wedge x \in U \wedge A \subseteq V), \\
& \mathrm{T}_{4}:(\forall A, B \in \mathcal{A}, A \cap B=\emptyset)(\exists U, V \in \tau)(U \cap V=\emptyset \wedge A \subseteq U \wedge B \subseteq V) .
\end{aligned}
$$

For $i=0,1,2,3$, we call $\mathbf{X}=(X, \tau)$ a T_{i}-space iff T_{i} is true.
For the four axioms, $T_{2} \Longrightarrow T_{1} \Longrightarrow T_{0}$ and $T_{0}+T_{3} \Longrightarrow T_{2}$, where all the implications are proper [1]. T_{2}-spaces are called Hausdorff spaces and T_{3}-spaces are called regular. (Many authors, for example [1], call a space T_{3}-space or regular iff $\mathrm{T}_{1}+\mathrm{T}_{3}$.) We mention that (X, τ) is a T_{1}-space, iff all sets $\{x\}(x \in X)$ are closed [1]. For computable topological spaces $\mathbf{X}=(X, \tau, \beta, \nu)$, which are countably based T_{0}-spaces (also called second countable), $T_{3} \Longrightarrow T_{2}$.

We introduce computable versions CT_{i} of the conditions T_{i} by requiring that the existing open neighborhoods can be computed. For the points we compute basic neighborhoods.

Definition 2 (axioms of computable separation). For $i \in\{0,1,2,3\}$ define conditions CT_{i} as follows.
CT_{0} : The multi-function t_{0} is (δ, δ, ν)-computable where t_{0} maps each $(x, y) \in X^{2}$ such that $x \neq y$ to some $U \in \beta$ such that

$$
\begin{equation*}
(x \in U \text { and } y \notin U) \text { or }(x \notin U \text { and } y \in U) \text {. } \tag{1}
\end{equation*}
$$

CT_{1} : The multi-function t_{1} is (δ, δ, ν)-computable, where t_{1} maps each $(x, y) \in X^{2}$ such that $x \neq y$ to some $U \in \beta$ such that $x \in U$ and $y \notin U$.
CT_{2} : The multi-function t_{2} is $(\delta, \delta,[\nu, \nu])$-computable, where t_{2} maps each $(x, y) \in X^{2}$ such that $x \neq y$ to some $(U, V) \in \beta^{2}$ such that $U \cap V=\emptyset, x \in U$ and $y \in V$.
CT_{3} : The multi-function t_{3} is $\left(\delta, \psi^{-},[\nu, \theta]\right)$-computable, where t_{3} maps each (x, A) such that $x \in X, A \subseteq X$ closed, and $x \notin A$ to some $(U, V) \in \beta \times \tau$ such that $U \cap V=\emptyset, x \in U$ and $A \subseteq V$.

Obviously, CT_{i} implies T_{i}. We introduce some further computable T_{i}-conditions.

Definition 3 (further axioms of computable separation).
WCT_{0} : There is an r.e. set $H \subseteq \operatorname{dom}(\nu) \times \operatorname{dom}(\nu)$ such that

$$
\begin{align*}
& (\forall x, y, x \neq y)(\exists(u, v) \in H)(x \in \nu(u) \wedge y \in \nu(v)) \text { and } \tag{2}\\
& (\forall(u, v) \in H)\left\{\begin{array}{c}
\nu(u) \cap \nu(v)=\emptyset \\
\vee(\exists x) \nu(u)=\{x\} \subseteq \nu(v) \\
\vee(\exists y) \nu(v)=\{y\} \subseteq \nu(u) .
\end{array}\right. \tag{3}
\end{align*}
$$

SCT_{0} : The multi-function t_{0}^{s} is $\left(\delta, \delta,\left[\nu_{\mathbb{N}}, \nu\right]\right)$-computable where t_{0}^{s} maps each $(x, y) \in X^{2}$ such that $x \neq y$ to some $(k, U) \in \mathbb{N} \times \beta$ such that ($k=1, x \in U$ and $y \notin U$) or ($k=2, x \notin U$ and $y \in U$).
CT_{0}^{\prime} : There is an r.e. set $H \subseteq \operatorname{dom}\left(\nu_{\mathbb{N}}\right) \times \operatorname{dom}(\nu) \times \operatorname{dom}(\nu)$ such that

$$
\begin{align*}
& (\forall x, y, x \neq y)(\exists(w, u, v) \in H)(x \in \nu(u) \wedge y \in \nu(v)) \text { and } \tag{4}\\
& (\forall(w, u, v) \in H)\left\{\begin{array}{c}
\nu(u) \cap \nu(v)=\emptyset \\
\vee \nu_{\mathbb{N}}(w)=1 \wedge(\exists x) \nu(u)=\{x\} \subseteq \nu(v) \\
\vee \nu_{\mathbb{N}}(w)=2 \wedge(\exists y) \nu(v)=\{y\} \subseteq \nu(u) .
\end{array}\right. \tag{5}
\end{align*}
$$

CT_{1}^{\prime} : There is an r.e. set $H \in \Sigma^{*} \times \Sigma^{*}$ such that

$$
\begin{align*}
& (\forall x, y, x \neq y)(\exists(u, v) \in H)(x \in \nu(u) \wedge y \in \nu(v)) \quad \text { and } \tag{6}\\
& (\forall(u, v) \in H)\left\{\begin{array}{l}
\nu(u) \cap \nu(v)=\emptyset \\
\vee(\exists x) \nu(u)=\{x\} \subseteq \nu(v)
\end{array}\right. \tag{7}
\end{align*}
$$

CT_{2}^{\prime} : \quad There is an r.e. set $H \in \Sigma^{*} \times \Sigma^{*}$ such that

$$
\begin{align*}
& (\forall x, y, x \neq y)(\exists(u, v) \in H)(x \in \nu(u) \wedge y \in \nu(v)) \quad \text { and } \tag{8}\\
& (\forall(u, v) \in H)\left\{\begin{array}{l}
\nu(u) \cap \nu(v)=\emptyset \\
\vee(\exists x) \nu(u)=\{x\}=\nu(v)
\end{array}\right. \tag{9}
\end{align*}
$$

