
Some Aspects of Finite State Channel related to
Hidden Markov Process

Kingo Kobayashi

National Institute of Information and Communications Tecnology(NICT),
4-2-1, Nukui-Kitamachi, Koganei, Tokyo, 184-8795, JAPAN

E-mail: kingo@nict.ac.jp

Abstract. We have no satisfactory capacity formula for most channels
with finite states. Here, we consider some interesting examples of finite
state channels, such as Gilbert-Elliot channel, trapdoor channel, etc., to
reveal special characters of problems and difficulties to determine the
capacities. Meanwhile, we give a simple expression of the capacity for-
mula for Gilbert-Elliot channel by using a hidden Markov source for the
optimal input process. This idea should be extended to other finite state
channels.

1 Gilbert-Elliot channel

Let us start to consider the commom Gilbert-Elliot channel as a typical
example of finite state channel. The channel shown in Figure 1 is a standard
model of burst error channel. Thus, it is a finite state channel with two states,
good(G) and bad(B) states. In any state, the channel is the binary symmetric
channel, but has different cross-over probabilities, δ and ε. It is usually assumed
that the cross-over probability δ of good(G) state is significantly smaller than
ε (≤ 1/2) of bad(B) state.

The channel changes its state in Markovian way. The state transition prob-
ability matrix is expressed as

T =

[
1− a a
b 1− b

]
, (1)

and its stationary distribution is(
b

a+ b
.

a

a+ b

)
. (2)

The probability of state sequence s = s1s2 . . . sn, si ∈ {G,B} of length n is given
by

P (s) = ps1a
NGGaNGBb

NBB
bNBG , (3)

where ps1 is the stationary probability of s1, and Nst is the number of transitions
from state s to state t, a = 1− a, b = 1− b.
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Fig. 1. Glbert-Elliott Channel

Then, we can express the conditional probability of output sequence y =
y1y2 . . . yn, yi ∈ {0, 1} given the input sequence x = x1x2 . . . xn, xi ∈ {0, 1} by
the formula,

P (y|x) =
∑
s

P (s) δ
NG,c(s)

δNG,e(s) εNB,c(s) εNB,e(s), (4)

where NS,c(s) is the number of i that satisfies xi = yi, and NS,e(s) is the number
of i that satisfies xi ̸= yi at the state S in s From this formula, we can easily
derive,

P (y|x) = P (x⊕ y|0) (5)

where ⊕ is the termwise exclusive-or operation, and 0 is the sequence of all zero.

Then, it holds that each row of this channel matrix is a permutation of a
distribution, and each column is also a permutation of other columns. In fact, it is
a symmetic channel. For example, the density plot of the conditional probabilities
of Gilbert-Elliot channel for inputs-outputs of length 6 is shown in Figure 2,
where we set a = 0.5, b = 0.5, ε = 0.5, δ = 0.0, and darker color corresponds to
higher probability. Due to the symmetic property of Gilbert-Elliot channel, the
capacity is attained by the equiprobable distribution, and the output has also the
equiprobable distribution. Moreover, the conditional entropies H(Y n|Xn = x)
have a same value for any input x, i.e., is equal to H(Y n|Xn). Thus, without
any loss of generality, we can assume that the input sequence is Xn = 0 = 0 . . . 0
for evaluating the conditional entropy H(Y n|Xn).

Therefore, the maximum of mutual information between input sequence Xn

and output sequence Y n is attained when Xn has the equiprobable distribution.

max
Xn

1

n
I(Xn;Y n) = max

Xn

1

n
{H(Y n)−H(Y n|Xn)}

=
1

n
{H(Y n)−H(Y n|Xn)}

∣∣∣∣
Xn:equiprobable

= 1− 1

n
H(Y n|Xn = 0)

= 1− 1

n
H(Zn), (6)



Some Aspects of Finite State Channel related to Hidden Markov Process 3

Fig. 2. Glbert-Elliott Channel Probability Matrix for inputs-outputs of length 6

where Zn is the induced hidden Markov process, i.e., the conditional Y n given
Xn = 0. The hidden Markov process {Zn} with four states G0, B0, G1, B1 is
defined by the state transition matrix W ,

W =

G0 B0 G1 B1

G0
B0
G1
B1


aδ aε aδ aε

bδ bε bδ bε

aδ aε aδ aε

bδ bε bδ bε

 , (7)

where the process in the state Sx (S ∈ {G,B}, x ∈ {0, 1}) produces the output
symbol x.

