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Abstract. The work at hand yields two different ways to address the
assignment of inbound and outbound doors in less-than-truckload ter-
minals. The considered optimization methods stem from two different
scientific fields, which makes the comparison of the techniques a very
interesting topic. The first solution approach origins from the field of
discrete mathematics. For this purpose, the logistical optimization task
is modeled as a time-discrete multi-commodity flow problem with side
constraints. Based on this model, a decomposition approach and a mod-
ified column generation approach are developed. The second considered
optimization method is an evolutionary multi-objective optimization al-
gorithm (EMOA). This approach is able to handle different optimiza-
tion goals in parallel. Both algorithms are applied to ten test scenarios
yielding different numbers of tours, doors, loading areas, and affected
relations.

Keywords. Door Assignment Problem, Column Generation Approach,
Multi-objective evolutionary algorithm approach

1 Introduction

In less-than-truckload (LTL) terminals, arriving trucks have to be assigned to
inbound doors and to suitable time slots for unloading. Simultaneously, wait-
ing trucks have to be allocated to outbound doors. During a limited number
of hours, shipments from all incoming trucks are unloaded, sorted according to
their destination/relation1, transported to the right outbound door and loaded
on the outgoing truck. The first and most important optimization goal is to min-
imize the total distance for transshipping the units. This leads to a meaningful
reduction in operational costs. The second and minor aim is to minimize the
waiting time for each truck.
1 The term ”relation” is used throughout the text as an equivalent for a destination. It

origins from the German logistics vocabulary that uses this term to specify a certain
transport offered between a source and a sink.
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The transportation request of one customer in the LTL-sector normally com-
prises between 1 and 10 pallets. These do not suffice to fill the load area of a
whole truck (up to 33 pallets). Therefore, the transportation of LTL-shipments
is organised via transportation networks:

Fig. 1. Elements of a transportation Network in the LTL sector

These consist of several freight forwarding terminals which are spread evenly
over the region or country (Germany: between 40 an 45 terminals), which are
connected by long distance relations. A local region is assigned to each terminal.
The core element of a terminal is the transshipment building with several doors
(Germany: depending on the size of the terminal between 40 and 100 doors).
The doors can be separated in inbound and outbound doors, which are used for
loading (outbound doors) and unloading (inbound doors) trucks.

During a day of operation, all shipments coming from one local area are
collected on local tours. These tours arrive according to a certain timetable with
earliest arrival time at the appropriate freight forwarding terminal. Some trucks
will be needed for further transport services and therefore have to leave the
terminal at a certain point of time or at least as soon as possible.

While unloading, all shipments are first placed on a common buffer area. The
different shipments on the buffer area are then consolidated according to their
long distance relation in the underlying transportation network. In a subsequent
process, the shipments are transported inside the building to those doors where
the corresponding relation is loaded. A special buffer area for loading is assigned
to each outbound door. Finally, all shipments in front of one door are transported
inside the truck for the long distance transport.

The optimization task door assignment in LTL-terminals consists of
different levels with different time conditions:

1. The doors have to be separated in inbound and outbound doors.
2. The relations in the underlying transportation network have to be assigned

to the outbound doors.
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3. An optimal allocation of resources is to be found (workers, scanners, forklifts,
etc.).

4. The waiting times for the trucks are to be minimized.

The remainder of the paper is organized as follows: The subsequent section
describes a complex optimization model, which is later on used in the decomposi-
tion and column generation approach for optimizing the described optimization
task. After that, an evolutionary algorithm approach is presented that treats the
task with a much easier inner model. Results received with both approach on a
common set of ten test scenarios are presented in the final section.

2 Optimization model and analysis

A time-discrete multi-commodity network structure was implemented to model
the logistical task:

Fig. 2. Time-discrete multicommodity-network structure

The layout elements (inbound doors, buffer areas for unloading and for load-
ing, outbound doors) are represented by separate node layers. Inner transport
activities are modeled by arcs, connecting the different node elements. If a cer-
tain transport is not allowed, the according arc is deleted. For indicating the
distances in meter in the LTL-terminal, costs are assigned to each arc.
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The different incoming transport vehicles (= tours) and their load is modeled
by commodities flowing on the arcs. Therefore, a common source is introduced
where the k tours are arriving. The last node layer is used to model the l outgoing
vehicles (=relations) in the system, to which the different goods have to be
transported to. To indicate the time, several time slices are introduced to the
model and the resulting network structure is doubled for each time slice t.