SCT_{2} : There is an r.e. set $H \in \Sigma^{*} \times \Sigma^{*}$ such that

$$
\begin{align*}
& (\forall x, y, x \neq y)(\exists(u, v) \in H)(x \in \nu(u) \wedge y \in \nu(v)) \quad \text { and } \tag{10}\\
& (\forall(u, v) \in H) \nu(u) \cap \nu(v)=\emptyset \tag{11}
\end{align*}
$$

CT_{3}^{\prime} : The multi-function t_{3}^{\prime} is $\left(\delta, \nu,\left[\nu, \psi^{-}\right]\right)$-computable where t_{3}^{\prime} maps each $(x, W) \in X \times \beta$ such that $x \in W$ to some (U, B) such that $U \in \beta, B \subseteq X$ is closed and $x \in U \subseteq B \subseteq W$.
$\mathrm{WCT}_{3}:$ The multi-function t_{3}^{w} is (δ, ν, ν)-computable where t_{3}^{w} maps each $(x, W) \in X \times \beta$ such that $x \in W$ to some U such that $U \in \beta$ and $x \in U \subseteq \bar{U} \subseteq W$.
SCT_{3} : There are an r.e. set $R \subseteq \operatorname{dom}(\nu) \times \operatorname{dom}(\nu)$ and a computable function $r: \subseteq \Sigma^{*} \times \Sigma^{*} \rightarrow \Sigma^{\omega}$ such that for all $u, w \in \operatorname{dom}(\nu)$,

$$
\begin{align*}
& \nu(w)=\bigcup\{\nu(u) \mid(u, w) \in R\} \tag{12}\\
& (u, w) \in R \Longrightarrow \nu(u) \subseteq \psi^{-} \circ r(u, w) \subseteq \nu(w) . \tag{13}
\end{align*}
$$

$\mathrm{CT}_{0}^{\prime}, \mathrm{CT}_{1}^{\prime}$ and CT_{2}^{\prime} are versions of $\mathrm{CT}_{0}, \mathrm{CT}_{1}$ and CT_{2}, respectively, where base sets are used instead of points (see Theorem 1 below). Similarly, $S C T_{3}$ is a pointless version of $C T_{3}^{\prime}$. In contrast to CT_{0}, in SCT_{0} the separating function gives immediate information about the direction of the separation. Also in CT_{0}^{\prime} some information about the direction of the separation is included while no such information is given in its weak version WCT_{0}. The strong version SCT_{2} results from CT_{2}^{\prime} by excluding the case $(\exists x) \nu(u)=\{x\}=\nu(v)$. Notice that SCT_{2} results also from $\mathrm{WCT}_{0}, \mathrm{CT}_{0}^{\prime}$ and CT_{1}^{\prime} by excluding the corresponding cases. The following examples illustrate the definitions. Further examples can be found in Section 4.

Example 1. 1. Consider the computable real line $\mathbf{R}:=\left(\mathbb{R}, \tau_{\mathbb{R}}, \beta, \nu\right)$ such that $\tau_{\mathbb{R}}$ is the real line topology and ν is a canonical notation of the set of all open intervals with rational endpoints. \mathbf{R} is $S C T_{3}$ (easy proof).
2. (T_{0} but not $W C T_{0}$) Consider the computable lower real line $\mathbf{R}_{<}:=\left(\mathbb{R}, \tau_{<}, \beta_{<}, \nu_{<}\right)$, defined by $\nu_{<}(w):=\left(\nu_{\mathbb{Q}} ; \infty\right)$, which is T_{0} but not T_{1}. Suppose $\mathbf{R}_{<}$is $W C T_{0}$. Since for any two base elements U, V, U is not a singleton and $U \cap V \neq \emptyset, H=\emptyset$ by (3). But $H \neq \emptyset$ by (2).
3. (T_{1} but not T_{2} or $W C T_{0}$) Let $\mathbf{X}=(\mathbb{N}, \tau, \beta, \nu)$ such that $\tau=\beta$ is the set of cofinite subsets of \mathbb{N} and ν is a canonical notation of ν. Then \mathbf{X} is a computable topological space. It is T_{1} since singletons $\{x\}$ are closed. Suppose \mathbf{X} is $W C T_{0}$. Since the intersection of base elements cannot be empty and singletons are not open the set H in (3) must be empty. But then (2) cannot be true. The space is not T_{2} since the intersection of any two nonempty open set is not empty.

By the next lemma the above computable separation axioms are robust, that is, they do not depend on the notation ν of the base explicitly but only on the computability concept on the points induced by it. Call the computable topological spaces $\mathbf{X}=(X, \tau, \beta, \nu)$ and $\widetilde{\mathbf{X}}=(X, \tau, \widetilde{\beta}, \widetilde{\nu})$ equivalent, iff $\delta \equiv \widetilde{\delta}[7$, Definition 21 and Theorem 22].

Lemma 1. 1. For $i \in\{0,1,2,3\}$ let $\overline{\mathrm{CT}}_{\mathrm{i}}$ be the condition obtained from CT_{i} and let $\overline{\mathrm{SCT}}_{0}$ be the condition obtained from $S C T_{0}$ by replacing β and ν by τ and θ, respectively. Then $\overline{\mathrm{CT}}_{\mathrm{i}} \Longleftrightarrow \mathrm{CT}_{\mathrm{i}}$ and $\overline{\mathrm{SCT}}_{0} \Longleftrightarrow \mathrm{SCT}_{0}$.
2. Let $\widetilde{\mathbf{X}}=(X, \tau, \widetilde{\beta}, \widetilde{\nu})$ be a computable topological space equivalent to $\mathbf{X}=$ (X, τ, β, ν). Then each separation axiom from Definitions 2 and 3 for \mathbf{X} is equivalent to the corresponding axiom for $\widetilde{\mathbf{X}}$.

The proofs are straightforward. In particular, apply [7, Theorem 22] by which "equivalence" is equivalent to ($\nu \leq \widetilde{\theta}$ and $\widetilde{\nu} \leq \theta$).

3 Implications

In this section we prove the implications between the separation properties, in the next section we give counterexamples for the proper ones.

Theorem 1.