Due to the equation (6), we have by using the above matrix W

Theorem 1. The capacity of Gilbert-Elliott Channel is expressed as,

CGEC(a, b, δ, ε) = 1−H(Z), (8)

where H(Z) is the entropy of the hidden Markov source Z defined by W .

Remark 1. In their paper[1], Mushkin and Bar-David showed that the capacity
of Gilber-Elliot channel is CGEC = 1 − lim

n→∞
E[h(qn)] = 1 − E[h(q∞)], where
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Fig. 3. The mechanism of generating the output Y given X = 0, and the transition
matrix of induced hidden Markov process Z

qn = Pr{Zn = 0|Z1 . . . Zn−1}, Zn = Xn ⊕ Yn, the input process {Xn} is the
Bernoulli process with equiprobability, and the random variable qn converges
to the limiting random variable q∞ in distribution. In our context, the limiting
quantitiy lim

n→∞
E[h(qn)] = E[h(q∞)] is actually the entropy of the hidden Markov

process {Zn} induced by the stochastic matrix W explicitly defined in (7).

Remark 2. Due to the fact that the equiprobable Bernoulli process suffices to
attain the maximum mutual information between input and output processes, we
need not to have any concern on the channel state in constructing the code and
during transmitting messages, so long as we cannot have any side information
about the state.

Here are questions: What is the distribution of q∞ as a function of the pa-
rameters a, b, δ, ε? How can the base set of q∞ be expressed when a, b, δ, ε will
take various values ? We have no analytically closed expression for the entropy
of hidden Markov source in general. In some special cases, we can give simple
formulae of capacity of Gilbert-Elliot channel.

Consider the case when δ = 0, ε = 1. Then, the stocastic matrix W of (7) is
deduced as

W =

G0 B0 G1 B1

G0
B0
G1
B1


a 0 0 a

b 0 0 b
a 0 0 a

b 0 0 b

 . (9)

Considering that the stationary distribution of good(G) and bad(B) is (b/(a +
b), a/(a+ b)), we have a simple formula for this case:

CGEC(a, b, 0, 1) = 1−
(

b

a+ b
h(a) +

a

a+ b
h(b)

)
, (10)
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where x = 1−x and h(p) = −p log2 p−p log2 p is the binary entropy function(cf.
Fig.4). When a = b = 1/2 in this case, the capacity is zero as expected. But
otherwise, we will have positive capacity.

Fig. 4. CGEC(a, b, 0, 1)

Fig. 5. The distribution of qk = Pr{Zk = 0|Z1 . . . Zk−1} when k = 6, a = 0.3, b =
0.9, δ = 0, ε = 1.

Moreover, qn = Pr{Zn = 0|Z1 . . . Zn−1} takes only two values a and b with
probabilities b/(a + b) and a/(a + b), respectively (cf. Figure 5). This is the
reason why in the formula (10), do only two terms containing the binary entropy
function appear.
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Next, let us consider another interesting case, that is, when a+ b = 1. Then,
the stocastic matrix W of (7) is deduced as

W =

G0 B0 G1 B1

G0
B0
G1
B1


aδ aε aδ aε

aδ aε aδ aε

aδ aε aδ aε

aδ aε aδ aε

 . (11)

Thus, the stochastic matrix is completely degenerated, and the capacity is easily
expressed as,

CGEC(a, a, δ, ε) = 1− h(a δ + a ε). (12)

In Figure 6, the profile of capacity CGEC(a, a, δ, ε) for three values of a. In par-
ticular, when a = b = 1

2 , δ = 1, we have

CGEC(1/2, 1/2, 1, ε) = 1− h

(
ε

2

)
. (13)

Fig. 6. CGEC(a, a, δ, ε) for a = 0, 0.5, 1

Moreover, qn = Pr{Zn = 0|Z1 . . . Zn−1} concentrates on only one values
a δ + a ε with probability one (cf. Figure 7). This corresponds to the fact in the
formula (12), only one term containing the binary entropy function appears.

