
Relativizations of the P =? DNP Question
for the BSS Model

Christine Gaßner

Institut für Mathematik und Informatik, Ernst-Moritz-Arndt-Universität,
Robert-Blum-Str. 2, 17487 Greifswald, Germany

gassnerc@uni-greifswald.de

Abstract. We consider the uniform BSS model of computation where
the machines can perform additions, multiplications, and tests of the
form x ≥ 0. The oracle machines can also check whether a tuple of real
numbers belongs to a given oracle set O or not. We construct oracles
such that the classes P and DNP relative to these oracles are equal or
not equal.

1 Introduction

The uniform BSS model of computation was introduced in [Blum et al. 1989].
The BSS machines can perform labelled instructions of the form Zi := Zj +Zk,
Zi := Zj − Zk, Zi := Zj · Zk, Zj := c, if Zj ≥ 0 then goto l1 else goto l2,
ZIj := ZIk , Ij := 1, Ij := Ij + 1, and if Ij = Ik then goto l1 else goto l2. Each

assignment of an input (x1, . . . , xn) ∈
⋃

i≥1 IRi to the registers of a machine
M is realized by Z1 := x1; . . . ;Zn := xn; I1 := n; . . . ; IkM := n. Moreover,
oracle machines can execute if (Z1, . . . , ZI1) ∈ O then goto l1 else goto l2 for
some oracle O ⊆ IR∞. The non-deterministic machines are able to guess an
arbitrary number of arbitrary elements y1, . . . , ym ∈ IR in one step after the input
and to assign the guesses to ZI1+1, . . . , ZI1+m. A (digital) non-deterministic
BSS machine M accepts an input (x1, . . . , xn) ∈ IR∞ if there is some guessed
sequence (y1, . . . , ym) ∈ IR∞ and (y1, . . . , ym) ∈ {0, 1}∞, respectively, such that
M outputs 1 on input (x1, . . . , xn) for the guesses y1, . . . , ym. Let PIR, DNPIR,
and NPIR be the classes of problems recognized by deterministic, digital non-
deterministic, and non-deterministic machines, respectively, in polynomial time.
Let POIR, DNPOIR, and NPOIR are the corresponding classes for one given oracle O.
We have PIR ⊆ DNPIR ⊆ NPIR and POIR ⊆ DNPOIR ⊆ NPOIR.

In [Baker et al. 1975] and [Emerson 1994] for Turing machines and the BSS
model, respectively, oracles were defined in order to get the equality of relativized
versions of P(IR) and NP(IR). Such a universal oracle O can be defined by O =⋃

i≥1Wi where W0 = ∅ and

Wi = {(1, . . . , 1︸ ︷︷ ︸
t×

,x, Code(M)) ∈ IRi |

M is a non-deterministic machine using
⋃

j<iWj as oracle & M(x) ↓t}.

Thus, we get the following.

Andrej Bauer, Peter Hertling, Ker-I Ko (Eds.)
6th Int'l Conf. on Computability and Complexity in Analysis, 2009, pp. 141-148
http://drops.dagstuhl.de/opus/volltexte/2009/2266

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62914873?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

142 Christine Gaßner

Proposition 1. There is an oracle O such that POIR = DNPOIR = NPOIR.

In [Emerson 1994] Emerson presented also an oracle Q such that PQIR 6= NPQIR.
Emerson’s proof technique also allows to separate relativized versions of DNPIR

and NPIR by a diagonalization procedure in the following way. Let U ⊆ IR∞

be a set of codes u representing all pairs that contain a polynomial pu and the
program Pu of a digital non-deterministic oracle BSS machine. Let NBu be the
machine using an oracle B ⊆ IR∞ and performing only pu(n) instructions of
Pu on inputs of size n. Let the oracle Q1 =

⋃
i≥1Wi be defined in stages. Let

V0 = ∅.
Stage i ≥ 1:

Let
Ki = {u ∈ U | (∀B ⊆ IR∞)

(NBu does not use any r > i in a query on input u)},
Wi =

⋃
k<i Vk,

Vi = {(i+ 1,u) | u ∈ Ki & NWi
u does not accept u}.