1. $\mathrm{SCT}_{3} \Longrightarrow \mathrm{CT}_{3} \Longrightarrow \mathrm{SCT}_{2} \Longrightarrow \mathrm{CT}_{2} \Longrightarrow \mathrm{CT}_{0} \Longrightarrow \mathrm{WCT}_{0}$,
2. $C T_{3} \Longleftrightarrow C T_{3}^{\prime} \Longrightarrow \mathrm{WCT}_{3}$,
3. $C T_{2} \Longleftrightarrow C T_{2}^{\prime} \Longleftrightarrow C T_{1} \Longleftrightarrow C T_{1}^{\prime}$,
4. $C T_{0} \Longleftrightarrow S C T_{0} \Longleftrightarrow C T_{0}^{\prime}$,

The proofs of $S C T_{0} \Longrightarrow C T_{0}^{\prime}$ and $\mathrm{CT}_{3}^{\prime} \Longrightarrow \mathrm{SCT}_{2}$ need some care. They are based on the observation that a realizing machine needs only finitely many steps for finding an appropriate base element for the result. We omit the details (approximately 2 pages).

Surprisingly, computable T_{1}-spaces are exactly computable T_{2}. We add some further interesting results. Let " D " be the axiom stating that the topological space is discrete.

Theorem 2. For computable topological spaces,

1. if $\{x\}$ is not open for all $x \in X$ then $\mathrm{WCT}_{0} \Longrightarrow \mathrm{SCT}_{2}$,
2. SCT_{2} if T_{2} and $\{(u, v) \mid \nu(u) \cap \nu(v)=\emptyset\}$ is r.e.,
3. $\mathrm{SCT}_{2} \Longleftrightarrow(x \neq y$ is (δ, δ)-r.e. $)$,
4. $\mathrm{CT}_{3} \Longrightarrow \mathrm{SCT}_{3}$ if the set $\left\{w \in \Sigma^{*} \mid \nu(w) \neq \emptyset\right\}$ is r.e.
5. $\mathrm{D} \Longrightarrow \mathrm{WCT}_{3}$

We include only the proof of 4 . For the terminology see [7].
Proof: Since finite intersection is computable, there is a computable function g such that $\bigcap \nu^{\mathrm{fs}}(w)=\theta \circ g(w)$. Therefore, the set $\left\{w \in \Sigma^{*} \mid \bigcap \nu^{\mathrm{fs}}(w) \neq \emptyset\right\}$ is r.e. There is a machine M such that f_{M} realizes the multi-function t_{3}^{\prime}. If $x=\delta(p) \in$ $\nu(w)$ then for some $u_{1} \in \operatorname{dom}(\nu)$ and $q \in \operatorname{dom}\left(\psi^{-}\right), f_{M}(p, w)=\left\langle u_{1}, q\right\rangle=\iota\left(u_{1}\right) q$ such that

$$
\begin{equation*}
x \in \nu\left(u_{1}\right) \subseteq \psi^{-}(q) \subseteq \nu(w) . \tag{14}
\end{equation*}
$$

For computing $\iota\left(u_{1}\right)$ some prefix $u_{0} \in \operatorname{dom}\left(\nu^{\mathrm{fs}}\right) \cap \Sigma^{*} 11$ of p suffices. Since $\delta(p) \in$ $\nu(w)$ we may assume $w \ll u_{0}$. Since $x \in \delta\left[u_{0} 11 \Sigma^{\omega}\right]=\bigcap \nu^{\mathrm{fs}}\left(u_{0}\right), \bigcap \nu^{\mathrm{fs}}\left(u_{0}\right) \neq \emptyset$. We will compute $\bigcap \nu^{\mathrm{fs}}\left(u_{0}\right) \cap \nu\left(u_{1}\right)$ as a union $\bigcup\{\nu(u) \mid u \in L\}$ of base sets and add all these (u, w) to R.

There is a machine N that works on input (u, w) as follows:
(S1) If $u, w \in \operatorname{dom}(\nu), \nu(u) \neq \emptyset$ and $\nu(w) \neq \emptyset$ then
(S2) N searches for words $u_{0} \in \operatorname{dom}\left(\nu^{\mathrm{fs}}\right) \cap \Sigma^{*} 11$ and $u_{1} \in \operatorname{dom}(\nu)$ such that $w \ll$ u_{0}, M on input $\left(u_{0} 1^{\omega}, w\right)$ writes $\iota\left(u_{1}\right)$ in at most $\left|u_{0}\right|$ steps and $u \ll g\left(u_{0} \iota\left(u_{1}\right)\right)$, (S3) and then writes all words $\iota(v)$ for which there are words u_{2}, u_{3} such that $u_{0} u_{2} \in \operatorname{dom}\left(\nu^{\mathrm{fs}}\right), \bigcap \nu^{\mathrm{fs}}\left(u_{0} u_{2}\right) \neq \emptyset$, the machine M on input $\left(u_{0} u_{2} 1^{\omega}, w\right)$ writes $\iota\left(u_{1}\right) u_{3}$ in at most $\left|u_{0} u_{2}\right|$ steps and $v \ll 11 u_{3}$. (In order to guarantee an infinite output, N writes 11 from time to time.)
(S4) If (1) is false or the search in (2) is not successful then N computes forever without writing. Let $r:=f_{N}$ and $R:=\operatorname{dom}\left(f_{N}\right)$. Then $R \subseteq \operatorname{dom}(\nu) \times \operatorname{dom}(\nu)$ and R is r.e. We must prove correctness.

We show (12): Suppose $x=\delta(p) \in \nu(w)$. Then for some $u_{1}, q, f_{M}(p, w)=$ $\iota\left(u_{1}\right) q$, hence for some prefix $u_{0} \sqsubseteq p$ such that $w \ll u_{0}$ and $u_{0} \in \Sigma^{*} 11$ (since we my assume that p has the subword 11 infinitely often), M on input ($\left.u_{0} 1^{\omega}, w\right)$ writes $\iota\left(u_{1}\right)$ in at most $\left|u_{0}\right|$ steps. Since $x \in \bigcap \nu^{\mathrm{fs}}\left(u_{0}\right)$ and $x \in \nu\left(u_{1}\right)$ by (14), $x \in \theta \circ g\left(u_{0} \iota\left(u_{1}\right)\right)$, hence $x \in \nu(u)$ for some $u \ll g\left(u_{0} \iota\left(u_{1}\right)\right)$. Therefore, there is some u such that $x \in \nu(u)$ and the machine N on input (u,w) will find some words such that (S2) is true. Therefore $x \in \nu(u)$ for some $(u, w) \in R$, hence " \supseteq " is true in (12).