For more general cases, we cannot obtain simple formulae. However, in order
to compute the entropy of the hidden Markov process in any desired precision,
we can use the elegant technique described in the book of Cover and Thomas[2].
Figure 8 shows an example of the entropy calculation for case of a = 0.1, b =
0.1, δ = 0.01, ε = 0.5. It can be seen that the upper bound H(Zk|Z1 . . . Zk−1) and
the lower bound H(Zk|S1Z1 . . . Zk−1) almost converge to a same value 0.737537
until the sixth extension of input-output symbols. Thus, we can estimate the
capacity as

CGEC(0.1, 0.1, 0.01, 0.5)
.
= 1− 0.737537 = 0.262463.
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Fig. 7. The distribution of qk = Pr{Zk = 0|Z1 . . . Zk−1} .

Fig. 8. Computation of the capacity of Gilbert-Elliot channel for any a, b, δ, ε

For this case, the distribution of qn = Pr{Zn = 0|Z1 . . . Zn−1} spreads over
wide range as in Figure 9. This suggests that there is no simple analytical expres-
sion of capacity of general Gilbert-Elliot channel. We should look for an integral
form or a formula containing infinite sum of binary entropy functions.

2 Trapdoor Channel

The capacity problem of trapdoor channel is one of famous long-standing prob-
lems. The trapdoor channel considered by Blackwell[3] as a typical example of
channel with memory. Ash[4] expressed the channel by using two channel matri-
ces with four states, while the expression does not necessarily make the problem
tractable.

The actions of the trapdoor channel are described as follows (cf. Figure 10).
The input alphabet X and the output alphabet Y are binary. The channel has
two trapdoors. Initially, there is a symbol s ∈ {0, 1} called the initial symbol
on one of trapdoors, and no symbol on another trapdoor. The initial symbol
takes the value 0 or 1 with equal probability. Just after the first input symbol
x1 placed on the empty trapdoor, only one of trapdoors will be selected with
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Fig. 9. The distribution of qk = Pr{Zk = 0|Z1 . . . Zk−1} .

probability of one half, and open. Then, the symbol on the opened door falls
to become an output symbol y1 ∈ {s, x1}. After the door has been closed, we
are back to the same situation as at the initial instant, but there is a symbol
s or x1 on the non-empty door depending on the output y1 = x1 or y1 =
s, respectively. This process is repeated until an output sequence y1y2 . . . yn
has emitted from the channel for the input sequence x1x2 . . . xn. These channel
actions is summarized in the state diagram with arrows having input /output
information and transition probability (cf. Figure 11).

Fig. 10. Actions of Trapdoor Channel

Let Pn|s(x,y) be the conditional probability of output sequence y by n
equiprobable trapdoor actions for the input sequence x with the initial sym-
bol s. Then, we can show that the conditional probablity matrices obey the
following recursions:

Pn+1|0 =

[
Pn|0 0
1
2Pn|1

1
2Pn|0

]
, (14)
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Fig. 11. State Diagram of Trapdoor Channel

and

Pn+1|1 =

[
1
2Pn|1

1
2Pn|0

0 Pn|1

]
, (15)

where the initial matrices are defined as

P0|0 = P0|1 = [1] . (16)

If the encoder and decoder do not know the initial symbol at the starting
point, we have to consider the mixed channel Pn = 1/2(Pn|0 +Pn|1). The mixed
channel has an interesting fractal structure. Figure 12 shows a density plot of the
extended channel matrix P6 for input and output sequences of length 6. Here,
the darker color corresponds to higher probability.