The defined sequence of codes, K1,K2, . . ., covers the set of all digital non-
deterministic oracle machines recognizing problems in DNPBIR for some B. Con-
sequently we get L1 = {y | (∃n ∈ IN+)((n,y) ∈ Q1)} 6∈ DNPQ1

IR . On the other

hand, we have L1 ∈ NPQ1

IR since a non-deterministic BSS machine can guess each
integer in one step.

Proposition 2. There is an oracle Q such that DNPQIR 6= NPQIR.

Moreover, by analogy with [Gaßner 2009] it is also possible to show DNPZZIR 6=
NPZZIR and DNPQ

IR 6= NPQ
IR.

It remains to show that there are also oracles such that the classes PIR and
DNPIR relative to these oracles are not equal. For the computation over struc-
tures of enumerable signature, a method to separate relativized classes of prob-
lems recognized by deterministic and digital non-deterministic machines, respec-
tively, goes back to T. Baker, J. Gill, and R. Solovay [Baker et al. 1975]. In order
to obtain the inequality between relativized versions of PR and DNPR for oracle
machines over the ordered ring R = (IR; 0, 1; +,−, ·;≥), we can use the enumer-
ability of all polynomials p : IN → IN and all programs of deterministic oracle
machines and diagonalization techniques by analogy with [Baker et al. 1975].
Let i ∈ IN+ be the code of the pair containing the ith polynomial pi and the ith

program Pi of a deterministic oracle machine using only the machine constants
0 and 1. If NBi is the machine which uses an oracle B ⊆ IR∞ and performs only
pi(n) instructions of Pi on inputs of size n, then the definition of the oracle
Q2 =

⋃
i≥1Wi is possible in stages as in [Baker et al. 1975]. Let V0 = ∅ and

m0 = 0.
Stage i ≥ 1: Let ni be any integer such that ni > mi−1 and pi(ni) + ni < 2ni .
Moreover, let

Wi =
⋃

j<i Vj ,

Vi = {x ∈ {0, 1}ni | NWi
i rejects (0, . . . , 0) ∈ IRni

& x is not queried by NWi
i on input (0, . . . , 0) ∈ IRni},

Relativizations of the P =? DNP Question for the BSS Model 143

mi = 2ni .

For L2 = {y | (∃i ∈ IN+)(y ∈ IRni & Vi 6= ∅)}, we get L2 ∈ DNPQ2

R \ PQ2

R .

Proposition 3. For BSS machines using only the constants 0 and 1, there is
an oracle Q such that PQR 6= DNPQR .

This method as well as Emerson’s method fail if we want to construct an ora-
cle such that the relativized versions of PIR and DNPIR are not equal. We cannot
enumerate the programs of all deterministic BSS machines, and the digital non-
deterministic machines cannot guess any integer in one step. A discussion about
the possibilities to transfer the ideas of [Baker et al. 1975] and [Emerson 1994]
was done in [Gaßner 2008] for several types of groups. This discussion gives also
insights which constructions can be used for which types of rings. In the next
section we want to show that it is still possible to use diagonalization techniques
for separating the classes PIR and DNPIR relative to an oracle. Our construction
requires to consider a sequence of sequences of sets of machines and consequently
a new recursive definition in every stage of a recursive definition. Techniques of
this kind are often used if more natural decision problems having special prop-
erties are not known. For models of computation over algebraic structures, a
summary of papers where these techniques have been applied is given, for in-
stance, in [Bürgisser 1999]. In the last section we derive a suitable oracle from
the Real Knapsack Problem such that the resulting relativized versions of PIR

and DNPIR are also not equal. This construction is possible without using the
powerful diagonalization techniques.

2 The Separation of Relativized Versions of PIR and
DNPIR by Diagonalization Techniques

Now let us consider again the BSS machines over (IR; IR; +,−, ·;≥) where any
real number can be a machine constant. Since we also want to define an oracle

Q3 ⊆
⋃

i≥1 INni

recursively, we will at first define a suitable sequence ((Ki,j)j≥1)i≥1 of sequences
containing all deterministic oracle BSS machines working in polynomial time.
For any oracle B ⊆ IR∞, any deterministic oracle BSS machine NB,c1,...,ck is
determined by its machine constants c1, . . . , ck and a program P which is encoded
by a tuple in {0, 1}∞. Let every character of the program P , including the indices
j ∈ {1, . . . , k} of the constants cj , be unambiguously translated into a finite
sequence in {0, 1}∞ and let the oracle queries be encoded independently of the
used oracle B by taking the same sequence of characters 0 and 1 as code for all
oracle queries. Consequently, the set Prog of all programs of oracle machines and
the set poly of all polynomial functions of IN into IN are enumerable. We will
take the positive integers in order