If there is a positive flow of commodities of one incoming tour k on a certain
arc of the arc layer one, connecting the source with the inbound door i, this
indicates that the according tour has been assigned to the inbound door i. To
assure that the unloading process is proceeded without any interruptions at just
one door, the following restrictions are implemented:

I′∑
i=1

δi
k = 1, and γk

t + γk
t+i −

t+i−1∑
j=t+1

γk
j ≤ 1, (1)

∀ k ∈ K.∀ i ∈ {2, ..., T ′ − 1}, ∀ t ∈ {1, ..., T ′ − i}. The binary variables δi
k are

used to check if a positive flow has been noted on the arc connecting the source
node with inbound door i. This variable can just take value 1 for one inboud
door i. In the second restriction, certain patterns are described, that are not
allowed. For example the unloading pattern 1|0|0|1|...|1 is not allowed as there
is an interruption of the unloading process in time slices 2 and 3.

If there is a positive flow of any commodity on an arc connecting outbound
door j and relation node l, this means that the relation l is assigned to the
outbound door j. Here, it is also just possible to load a relation at one door. In
addition, the loading doors can just be occupied by one relation during the whole
operation period to avoid mixing loads for different long distance relations:

L′∑
l=1

θj
l ≤ 1, ∀ j ∈ J. (2)

Several additional restrictions exist for describing rules for unloading, inner
transport and loading in the arc layers 2 − 4 (e.g. time table of tours, resource
and buffer area capacities, demand of relations for commodities of one tour)
which will not be explained in detail.

The main aim of the logistical task is to minimize the inner transport dis-
tances when transshipping and to minimize the waiting times of the trucks.
Therefore, the following objective function is introduced:

min
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The different blocks represent the resulting transport distances or working min-
utes produced by unloading transports, inner transports or loading transports.
Actions in late time slices are punished by introducing an increasing factor on
the first block.

The resulting mathematical model is NP -hard as it incorporates an integer
multi-commodity flow problem and a quadratic assignment problem. Tests by
CPLEX have shown, that for larger problem instances, no solution was found
in reasonable time and solution quality (neighborhood to theoretical optimum).
Therefore, in the next section, a solution approach using the concepts of col-
umn generation and decomposition is introduced and applied to different test
scenarios.

3 Decomposition and column generation approach

The idea of decomposing the problem leads to the introduction of routings for
each tour k in the system:

...
t = 2

...

Q St = 1

...

... ...

...
...

Tour Nr. 15
5

12

Fig. 3. Decomposing the problem by introducing routings for commodities of
one tour

A feasible routing - as indicated in the figure - represents the flow of all com-
modities of a certain tour through the time-discrete multi-commodity network
implemented in section 2. All restrictions, concerning the assignment decisions,
the loading and unloading processes, the inner transport, the time table and the
resource capacities in the system are valid again. But as the solution is chosen
for just one tour, the model has a lower complexity.

The column generation concept allows to generate feasible routings individu-
ally for each tour and to chose different routings from a pool of feasible routings
by using a binary choice model. This model consists of binary variables indicating
if a certain routing for a tour has been chosen or not. Additional constraints are
necessary to check when all routings are imposed in the same network, capacity
restrictions on the arcs for example are still not violated.

The relaxed choice model is used as master problem in the column generation
process. The pricing problem for creating new good routings for the different
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tours is identical to the mathematical model from the section above, just being
reduced to one tour. As long as new routings with negative reduced costs exist,
the column generation process is continued and dual variables in the master
problem are updated. When the process ends, a branch-and-bound algorithm is
proceeded by using all routings having been created and identified so far by the
column generation process before.

When comparing the new decomposition and column generation process with
the performance of CPLEX, feasible solutions are found earlier and the quality
of the solutions, i.e. the objective function value (which should be minimized)
is much lower. The following figure visualizes this aspect for two different test
scenarios:

Fig. 4. Comparing speed and soluton quality of the new approach with CPLEX
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4 Evolutionary algorithm approach

The evolutionary algorithm chosen for the door-assignment problem at hand is
a multi-objective EA to handle both objectives (transshipment distances and
waiting times) of the application at the same time. Here, the concept of Pareto
dominance comes into play. A solution one is said to dominate (≺) a solution
two, if and only if (iff) all components of the fitness function f of solution one
are not greater that the corresponding components of solution two and really
smaller in at least one component:

x ≺ y :⇐⇒ ∀i : fi(x) ≤ fi(y) ∧
∃j : fj(x) < fj(y)

The set of non-dominated solutions is called the Pareto set of solutions while
the corresponding pictures under function f are called the Pareto front.

To define the objectives, the representation of the individuals of the EA have
to be introduced. A candidate solution I implements an array of lists. Consider
the array of lists for the ith solution Ii = [Gi1, Gi2, . . . , Gim], where m denotes
the number of doors. Each list Gij = [Kij1, . . . ,Kijk] represents one door. These
list entries represent tours. Each tour Kijl consists of an array with four integer
values:

Kijl = [tourNumber,doorNumber, startTime, endTime].

To accelerate the function evaluation, two additional arrays to store times and
doors were implemented.