We could obtain the optimum distribution of input sequences with length
seven for the seventh extension channel P7 by using Arimoto-Blahut algorithm.
From the distribution, we can get the binary tree with the branching conditional
probability reflecting the optimal distribution (see Figure 13). Here, it is impor-
tant to guess the character of optimal input process attaining the capacity of the
trapdoor channel. It seems not to be memoryless source or Markov source of any
order. Is it possible to reduce a hidden Markov source or not ? It is an interesting
problem to simulate the optimal input process by some hidden Markov source.

By the brute force usage of Arimoto-Blahut algorithm, it was possible to
estimate the value of the capacity[6]. Figure 14 shows the first order difference of
the maximum mutual information maxXn I(Xn;Y n) for n = 1, . . . , 9. We can see
that the difference max

Xn+1
I(Xn+1;Y n+1)−max

Xn
I(Xn;Y n) converges to 0.572 . . . .

Here, it should be noted that the zero-error capacity of trapdoor channel is 0.5,
which had been showned by Ahlswede, et.al.[7]. To obtain the complete solution
of this problem, we would need an essential step for understanding of the fractal
structure of trapdoor channel.

We can generalize the basic trapdoor channel of binary alphabet with two
trapdoors. The generalized trapdoor has the input and output alphabets X =
Y = {0, 1, . . . , α − 1}, and β + 1 trapdoors. The channel state is expressed as
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Fig. 12. Density plot of P6 of Trapdoor channel

s = (s0, . . . , sα−1) : si ∈ {0, . . . , β},
α−1∑
i=0

si = β, where si is the number of symbol

i arranged on the trapdoors. The trapdoor to be opened is selected equiprobable,
i.e., with probability 1/(β + 1). The situation is depicted in the Figure 15.

3 Permuting Relay Channel

Here, we discuss a rare case in which the capacity problem of finite state channel
is completely solved. This channel looks like the generalized trapdoor channel(see
Figure 15), but there is an extra people, symbol supplier, who continuously sup-
plies symbols from X = {0, . . . , α − 1} to the room of trapdoors. The message
sender can see the stock of symbols placed on the trapdoors, and open any trap-
door to emit a symbol from the stock to the receiver. Thus, by using the supplied
symbol resource, he intends to produce a symbol sequence to inform the receiver
of his message. The supplier cannot see the state of the room of trapdoors, and
the sender is not allowed to request the supplier the symbol wanted. The situa-
tion is depicted in Figure 16. The problem is how to provide a symbol sequence
for the supplier in order to achieve the maximum communication capability of
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Fig. 13. Tree expression of optimal input source of length 7 for trapdoor channel

the sender. Due to the character of this problem, it is of no use to apply the
probabilistic strategy for the sender. He has to emit only sequences that can be
uniquely determined by the receiver. We have to count the number of distinct
output sequences given a supplied input sequence when the sender would try the
whole possible sequences of opening trapdoors.

This problem was solved by Ahlswede and Kaspi[8] when α ≥ 2, β = 1. For
general α and β, the complete answer had been given by Kobayashi[9].

As in the generalised trapdoor channel, the state is expressed as s = (s0, . . . , sα−1) :

si ∈ {0, . . . , β},
α−1∑
i=0

si = β. Let S be the set of states. Here, it should be noted

that the number of states is γ =

(
α+ β − 1

β

)
. Starting with an intial state

s0 ∈ S, the set of distinct output sequences that the sender can construct from
an input sequence x = x1 . . . xn (xi ∈ X ) provided by the supplier is denoted by
Y(s0,x). We denote the maximum code size for length n by N(n), that is,

N(n) = max
s0,x

|Y(s0,x)|. (17)

When α = 2, β = 1, we can easily show the recursion N(k+2) = N(k+1)+N(k)
as established by Ahlswede and Kaspi[8]. Thus, {N(n)} is just the Fibonatti
sequence.
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Fig. 14. the first order difference of the maximum mutual information

Fig. 15. Generalized Trapdoor Channel

Furthermore, the capacity of the permuting relay channel is defined by

CPRC(α, β) = lim sup
n→∞

1

n
log N(n). (18)

Thus, when α = 2, β = 1, CPRC(2, 1) = logα φ(Golden Ratio) = 0.69424 . . . .
Therefore, we can say that about 30% is lost by the underlying relay mechanism.