On the other hand, suppose $(u, w) \in R$ and $x \in \nu(u)$ for some x. Then on input (u, w) the machine N finds words u_{0}, u_{1} such that the conditions in (S2) above are true. Since $u \ll g\left(u_{0} \iota\left(u_{1}\right)\right)$ and $w \ll u_{0}, x \in \nu(u) \subseteq \bigcap \nu^{\mathrm{fs}}\left(u_{0}\right) \subseteq \nu(w)$. Therefore, " \subseteq " is true in (12).

For showing (13) suppose $(u, w) \in R$ and $x \in \nu(u)$ for some x again. Then on input (u, w) the machine N finds words u_{0}, u_{1} such that the conditions in (S2) above are true. Since $x \in \bigcap \nu^{\mathrm{fs}}\left(u_{0}\right), x=\delta\left(u_{0} p^{\prime}\right)$ for some $p^{\prime} \in \Sigma^{\omega}$. Since $x \in \nu(w), f_{M}\left(u_{0} p^{\prime}, w\right)=\left\langle u_{1}, q\right\rangle=\iota\left(u_{1}\right) q$ for some $q \in \Sigma^{\omega}$ such that (14). Suppose $v \ll q$. Then for some u_{2}, u_{3} such that $u_{0} u_{2} \in \operatorname{dom}\left(\bigcap \nu^{\mathrm{fs}}\right)$, the machine M on input $\left(u_{0} u_{2} 1^{\omega}, w\right)$ writes $\iota\left(u_{1}\right) u_{3}$ in at most $\left|u_{0} u_{2}\right|$ steps and $v \ll \iota\left(u_{1}\right) u_{3}$, therefore, $v \ll r(u, w)$. By (14),

$$
\nu(w)^{c} \subseteq \theta(q)=\bigcup\{\nu(v) \mid v \ll q\} \subseteq \bigcup\{\nu(v) \mid v \in r(u, w)\}=\theta \circ r(u, w)
$$

This proves $\psi^{-} \circ r(u, w) \subseteq \nu(w) \operatorname{in}(13)$.
Finally let v be some word such that $\iota(v)$ is listed by the machine N on input (u, w), that is, $v \ll r(u, w)$. Then there are words u_{2}, u_{3} such that $\bigcap \nu^{\mathrm{fs}}\left(u_{0} u_{2}\right) \neq$ \emptyset, the machine M on input $\left(u_{0} u_{2} 1^{\omega}, w\right)$ writes $\iota\left(u_{1}\right) u_{3}$ in at most $\left|u_{0} u_{2}\right|$ steps and $v \ll 11 u_{3}$. Since $\bigcap \nu^{\mathrm{fs}}\left(u_{0} u_{2}\right) \neq \emptyset$ and $w \ll u_{0}$, there is some p^{\prime} such that $\delta\left(u_{0} u_{2} p^{\prime}\right) \in \nu(w)$ and $f_{M}\left(u_{0} u_{2} p^{\prime}, w\right)=\iota\left(u_{1}\right) u_{3} q^{\prime}$ for some q^{\prime}. By (14) $\nu\left(u_{1}\right) \cap$ $\theta\left(u_{3} q^{\prime}\right)=\emptyset$. Since $\nu(u) \subseteq \nu\left(u_{1}\right)$ (by $u \ll g\left(u_{0} \iota\left(u_{1}\right)\right)$ in (S2)) and $\nu(v) \subseteq \theta\left(u_{3} q^{\prime}\right)$ (since $v \ll u_{3}$), $\nu(u) \cap \nu(v)=\emptyset$.

Since this is true for all $v \ll r(u, w), \nu(u) \cap \theta \circ r(u, w)=\emptyset$, hence $\nu(u) \subseteq \psi^{-} \circ$ $r(u, w)$.

Therefore, we have also proved (13).

4 Counterexamples

A topological space is discrete iff every singleton $\{x\}$ is open iff every subset $B \subseteq X$ is open. A discrete space is T_{i} for $i=0, \ldots, 4$. Let " D " be the axiom stating that the topological space is discrete. Counterexamples show that the implications in Theorem 1.1 are proper. Since this is an extended abstract we include only two of them.

Theorem 3. For computable topological spaces,

$$
\begin{array}{ll}
\mathrm{T}_{0} \nRightarrow \mathrm{WCT}_{0} & \text { by Example 1.2; } \\
\mathrm{T}_{1} \not \mathrm{WCT}_{0} & \text { by Example 1.3; } \\
\mathrm{D} \nRightarrow \mathrm{WCT}_{0} & \text { by Example 2; } \\
\mathrm{D}+\mathrm{WCT}_{0} \not \mathrm{CT}_{0} & \text { by Example 3; } \\
\mathrm{D}+\mathrm{CT}_{0} \nRightarrow \mathrm{CT}_{1} & \text { by Example 4; } \\
\mathrm{D}+\mathrm{CT}_{2} \not \mathrm{SCT}_{2} & \text { by Example 5; } \\
\mathrm{WCT}_{3}+\mathrm{CT}_{2} \not \mathrm{SCT}_{2} \text { by Example 5; } \\
\mathrm{T}_{4}+\mathrm{SCT}_{2} \not \mathrm{WCT}_{3} & \text { by Example 7; } \\
\mathrm{SCT}_{2} \not \mathrm{~T}_{3} & \text { by Example 6; } \\
\mathrm{CT}_{3} \nRightarrow \mathrm{SCT}_{3} & \text { by Example 8; }
\end{array}
$$

In the following examples let $\left(a_{i}\right)_{i \in \mathbb{N}},\left(b_{i}\right)_{i \in \mathbb{N}}, \ldots,\left(e_{i}\right)_{i \in \mathbb{N}}$ be injective families with pairwise disjoint ranges and let $\{0,1, \ldots, 7\} \subseteq \Sigma$.

Example 2. (D but not $W C T_{0}$) Omitted.
Example 3. $\left(D+W C T_{0}\right.$ but not $\left.C T_{0}\right)$ Let $A \subseteq \mathbb{N}$ be some non-r.e. set. Let $X:=$ $\left\{a_{i}, b_{i} \mid i \in \mathbb{N}\right\}$ and let τ be the discrete topology on X. Below we will define sets $B, C, D \subseteq \mathbb{N}$ such that $\{A, B, C, D\}$ is a partition of \mathbb{N}. Define a notation ν of a basis β of the topology as follows.