– to enumerate all (p1, P1), (p2, P2), (p3, P3), . . . ∈ poly × Prog,

144 Christine Gaßner

– to characterize the behavior of all oracle machines on special inputs of size
n1, n2, . . . by additional numbers Nchar(i, c1, . . . , cki) which are dependent
only on the following properties:
• The machines perform pi(ni) instructions on inputs of size ni.
• The machines use only the reals c1, . . . , cki as machine constants.
• The inputs belong to {0}ni−1 × {N ∈ IN | N ≥ Nchar(i, c1, . . . , cki)}.

The Definition of the Machine NB,c1,...,ckii . Any i ∈ IN+ is the number of
a pair (pi, Pi) ∈ poly × Prog which determines a class of deterministic oracle

machines {NB,c1,...,ckii | B ⊆ IR∞ & c1, . . . , cki ∈ IR} by the following.

(a) The BSS machine NB,c1,...,ckii performs the instructions of the program Pi.

(b) If NB,c1,...,ckii queries an oracle, then NB,c1,...,ckii uses the oracle B.

(c) The only constants of NB,c1,...,ckii are c1, . . . , cki encoded by 1, . . . , ki in the
code of Pi.

(d) The number of the instructions of Pi carried out by NB,c1,...,ckii is simulta-

neously counted by NB,c1,...,ckii by means of an additional index register.

(e) For any input in IRn, the machine NB,c1,...,ckii halts after at most pi(n)
steps of the execution of Pi. (The bound pi(n) can be computed by using
index registers.)

(f) If the output of Pi is reached in this time, then NB,c1,...,ckii outputs the value
determined by Pi, B, and c1, . . . , cki . If the output instruction of Pi is not

reached in this time, then NB,c1,...,ckii rejects the input.

Then, for any oracle B ⊆ IR∞ and any problem P ∈ PBIR there are an i ≥ 1 and

constants c1, . . . , cki such that the machine NB,c1,...,ckii decides P.

Let us now characterize the behavior of NB,c1,...,ckii on inputs of the form

(0, . . . , 0, x) ∈ INni . The value of any register computed by NB,c1,...,ckii on these
inputs can be described by some term of the form (1). We are especially interested
in oracles B ⊆ IN∞.

The Definition of the Number Nchar(i, c1, . . . , cki). We consider the sequence
(f1, f2, . . . , fs) containing all polynomials fk ∈ IR[x] whose values fk(x) can be
described by the terms of the following form

2pi(ni)∑
j=0

(

2pi(ni)∑
j1,...,jki=0

αj1,...,jki ,j
cj11 · · · c

jki
ki

)xj (1)

where any αj1,...,jki ,j
∈ ZZ ∩ [−2pi(ni), 2pi(ni)]. Let Nchar(i, c1, . . . , cki) be the

Cantor number of (µ1, . . . , µs, ν1, . . . , νs, µ, µ
′, ν) given by

µk = code(fk) ∈ IN+ if fk ∈ Q[x], (2)

µk = 0 if fk 6∈ Q[x], (3)

Relativizations of the P =? DNP Question for the BSS Model 145

νk = lim
x→∞

sgn(fk(x)), (4)

µ = min
⋂

k=1,...,s
degree(fk)≥1

{n ∈ IN | ∀x(fk(x) = 0 ∨ fk(x) = 1⇒ n > x)}, (5)

µ′ = min
⋂

k=1,...,s
µk=0

{n ∈ IN | (∀x ∈ IN)(fk(x) ∈ IN⇒ n > x)}, (6)

ν = min
⋂

k=1,...,s

{n ∈ IN | fk(n) < 2n}. (7)

Remark 1. Here, sgn(x) = 1 iff x > 0, sgn(x) = −1 iff x < 0, and sgn(0) = 0.
Because of the following lemma (cp. [Gaßner 2009]), the minimum of the set in
(6) exists.

Lemma 1. For any polynomial p ∈ IR[x] \Q[x], there is only a finite number of
rational numbers q ∈ Q satisfying p(q) ∈ Q.