To express the capacity formula, let us introduce two kinds of γ×γ matrices.
Let A(x) be the state transition matrix when symbol x ∈ X is provided by the
supplier. Thus,

a
(x)
s,t =

{
1, from s the sender can move to t when provided x,
0, otherwise.

(19)

We write simply A for A(0). Next, let us denote by P the permutation on S
defined as follows:

P : s = (s0, s1, . . . , sα−1) → t = (s1, . . . , sα−1, s0). (20)
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Fig. 16. Permuting Relay Channel

Then, we have the following similarity relations:

A(k) = P kA(0)P−k. (21)

Using these matrices A and P , we can obtain

Theorem 2. [9] The capacity of Permution Relay Channel is expressed as,

CPRC(α, β) = log λ(AP ), (22)

where λ(Q) is the maximum eigenvalue of matrix Q .

Remark 3. When α = 3, β = 2, then the number of states is six, and the
characteristic polynomial of Q = AP is shown to be x6−x5−x4− 5x3+x2+1.
Thus, we can deduce that the maximum eigenvalue λ(AP ) is equal to 2.29052 . . . ,
and the capacity is logα λ(AP ) = 0.75438 . . . . Therefore, we recognize that about
25% is lost by the relay mechanism. Moreover, we have the recursion formula
for N(n) as follows:

N(k + 6) = N(k + 5) +N(k + 4) + 5N(k + 3)−N(k + 2)−N(k).

4 Markov Erasure Channel

The channel considered in this section has the input alphabet X = {0, 1} and
the output alphabet Y = {0, 1, 2}. For a special case of this channel, the input-
output operation is the following: at the next instant after inputting symbol
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0, the output symbol is fixed to be the erasure symbol 2 whatever symbol the
current input is. At the next instant after outputting 1 or 2, any input symbol
will be correctly transmited to the receiver. The action of this special channel
with two states called Fibonatti channel is depicted in Figure 17. As the output
sequence is uniquely determined by the input sequence, we have to count distinct
output sequences for getting the number of message that can be sent without
no error. Let xn be the number of output sequences ending by the symbol 0, yn
be that ending by symbol 1, and zn be that ending by symbol 2.

Now, we have recursions as follows:

xn = yn−1 + zn−1,

yn = xn, (23)

zn = xn−1.

Then, we can derive a simple recursion:

xn = xn−1 + xn−2. (24)

The number of distinct output sequences xn+yn+zn is revealed to be just Fibon-
atti number. And the capacity CF is indeed log2 φ(Golden Ratio) = 0.69424 . . .
bits. Moreover, the optimal input process to the Fibonatti channel should be a

Markov source with two states (see Figure 18), where φ = 1+
√
5

2 is the golden
ratio.

Fig. 17. Fibonatti Channel

Fig. 18. Optimal source for Fibonatti Channel

The Markov erasure channel with two states, good(G) state and erased(E)
state, is an extension of Fibonatti channel, and is shown in Figure 19. Here,
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the left of symbol pair appended to each arrow denotes the input symbol, and
the right of that is the transition probability. The channel is specified by three
parameters that control the transition probability between two states. Figure 20
shows an approximated capacity profile of Markov erasure channel when we set
c = 1, and vary two parameters a and b. We have not yet obtained the precise
capacity formula of Markov erasure channel in general, except for some special
cases, such as Fibonatti channel.

Fig. 19. Markov Erasure Channel

Fig. 20. Approximated capacity profile of Markov erasure channel

5 Conclusion

We have observed the capacity problem of finite state channels by introducing
several examples. There are a lot of interesting and important channels for which
the capacity problem has not yet been solved. It is very rare that the capacity
achieving input is restricted in the class of Markov process. It was very lucky
for the Gibert-Elliot channel for which equiprobable Bernoulli process suffices to
attain the capacity, and we can have a simple capacity formula by using hidden
Markov source. How about for other channels ? At the very least, we desire that
we could have a hidden Markov source as the optimal input process. We want
to know what class of finite state channels have the property that the optimal
input process is enough to be restricted in the class of hidden Markov source.
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