	$0^{i} 1$	$0^{i} 2$	$0^{i} 3$	$0^{i} 12$	$0^{i} 13$	$0^{i} 23$
$i \in A \cup D$	$\left\{a_{i}\right\}$	$\left\{b_{i}\right\}$	\emptyset	\emptyset	\emptyset	\emptyset
$i \in B$	$\left\{a_{i}\right\}$	$\left\{a_{i}, b_{i}\right\}$	$\left\{b_{i}\right\}$	$\left\{a_{i}\right\}$	\emptyset	$\left\{b_{i}\right\}$
$i \in C$	$\left\{a_{i}, b_{i}\right\}$	$\left\{b_{i}\right\}$	$\left\{a_{i}\right\}$	$\left\{b_{i}\right\}$	$\left\{a_{i}\right\}$	\emptyset

Since $\nu\left(0^{i} k\right) \cap \nu\left(0^{i} m\right)=\nu\left(0^{i} k m\right), \nu(u) \cap \nu(v)=\nu \circ g(u, v)$ for some computable function g. Therefore $\mathbf{X}:=(X, \tau, \beta, \nu)$ is a computable topological space. Let $H:=\left\{\left(0^{i} k, 0^{j} l\right) \mid i, j \in \mathbb{N} ; k, l \in\{1,2\} ;(i \neq j \vee k \neq l\}\right.$. Then H satisfies (2) and (3) for the space \mathbf{X}. Therefore, \mathbf{X} is a WCT_{0}-space.

We show that \mathbf{X} is not $S C T_{0}$.
Let $l, r \in \Sigma^{*}$ such that $\nu_{\mathbb{N}}(l)=1$ and $\nu_{\mathbb{N}}(r)=2$. We assume w.l.o.g. that $\nu_{\mathbb{N}}$ is injective. For $i \in \mathbb{N}$ let

$$
\begin{aligned}
& S_{i}:=\left\{\left\langle l, 0^{i} 1\right\rangle,\left\langle r, 0^{i} 3\right\rangle,\left\langle l, 0^{i} 12\right\rangle,\left\langle r, 0^{i} 23\right\rangle\right\}, \\
& T_{i}:=\left\{\left\langle r, 0^{i} 2\right\rangle,\left\langle l, 0^{i} 3\right\rangle,\left\langle r, 0^{i} 12\right\rangle,\left\langle l, 0^{i} 13\right\rangle\right\} .
\end{aligned}
$$

Suppose, the function $f: \subseteq \Sigma^{\omega} \times \Sigma^{\omega} \rightarrow \Sigma^{*}$ realizes the separation function t_{0}^{s} for \mathbf{X}. If $\delta(p)=a_{i}$ and $\delta(q)=b_{i}$ then

$$
f(p, q) \in \begin{cases}S_{i} \text { if } & i \in B \tag{15}\\ T_{i} \text { if } & i \in C\end{cases}
$$

since $\nu(u)$ must be either $\left\{a_{i}\right\}$ or $\left\{b_{i}\right\}$ if $f(p, q)=\langle w, u\rangle$. Notice that $S_{i} \cap T_{i}=\emptyset$.

For all $i \in \mathbb{N}$ define $p_{i}, q_{i} \in \Sigma^{\omega}$ by $p_{i}:=\iota\left(0^{i} 1\right) \iota\left(0^{i} 1\right) \iota\left(0^{i} 1\right) \ldots$ and $q_{i}:=$ $\iota\left(0^{i} 2\right) \iota\left(0^{i} 2\right) \iota\left(0^{i} 2\right) \ldots$. Let F be the set of all computable functions $f: \subseteq \Sigma^{\omega} \times$ $\Sigma^{\omega} \rightarrow \Sigma^{*}$ such that $f\left(p_{i}, q_{i}\right)$ exists for all $i \in A$. Consider $f \in F$. Then $f^{\prime}: i \mapsto$ $f\left(p_{i}, q_{i}\right)$ is computable such that $A \subseteq \operatorname{dom}\left(f^{\prime}\right)$. Since A is not r.e. and $\operatorname{dom}\left(f^{\prime}\right)$ is r.e., $\operatorname{dom}\left(f^{\prime}\right) \backslash A$ is infinite. Since F is countable, there is a bijective function $g: E \rightarrow F$ for some $E \subseteq \mathbb{N}$ such that $i \in \operatorname{dom}\left(g_{i}^{\prime}\right) \backslash A$ for all $i \in E\left(g_{i}:=g(i)\right)$. Then $A \cap E=\emptyset$.

For each $i \in E$ we put i to B or C in such a way that g_{i} does not realize the separating function t_{0}^{s} for SCT_{0}.

$$
\begin{aligned}
& B:=\left\{i \in E \mid g_{i}\left(p_{i}, q_{i}\right) \notin S_{i}\right\} \\
& C:=\left\{i \in E \mid g_{i}\left(p_{i}, q_{i}\right) \in S_{i}\right\}
\end{aligned}
$$

and $D:=\mathbb{N} \backslash(A \cup B \cup C)$. Since $A \cap E=\emptyset, E=B \cup C$ and $B \cap C=\emptyset$, $\{A, B, C, D\}$ is a partition of \mathbb{N}.

Suppose some computable function f realizes t_{0}^{s}. Since for $i \in A, \delta\left(p_{i}\right)=a_{i}$ and $\delta\left(q_{i}\right)=b_{i}, f\left(p_{i}, q_{i}\right)$ exists for all $i \in A$, hence $f=g_{i}$ for some $i \in E$.

If $i \in B$ then $g_{i}\left(p_{i}, q_{i}\right) \notin S_{i}$, hence by (15) the function g_{i} does not realize t_{0}^{s}. If $i \in C$ then $g_{i}\left(p_{i}, q_{i}\right) \in S_{i}$, hence not in T_{i} since $S_{i} \cap T_{i}=\emptyset$. By (15) the function g_{i} does not realize t_{0}^{s}.

From this contradiction we conclude that \mathbf{X} is not $S C T_{0}$. By Theorem $1 \mathbf{X}$ is $\operatorname{not} C T_{0}$.