The Definition of Ki,j and the Constants Ci,1, Ci,2, For i ≥ 1, let
Ni,1, Ni,2, . . . be an enumeration of the set

{Nchar(i, c1, . . . , cki) | c1, . . . , cki ∈ IR}

such that Ni,j+1 > Ni,j. For i, j ≥ 1, let

Ki,j = {NB,c1,...,ckii | B ⊆ IR∞ & Ni,j = Nchar(i, c1, . . . , cki)}.

Moreover, let Ci,1 = Ni,1 and, for j ≥ 2, let Ci,j = max{2Ci,j−1 , Ni,j}.
Since Ci,j ≥ Ni,j > max{µ, µ′, ν}, we have the following properties.

(i) By (5), Ni,j is greater than any zero of the corresponding function fk if
degree(fk) ≥ 1. Therefore, by (4) we have

νk = sgn(fk(Ni,j)) = sgn(fk(Ci,j)).

(ii) If an oracle machine M ∈ Ki,j computes a positive integer N on input
x ∈ {0}ni−1 × {Ci,j}, then, by (6) there is a k ≤ s such that µk 6= 0 and
N = fk(Ci,j). In this case, fk ∈ Q[x] follows from (3). That means because
of (2) that N is uniquely determined by µk and, consequently, by Ni,j .

(iii) A consequence of (7) is thatM∈ Ki,j cannot compute the positive integers
Ci,j+1, Ci,j+2, . . . on input x ∈ {0}ni−1 × {Ci,j} within pi(ni) steps since
these numbers are greater than 2Ci,j .

(iv) Property (5) implies also thatM∈ Ki,j computes an integer N ∈ {0, 1} on
input x ∈ {0}ni−1×{Ci,j} only if there is a k ≤ s such that degree(fk) = 0
and consequently fk(x) = 0 for all x ∈ IR or fk(x) = 1 for all x ∈ IR.

146 Christine Gaßner

In the following construction, for any B and any i, j ≥ 1, let KBi,j be the subset
of Ki,j given by

KBi,j = {NB,c1,...,ckii | Ni,j = Nchar(i, c1, . . . , cki)}.

The Construction of Q3. Let m0 = 0. We construct the set Q3 in stages.
Stage i ≥ 1: Let ni be an integer such that ni > mi−1, pi(ni) < 2ni−1, and
pi(ni) + ni < 2ni . Let Vi,0 = ∅. Stage j ≥ 1:

Wi,j =
⋃

i′<i, Vi′ ∪
⋃

j′<j, Vi,j′ ,

Vi,j = {x ∈ {0, 1}ni−1 × {Ci,j} | (∃M ∈ K
Wi,j

i,j)(M rejects (0, . . . , 0, Ci,j)

& x is not queried by M on input (0, . . . , 0, Ci,j) ∈ INni)}.

Moreover, let Vi =
⋃

j≥1 Vi,j and mi = 2ni .
Finally, let Q3 =

⋃
i≥1 Vi and

L3 =
⋃
i≥1

{(y1, . . . , yni−1, N) ∈ {0, 1}ni−1 × IN | Vi ∩ ({0, 1}ni−1 × {N}) 6= ∅)}.

The contents of the registers of any NB,c1,...,ckii can be described by (1) if the
input has the form (0, . . . , 0, x) ∈ IRni . For any B ⊆ IN∞, the value Ni,j and

the oracle B determine the computation path of any machine NB,c1,...,ckii ∈
KBi,j traversed by the input (0, . . . , 0, Ci,j) ∈ INni uniquely since (i) and (ii)
hold. By (i), the result of a test of the form fk(Ci,j) ≥ 0 follows from sgn(vk).
The question (fi1(Ci,j), . . . , fit(Ci,j)) ∈ B? is answered no if one of the values
fi1(Ci,j), . . . , fit(Ci,j) is not in IN. If the values are in IN, then, by (ii), the answer
results from the values µi1 , . . . , µit which are given by Ni,j .

Thus, the computation paths covered by NWi,j ,c1,...,cki
i ∈ KWi,j

i,j and by

NQ3,c1,...,cki
i ∈ KQ3

i,j

on (0, . . . , 0, Ci,j) ∈ INni are even the same since we have also the following
properties.

– By (iii), any x ∈ {0, 1}ni−1 × {Ci,j+1, Ci,j+2, . . .} is not queried.
– The length of the tuples in the oracle queries is less than 2ni and consequently

less than ni+1 by definition of ni+1.