The first objective function f1 describes the distances inside the transship-
ment building each pallet has to be transported:

f1(Ii) :=
m∑

j=1

k∑
l=1

s∑
r=1

d(Gij(Pijlr), Gid(Pijlr)),

with Pijlr being r-th pallet of tour Kijl at door Gij with destination door
Gid (d ∈ {1, . . . ,m}). The function d describes the distance inside the trans-
shipment building from one door to another. Here, the resources needed for the
operations inside the transshipment buildings are ignored.

The second objective function f2 displays the waiting time for each truck:

f2(Ii) :=
m∑

j=1

k∑
l=1

tw(Kijl),

with function tw(Kijl) being the difference between the point of time the un-
loading of truck of the corresponding tour is started and the arrival time at
the transshipment building. For reasons of simplicity, we neglected a detailed
description of all constraints that can be derived from the problem description.
Of course, all constraints are represented in our algorithm for the task.

The rules of an (1+1)-EA for MCO were published earlier by Bartz-Beielstein
et al. [1]. If the new individual is not dominated by any member of the archive,
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the new individual becomes a member of the archive and the parent for the
next generation. While updating the archive, dominated archive members are
deleted. If the individual is dominated by a member of the archive, the old
parent individual proceeds to the next generation.

In addition to the first and simple (1 + 1)-EA for MCO, a multi-membered
(µ+λ)-EA for MCO was presented by Chmielewski et al. [2]. Here, a population
of µ individuals is to be initialized before the evolution loop is entered. Within a
simple selection procedure, all given individuals are sorted according to the rank
assigned by non-dominated sorting [3]. Afterwards, the next parent population
is filled with µ individuals featuring minimum rank. If the set of individuals
with the last processed rank does not fit into the population completely, the
population is filled with individuals of this last rank randomly. This random
choice of individuals to fill the coming parent population is the main difference
to common and ore sophisticated approaches like NSGA-II [4,3] or SMS-EMOA
[5].

5 Comparison

The two approaches are applied to ten different test scenarios. The logistical
dimension of the scenarios is increased successively. The testing phase starts
with quite unrealistic scenarios of 14 and 25 doors in total and less than 20
tours and 10 relations to get first experiences concerning the solution quality
and solution time. Middle-sized terminals in Germany have between 42 and 64
doors (scenarios V - VIII). The layout information (distances, areas, etc.) of
scenarios IX and X have been taken from real freight forwarding companies
belonging to the class of large terminals in Germany:

Time 
Slices

Inbound 
Doors

Outbound 
Doors

Total 
number of 

doors

Areas 
Unloading

Areas 
Loading Relations Tours

I 6 8 6 14 1 6 6 6
II 6 4 10 14 1 10 6 12
III 10 11 14 25 1 14 10 20
IV 6 15 10 25 1 10 10 40
V 6 17 25 42 2 25 20 40
VI 8 22 20 42 2 20 20 50
VII 6 25 39 64 2 39 25 40
VIII 8 10 54 64 1 54 20 40
IX 4 40 60 100 2 60 30 30
X 6 20 60 80 2 60 40 80

Scenario

Logistical System

Fig. 5. Logistical dimension of the test scenarios

An amount of 300.000 fitness function evaluations have been spend for the
EA approach. The resulting calculation time of one run of the corresponding EA
was approx. one second. In case of the application of the EA, this is constant for
all considered scenarios, because the driving force for the calculation time are the
genetic operators. These have to be applied for a constant number of times. For
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each scenario, 10 optimization runs have been performed and the best distance
values were considered next to the corresponding waiting times (see [2]).

Comparing the results received, it must be admitted that the evolutionary
algorithms perform rather bad on these benchmarks with respect to distances.
Although being quite fast within real calculation time, the quality of the re-
ceived distances is not as good as the ones received with the approach from
discrete mathematics. Only the first two scenarios are exceptions, but these are
unrealistic scenarios with only small numbers of doors and tours. In all other
cases, the column generation approach performs much better than each of the
EA approaches.

Nevertheless, it is remarkable that the waiting times are much better for the
EA approaches. This trade-off origins from the multi-objective approach followed
by the EA in contrast to the single-objective one of the column generation ap-
proach. To improve the distance values received with the EA a single-objective
EA considering only on the distance values could be implemented. But this would
mean to neglect the waiting times again like in the column generation approach.

Comparing both EA approaches, the (1 + 1)-EA clearly outperforms the
multi-membered approach with respect to the considered distance. Considering
the waiting times, the statement from above can be repeated: better distances
mean worth waiting times. This was observed comparing the column genera-
tion and the EA approaches as well and gives clear evidence for the trade-off
between the two objectives. Multi-membered EA performing worth than the sim-
ple (1 + 1)-EA may be due to the stochastic approach considered for selection.
The multi-membered approach may be improved using some better secondary
ranking criterion.
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