Example 4. (D and $C T_{0}$ but not $C T_{1}$) Omitted.
Example 5. (D and $C T_{2}$ but not $S C T_{2}$) Let $A \subseteq \mathbb{N}$ be an r.e. set with non-r.e. complement. Define a notation ν by
$\nu\left(0^{i} 1\right):=\left\{a_{i}\right\}, \nu\left(0^{i} 2\right):=\left\{a_{i}\right\}$ for $i \in A$,
$\nu\left(0^{i} 1\right):=\left\{a_{i}\right\}, \nu\left(0^{i} 2\right):=\left\{b_{i}\right\}$ for $i \notin A$
for all $i \in \mathbb{N}$. Then ν is a notation of a base β of a topology (the discrete topology) τ on a subset $X \subseteq \mathbb{N}$ such that $\mathbf{X}=(X, \tau, \beta, \nu)$ is a computable topological space.

The space \mathbf{X} is T_{i} for $i=0, \ldots, 4$ since it is discrete. It is $C T_{2}$ but not $S C T_{2}$: The set $H:=\left\{\left(0^{i} k, 0^{j} l\right) \mid i, j \in \mathbb{N}, k, l \in\{1,2\}\right\}$ satisfies CT_{2}^{\prime}. Therefore, the space is $C T_{2}$. Suppose SCT_{2}. Let H be the r.e. set for SCT_{2}. By (10), $i \notin A \Longrightarrow\left(0^{i} 1,0^{i} 2\right) \in H$ and by $(11), i \in A \Longrightarrow\left(0^{i} 1,0^{i} 2\right) \notin H$. Since H is r.e., the complement of A must be r.e. (contradiction). Notice that $x \neq y$ is not (δ, δ)-r.e., see Theorem 2.3. It can be shown easily that \mathbf{X} is $W C T_{3}$.

Example 6. $\left(S C T_{2}\right.$ but not $\left.T_{3}\right)$ Omitted.
Example 7. (T_{4} and $S C T_{2}$ but not $W C T_{3}$) Omitted.
Example 8. $\left(C T_{3}\right.$ but not $\left.S C T_{3}\right)$ Define a notation I of the open rational intervals by $I\langle u, v\rangle:=\left(\nu_{\mathbb{Q}}(u) ; \nu_{\mathbb{Q}}(v)\right) \subseteq \mathbb{R}$. Let $\mathbb{R}_{c} \subseteq \mathbb{R}$ be the set of $(\rho-)$ computable real numbers. There is a computable function $g: \Sigma^{*} \rightarrow \Sigma^{*}$ such that $\mathbb{R}_{c} \subseteq \bigcup_{i \in \mathbb{N}} I \circ$ $g\left(0^{i}\right)$ and $\sum_{i \in \mathbb{N}} \operatorname{length}\left(I \circ g\left(0^{i}\right)\right)<1$ [6, Theorem 4.2.8]. Let $z:=\inf \{a \in$ $\left.\mathbb{Q} \mid[a ; 1] \subseteq \bigcup_{i \in \mathbb{N}} I \circ g\left(0^{i}\right)\right\}$. Then $0<z<1, z$ is $\rho_{>}$-computable and not ρ computable, hence not $\rho_{<}$-computable [6]. Furthermore for all $k, z \notin I \circ g\left(0^{k}\right)$.

Let $X:=\mathbb{R}_{c} \cup\{z\}$. Define a notation ν of subsets of X by $\nu(0 v):=I(v) \cap X$ and $\nu(1 v):=I(v) \cap(-\infty ; z) \cap X(v \in \operatorname{dom}(I))$.Then $\beta:=$ range (ν) is a base of a topology τ such that $\mathbf{X}:=(X, \tau, \beta, \nu)$ is a computable topological space. Notice that for $x<z, z \in \operatorname{cls}_{X}((x ; z) \cap X)$. Let δ be the inner representation for the points of \mathbf{X}.

Proposition 1: The multi-function $h: x \mapsto a$ mapping each $x \in X$ such that $x<z$ to some $a \in \mathbb{Q}$ such that $x<a<z$ is $\left(\delta, \nu_{\mathbb{Q}}\right)$-computable.

Proof 1: If $x<z$ and $x \in I \circ g\left(0^{k}\right)$, then sup $I \circ g\left(0^{k}\right)<z$, since $z \not \leq \inf I \circ g\left(0^{k}\right)$ (since $x<z$), $z \notin I \circ g\left(0^{k}\right)$ and $z \neq \sup I \circ g\left(0^{k}\right)$ (since $z \notin \mathbb{Q}$). There is a machine M that on input p searches for some $k \in \mathbb{N}$ such that $0 g\left(0^{k}\right) \ll p$ and writes some u such that $\nu_{\mathbb{Q}}(u)=\sup I \circ g\left(0^{k}\right)$. Let $\delta(p)=x<z$. Since $x \in \mathbb{R}_{c}$, there is some k such that $x \in I \circ g\left(0^{k}\right)$, hence $0 g\left(0^{k}\right) \ll p$. We obtain $\nu_{\mathbb{Q}} \circ f_{M}(p)<z$. Therefore, the multi-function h is $\left(\delta, \nu_{\mathbb{Q}}\right)$-computable.

Proposition 2: The multi-function $f:(x, U) \boxminus V$ mapping each $(x,(a ; b)) \in$ $X \times$ range (I) such that $x \in(a ; b)$ to some $(c ; d) \in \operatorname{range}(I)$ such that $x \in$ $(c ; d) \subseteq[c ; d] \subseteq(a ; b)$ is (δ, I, I)-computable.

Proof 2: Every δ-name of x lists arbitrarily short rational intervals containing x. Search for a sufficiently short interval $(c ; d)$.

We show that t_{3}^{\prime} from Definition 3 is computable. Suppose $x \in W \in \beta$. If $W=\nu(0 w)=I(w) \cap X$ for some w then $W^{\prime}:=I(w)$. If $W=\nu(1 w)=$ $I(w) \cap(-\infty ; z) \cap X$ for some w then by means of h find some $e \in \mathbb{Q}$ such that $x<e<z$ and let $W^{\prime}:=I(w) \cap(-\infty ; e)$. Then $x \in W^{\prime} \cap X \subseteq W$. By means of f from x and $(a ; b):=W^{\prime}$ find $(c ; d) \in \operatorname{range}(I)$ such that $x \in(c ; d) \subseteq[c ; d] \subseteq(a ; b)$. Then $x \in(c ; d) \cap X \subseteq[c ; d] \cap x \subseteq W$.