– The machines NWi,j ,c1,...,cki
i and NQ3,c1,...,cki

i do not query the tuples in Vi,j .

Moreover, for all i, j ≥ 1, pi(ni) < 2ni−1 and (iv) imply that Vi,j contains

a tuple in {0, 1}ni−1 × {Ci,j} if a machine in KWi,j

i,j and, hence, any machine

NWi,j ,c1,...,cki
i ∈ KWi,j

i,j and, consequently, any machineNQ3,c1,...,cki
i ∈ KQ3

i,j reject

(0, . . . , 0, Ci,j) ∈ IRni . That implies L3 6∈ PQ3

IR and therefore the following.

Lemma 2. L3 ∈ DNPQ3

IR \ PQ3

IR .

Proposition 4. There is an oracle Q such that PQIR 6= DNPQIR.

Relativizations of the P =? DNP Question for the BSS Model 147

3 An Oracle Derived from the Knapsack Problem

The Real Knapsack Problem

KPIR =

∞⋃
n=1

{(x1, . . . , xn) ∈ IRn | (∃(α1, . . . , αn) ∈ {0, 1}n)(

n∑
i=1

αixi = 1)}

was introduced in [Blum et al. 1989] and studied, for instance, in [Koiran 1994]
and [Meer 1992]. KPIR belongs to DNPIR since, for an input (x1, . . . , xn) ∈ IR∞, a
digital non-deterministic machine can guess any sequence (α1, . . . , αn) ∈ {0, 1}n
and compute α1x1 + · · ·+ αnxn. It is not known whether KPIR ∈ PIR holds.

Let E0 = Q, let τ1, τ2, . . . be a sequence of transcendental numbers such
that τi+1 is transcendental over Ei =df Ei−1(τi), and let the oracle Q4 and the
decision problem L4 be given.

An = {(v1, . . . , v2n) ∈ {0, v}2n | v ∈ ZZ \ {0} &
∑2n

i=1 vi = nv}.

Q4 =
⋃∞

n=1{(sgn(|v1|), . . . , sgn(|v2n|),
∑2n

i=1 viτi) ∈ IR2n+1 |(v1, . . . , v2n) ∈ An}.

L4 =
⋃∞

n=1{(0, . . . , 0, r) ∈ IR2n+1 | (∃(v1, . . . , v2n) ∈ An)(r =
∑2n

i=1 viτi)}.

Let us assume that the BSS machine M decides L4 by using the oracle Q4

within a time bounded by a polynomial p and that M has only the constants
c1, . . . , ck. Let F0 =

⋃∞
i=0Ei. For i = 1, . . . , k, let Fi = Fi−1 and di = 1 if ci ∈

Fi−1, let Fi = Fi−1(ci) and di =∞ if ci is not algebraic over Fi−1, and let Fi =
Fi−1[ci] if there is an irreducible polynomial pi ∈ Fi−1[x] of degree di ≥ 2 with
pi(ci) = 0. The value of any register computed byM on input (0, . . . , 0, x) ∈ IRm

can be described by some term of the form
∑

j1,...,jk,j≤2p(m) αj1,...,jk,jc
j1
1 · · · c

jk
k x

j

where αj1,...,jk,j ∈ ZZ and, consequently, by a polynomial of the form

qj(x) = 1
r0

∑2p(m)

j=0 rj+1x
j where

rj =
∑

m1,...,mi0
≤m0

js<min{ds,j0}

zm1,...,mi0
,j1,...,jk,jτ

m1
1 · · · τmi0

i0
cj11 · · · c

jk
k

for some i0, m0, j0, and zm1,...,mi0 ,j1,...,jk,j
∈ ZZ and zm′1,...,m′i0 ,j

′
1,...,j

′
k
,0 6= 0 for

certain m′1, . . . ,m
′
i0
, j′1, . . . , j

′
k. Thus, for the inputs of the form (0, . . . , 0, x) ∈

IRm, a non-trivial oracle query (z1, . . . , zs, qj(x)) ∈ Q4? (where degree(qj) ≥ 1)

can only be answered yes if qj(x) =
∑2n′

i=1 v
′
iτi is satisfied for some (v′1, . . . , v

′
2n′) ∈

An′ . Thus, we get the following.