From a, b, c and d some u and q can be computed such that $\nu(u)=(c ; d) \cap X$ and $\psi^{-}(q)=[c ; d] \cap X$. Then $x \in \nu(u) \subseteq \psi^{-}(q) \subseteq W$. Therefore, t_{3}^{\prime} is $\left(\delta, \nu,\left[\nu, \psi^{-}\right]\right)$computable.

Suppose, \mathbf{X} is $S C T_{3}$. Let R be the r.e. set for SCT_{3} from Definition 3. There is some w such that $\nu(w)=(0 ; z) \cap X$. Suppose $(u, w) \in R$. Then $\nu(u) \subseteq \nu(w)$, hence for some $a, b \in \mathbb{Q}$ such that $a<b<z, \nu(u)=(a ; b) \cap X$ or $\nu(u)=(a ; z) \cap X$. If $\nu(u)=(a ; z) \cap X$, then $z \in \operatorname{cls}_{X}(\nu(u))$, but $\operatorname{cls}_{X}(\nu(u)) \subseteq \nu(w)=(0 ; z)$ by SCT_{3}, hence $z \in \nu(w)=(0 ; z)$ (contradiction). Therefore, $\sup \nu(u)=(a ; b)$ for some rational numbers a, b such that $a<b<z$.

The function $U \mapsto \sup U$ for all $U=(a ; x) \in \beta$ such that $x<z$ is $\left(\nu, \nu_{\mathbb{Q}}\right)$ computable. Since R is r.e., the number $y:=\sup \{\sup \nu(u) \mid(u, w) \in R\}$ is $\rho_{<- \text {-computable such that } y \leq z \text {. Since }(0 ; z)=\nu(w)=\bigcup_{(u, w) \in R} \nu(u) \text {, for every }}$ $x<z$ there is some $(u, w) \in R$ such that $x<\sup \nu(u)$. Therefore, $y=z$, hence z
 is not ν-r.e.

Further results can be obtained in combination with the positive results from Theorem 1. Figure 1 visualizes the interplay between the computable versions of T_{i} for $i=0,1,2,3$ from Definitions 2 and 3 we have proved. " $A \longrightarrow B$ " means $A \Longrightarrow B, " A \nrightarrow B$ " means that we have constructed a computable topological space for which $A \wedge \neg B$, and $A \nrightarrow C$ " means that we have constructed a
computable topological space for which $(A \wedge C) \wedge \neg B$. Remember that $\mathrm{SCT}_{0} \Longleftrightarrow$ $\mathrm{CT}_{0} \Longleftrightarrow \mathrm{CT}_{0}^{\prime}, \mathrm{CT}_{1} \Longleftrightarrow \mathrm{CT}_{1}^{\prime} \Longleftrightarrow \mathrm{CT}_{2} \Longleftrightarrow \mathrm{CT}_{2}^{\prime}$ and $\mathrm{CT}_{3} \Longleftrightarrow \mathrm{CT}_{3}^{\prime}$.

Fig. 1. The relation between computable $T_{0^{-}}, T_{1^{-}}, T_{2^{-}}$and T_{3}-separation.

5 Further Results

For a computable topological space $\mathbf{X}=(X, \tau, \beta, \nu)$ and $B \subseteq X$ the subspace $\mathbf{X}_{B}=\left(B, \tau_{B}, \beta_{B}, \nu_{B}\right)$ of \mathbf{X} to B is the computable topological space defined by $\operatorname{dom}\left(\nu_{B}\right):=\operatorname{dom}(\nu), \nu_{B}(w):=\nu(w) \cap B$. The separation axioms from Definitions 2 and 3 are invariant under restriction to subspaces.

Theorem 4. If a computable topological space satisfies some separation axiom from Definitions 2 and 3 then each subspace satisfies this axiom.

Proof: Straightforward.

The product of two T_{i}-spaces is a T_{i}-space for $i=0,1,2,3$. This is no longer true for some of the computable separation axioms. By definition for the product $\mathbf{X}_{1} \times \mathbf{X}_{2}=\overline{\mathbf{X}}=\left(X_{1} \times X_{2}, \bar{\tau}, \bar{\beta}, \bar{\nu}\right)$ of two computable topological spaces $\mathbf{X}_{1}=$ $\left(X_{1}, \tau_{1}, \beta_{1}, \nu_{1}\right)$ and $\mathbf{X}_{2}=\left(X_{2}, \tau_{2}, \beta_{2}, \nu_{2}\right), \bar{\nu}\left\langle u_{1}, u_{2}\right\rangle=\nu_{1}\left(u_{1}\right) \times \nu_{2}\left(u_{2}\right)$.

Example 9. The space \mathbf{X} from Example 5 is $C T_{2}$ but not $S C T_{2}$. Let \mathbf{R} be the computable real line from Example 1.1. We show that the product $\mathbf{X} \times \mathbf{R}$ is not $W C T_{0}$. Suppose, $\mathbf{X} \times \mathbf{R}$ is $W C T_{0}$. Since every base element of $\mathbf{X} \times \mathbf{R}$ has the form $\nu(u) \times(a ; b)(a, b \in \mathbb{Q}, a<b)$ no singleton $\{(x, y)\}(x \in X, y \in \mathbb{R})$ is open. By Theorem 2.1, $\mathbf{X} \times \mathbf{R}$ is $S C T_{2}$. By Theorem 1 the relation $\left(x, x^{\prime}\right) \neq\left(y, y^{\prime}\right)$ is $([\delta, \rho],[\delta, \rho])$-r.e. where δ is the inner representation of the points of \mathbf{X}. There is a machine M that halts on input $\left(\left\langle p, p^{\prime}\right\rangle,\left\langle q, p^{\prime}\right\rangle\right)$ for $p, q \in \operatorname{dom}(\delta)$ and $p^{\prime} \in \operatorname{dom}(\rho)$ iff $\delta(p) \neq \delta(q)$. There is a computable element $p^{\prime} \in \operatorname{dom}(\rho)$. Therefore, there is a machine N that halts on input (p, q) iff $\delta(p) \neq \delta(q)$, hence $x \neq y$ is (δ, δ)-r.e. By Theorem 1, \mathbf{X} must be $S C T_{2}$. But \mathbf{X} is not $S C T_{2}$.