Lemma 3. Let n > i0, (0, . . . , 0, vi0+1, . . . , v2n) ∈ An, and x =
∑2n

i=i0+1 viτi.
For vl 6= 0, vl+1 = · · · = v2n = 0, a non-trivial oracle query (z1, . . . , zs, qj(x)) ∈
Q4? can be answered yes on inputs of the form (0, . . . , 0, x) only if s ≥ 2n and

(zi0+1, . . . , zs) = (sgn(|vi0+1|), . . . , sgn(|vl|), 0, . . . , 0).

148 Christine Gaßner

Let n0 be an even positive integer such that n0 > 2i0 and p(2n0 + 1) < 2
n0
2 .

Let P be the computation path of M described for inputs (0, . . . , 0, x) of size
2n0 + 1 uniquely by conditions of the form

(gj,1(x), . . . , gj,sj (x)) 6∈ Q4 (j ≤ t′) and f1(x) > 0, . . . , ft(x) > 0

where gj,1, . . . , gj,sj are polynomials, degree(gj,sj) > 0, and each fj is defined by
some equation of the form fj(x) = xnj + anj−1x

nj−1 + · · ·+ a1x+ a0.
Let τ > 0 be transcendental over Fk and greater than all zeros of f1, . . . , ft.

Then, (0, . . . , 0, τ) ∈ IR2n0+1\L4 traverses the path P . If gj,1(τ), . . . , gj,sj−1(τ) ∈
{0, 1}, then the polynomials gj,1, . . . , gj,sj−1 are constant. Since we have |G| <
2
n0
2 for

G =
⋃

j<p(2n0+1) {(gj,i0+1(x), . . . , gj,2n0(x)) |
gj,i0+1, . . . , gj,2n0 are constant functions},

there is some (0, . . . , 0, x0) ∈ IR2n0+1 with x0 =
∑2n0

i=i0+1 wiτi satisfying

a) (0, . . . , 0, wi0+1, . . . , w2n0
) ∈ An0

and w2n0
6= 0,

b) x0 > max({τ} ∪
⋃

j<p(2n0+1)

s≤sj−1

{x | gj,s(x) ∈ {0, 1} & degree(gj,s) ≥ 1}),
c) (sgn(|wi0+1|), . . . , sgn(|w2n0

|)) 6∈ G.

a) implies that (0, . . . , 0, x0) ∈ L4. Moreover, we have fj(x0) > 0 by b). There-
fore, by Lemma 3 and c), P is also traversed by (0, . . . , 0, x0) ∈ IR2n0+1. Hence,
we get the following.

Lemma 4. L4 ∈ DNPQ4

IR \ PQ4

IR .

Proposition 5. There is an oracle Q which can be derived from KPIR such that
PQIR 6= DNPQIR.

References

[Baker et al. 1975] Baker, T., J. Gill, and R. Solovay: “Relativizations of the P =?
NP question”; SIAM J. Comput. 4 (1975), 431–442.

[Blum et al. 1989] Blum, L., M. Shub, and S. Smale: “On a theory of computation
and complexity over the real numbers: NP-completeness, recursive functions and
universal machines”; Bulletin of the Amer. Math. Soc. 21 (1989), 1–46.

[Bürgisser 1999] Bürgisser, P.: ”On the structure of Valiant’s complexity classes”; Dis-
crete Mathematics & Theoretical Computer Science 3(3) (1999), 73-94.

[Emerson 1994] Emerson, T.: “Relativizations of the P =? NP question over the reals
(and other ordered rings)”; Theoretical Computer Science 133 (1994), 15–22.

[Gaßner 2008] Gaßner, C.: “On the power of relativized versions of P, DNP, and NP
for groups”; (2008) Submitted.

[Gaßner 2009] Gaßner, C.: “Oracles and relativizations of the P =? NP question for
several structures”; JUCS vol. 15 no. 6 (2009), 1186–1205.

[Koiran 1994] Koiran, P.: ”Computing over the reals with addition and order”; Theo-
retical Computer Science 133 (1994), 35–47.

[Meer 1992] Meer, K.: ”A note on a P 6= NP result for a restricted class of real ma-
chines”; Journal of Complexity 8 (1992), 451–453.

[Poizat 1995] Poizat, B.: ”Les Petits Cailloux”; Aléas (1995).