Theorem 5. 1. The $S C T_{2^{-}}$, $W C T_{3^{-}}, C T_{3^{-}}$and $S C T_{3}$-spaces are closed under product.
2. The $W C T_{0^{-}}, C T_{0^{-}}$and $C T_{2}$-spaces are not closed under product.

Proof: 1. Suppose, \mathbf{X}_{1} and \mathbf{X}_{2} are $S C T_{2}$. By Theorem $1, x_{i} \neq y_{i}$ is $\left(\delta_{i}, \delta_{i}\right)$ r.e. for $i=1,2$, hence $\left(x_{1}, x_{2}\right) \neq\left(y_{1}, y_{2}\right)$ is $\left(\left[\delta_{1}, \delta_{2}\right],\left[\delta_{1}, \delta_{2}\right]\right)$-r.e., hence again by Theorem 1, $\mathbf{X}_{1} \times \mathbf{X}_{2}$ is $S C T_{2}$.

Suppose, \mathbf{X}_{1} and \mathbf{X}_{2} are $W C T_{3}$. Let $\left(x_{1}, x_{2}\right) \in W_{1} \times W_{2}$. From x_{i} and W_{i} we can find $U_{i} \in \beta_{i}$ such that $x_{i} \in U_{i} \subseteq \bar{U}_{i} \subseteq W_{i}$ (for $i=1,2$). Then $\left(x_{1}, x_{2}\right) \in$ $U_{1} \times U_{2} \subseteq \overline{U_{1} \times U_{2}}=\bar{U}_{1} \times \bar{U}_{2} \subseteq W_{1} \times W_{2}$.

Suppose, \mathbf{X}_{1} and \mathbf{X}_{2} are $C T_{3}^{\prime}$. We consider computability w.r.t. $\nu_{i}, \delta_{i}, \psi_{i}^{-}, \bar{\nu}$, $\bar{\delta}$ and $\bar{\psi}^{-}$. Suppose $\left(x_{1}, x_{2}\right) \in\left(W_{1}, W_{2}\right) \in \beta_{1} \times \beta_{2}$. From $\left(\left(x_{1}, x_{2}\right),\left(W_{1}, W_{2}\right)\right)$ we can compute x_{1}, x_{2}, W_{1} and W_{2}. Using t_{3}^{\prime} for $\mathbf{X}_{\mathbf{1}}$ and $\mathbf{X}_{\mathbf{2}}$ we can compute $\left(U_{i}, B_{i}\right)$ such hat $U_{i} \in \beta_{i} B_{i} \subseteq X_{i}$ is closed and $x_{i} \in U_{i} \subseteq B_{i} \subseteq W_{i}(i=1,2)$. Observe that $\left(x_{1}, x_{2}\right) \in U_{1} \times U_{2} \subseteq B_{1} \times B_{2} \subseteq W_{1} \times W_{2}$. Form $\left(U_{1}, B_{1}\right)$ and $\left(U_{2}, B_{2}\right)$ we can compute $\left(\left(u_{1}, u_{2}\right),\left(B_{1}, B_{2}\right)\right)$.

Suppose, \mathbf{X}_{1} and \mathbf{X}_{2} are $S C T_{3}$. For $\mathbf{X}_{\mathbf{i}}(i=1,2)$ let R_{i} be the r.e. set and let r_{i} be the computable function for $S C T_{3}$ from Definition 3. There is a computable function h such that $\psi_{1}^{-}\left(p_{1}\right) \times \psi_{2}^{-}\left(p_{2}\right)=\bar{\psi}^{-}\left\langle p_{1}, p_{2}\right\rangle$. Let

$$
\begin{aligned}
\bar{R}:= & \left\{\left(\left\langle u_{1}, u_{1}\right\rangle,\left\langle w_{1}, w_{2}\right\rangle\right) \mid\left(u_{1}, w_{1}\right) \in R_{1} \wedge\left(u_{2}, w_{2}\right) \in R_{2}\right\}, \\
& \bar{r}\left(\left\langle u_{1}, u_{1}\right\rangle,\left\langle w_{1}, w_{2}\right\rangle\right):=h\left(r_{1}\left(u_{1}, w_{1}\right), r_{2}\left(u_{2}, w_{2}\right)\right) .
\end{aligned}
$$

A straightforward calculation shows that \bar{R} is the r.e. set and \bar{r} be the computable function for $S C T_{3}$ from Definition 3 for the product $\mathbf{X}_{1} \times \mathbf{X}_{2}$.
2. In Example 9, the spaces \mathbf{X} and \mathbf{R} are $C T_{2}, C T_{0}$ and $W C T_{0}$. Their product $\mathbf{X} \times \mathbf{R}$, however, is not $W C T_{0}$, hence not $C T_{0}$ and not $C T_{2}$.

References

[1] Ryszard Engelking. General Topology, volume 6 of Sigma series in pure mathematics. Heldermann, Berlin, 1989.
[2] Tanja Grubba, Matthias Schröder, and Klaus Weihrauch. Computable metrization. Mathematical Logic Quarterly, 53(4-5):381-395, 2007.
[3] Margarita Korovina and Oleg Kudinov. Towards computability over effectively enumerable topological spaces. In Vasco Brattka, Ruth Dillhage, Tanja Grubba, and Angela Klutsch, editors, CCA 2008, Fifth International Conference on Computability and Complexity in Analysis, volume 221 of Electronic Notes in Theoretical Computer Science, pages 115-125. Elsevier, 2008. CCA 2008, Fifth International Conference, Hagen, Germany, August 21-24, 2008.
[4] Christoph Kreitz and Klaus Weihrauch. Theory of representations. Theoretical Computer Science, 38:35-53, 1985.
[5] Victor Selivanov. On the Wadge reducibility of k-partitions. In Ruth Dillhage, Tanja Grubba, Andrea Sorbi, Klaus Weihrauch, and Ning Zhong, editors, Proceedings of the Fourth International Conference on Computability and Complexity in Analysis (CCA 2007), volume 202 of Electronic Notes in Theoretical Computer Science, pages 59-71. Elsevier, 2008. CCA 2007, Siena, Italy, June 16-18, 2007.
[6] Klaus Weihrauch. Computable Analysis. Springer, Berlin, 2000.
[7] Klaus Weihrauch and Tanja Grubba. Elementary computable topology. Journal of Universal Computer Science, 15(6).

