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Abstract. This short note gives a brief overview of optimization ap-
proaches for stochastic discrete event simulation. In particular it shows
how by the combination of different methods hybrid algorithms can be
composed that allow a fairly efficient and reliable optimization of medium
sized models.
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1 Introduction

Many systems in logistics can be adequately modeled using stochastic discrete
event simulation models. A large number of modeling paradigms are available
for this purpose which are often related to software tools or environments to
perform simulation experiments [1,2]. A stochastic model allows one to analyze
the performance or reliability of the modeled system by performing simulation
rather than physical experiments. However, often the goal is not only the analysis
of some configurations, it is the improvement of configurations or the finding
of an optimal or at least good configuration. This implies that some form of
optimization has to be performed where the stochastic simulation model defines
the goal function. At an abstract level, the problem can be interpreted as a
stochastic optimization problem where the goal function can only be evaluated
at specific points and the results are only observable with some additional noise.

Thus, the problem of simulation optimization, how it is sometimes named, is
the finding of an optimal configuration for a stochastic function with an unknown
structure. It is, of course, hopeless to search for a general purpose algorithm that
is able to find a global optimum. Instead, in practice, often ad hoc heuristics are
applied which means to improve some configuration instead of really performing
optimization. Only recently methods have been developed that allow one to give
some stochastic guarantees about the behavior of the algorithm. However, these
algorithms still need to be integrated in optimization software and need to be
applied to practical models.

In this short note, we first give a brief summary about optimization of dis-
crete event simulation models. Afterwards a general framework for optimization
algorithms is presented. The note ends with an outline of some open research
problems in the area.
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2 Simulation Based Optimization

Although simulation based optimization is already a topic in simulation text-
books and survey articles for many years [3,4], it is in general still a challenge
since efficient and reliable methods are almost completely missing and probably
do not exist due to the generality of the problem. Formally we have to find

µ∗ = min
x∈W

(f(x))

where function f(.) is defined by a simulation model with parameter vector x
of length m. Vector x will be denoted as the configuration. The output of the
simulation model is usually a random variable Y and we are searching for the
minimum of the expectation (i.e., E[Y ] which implies f(x) = E[g(x)] and g(x)
is the output of the simulation model) and use the notation response for this ex-
pectation. We use the notation µx for the response of the model with parameter
vector x. The feasible set of parameters W may be defined directly as a subset
of INm or IRm or by some constraints of the form gi(x) ≤ 0 (i = 1, . . . , k). We as-
sume here thatW can be characterized without running simulation experiments.
We further assume that the response is a scalar and do not consider multiob-
jective optimization, although this is an important topic in practice. Since f(.)
is defined by a stochastic simulation model, the response can only be observed
via experiments. For a fixed sample path θ which is in computer simulation
determined by a sequence of random numbers, the output of the simulation is
deterministic. We denote by f(x, θ) the output of the simulation for the sample
path θ. Estimates for the mean and variance of the simulation output can then
be computed as

µ̂x =
n∑

i=1

f(x, θi) and ŝ2
x =

1
n− 1

n∑
i=1

(f(x, θi)− µ̂)2

from n experiments independent sample paths θi. µ̂x can be used as estimate
for µx and confidence intervals can be computed with standard means [4].

In this very general setting (meta)heuristics [5] and metamodel based ap-
proaches [6,7] can be applied for the optimization. The problem with these
methods is that they give no guarantees for the quality of the solution and
are not specificly tailored for stochastic simulation. Heuristics and metaheuris-
tics usually require a large number of function evaluations and do not explicitly
consider stochastic result measures. Thus, they assume fast evaluations of the
goal functions whereas simulation models are costly to evaluate. This implies
that these methods often require long optimization times and unreliable results
without any stochastic guarantees when applied to stochastic simulation mod-
els. Some extensions have been proposed which integrate stochastic evaluation
techniques with heuristic optimization methods like evolutionary algorithms [8,9]
but these extensions only partially alleviate the mentioned problems. Metamodel
based methods have originally been developed to optimize systems from physi-
cal experiments. The methods are based on a metamodel which is fitted at some
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points known from experiments and on the finding of a promising search direc-
tion or a point with a possibly small response by evaluating the metamodel.
Common metamodels are regression models resulting in the response surface
method (RSM) [6] or correlation models often in form of so called Kriging mod-
els (KM) [7]. However, both approaches are not well suited to be applied with
stochastic simulation since they are not defined for a complete tool integration
without manual user support and they also do not exploit stochastic techniques
for the evaluation of results. Extensions to integrate RSM [10,11] and KM [12]
with stochastic simulation models are available but have not been applied to
large and realistic models and will probably fail to optimize such models.

Ideally, one would have the following properties of an optimization approach:

1. If the algorithms runs infinitely long, then the probability of finding a point
x such that |µ∗ − f(x)| < ε should approach zero for any ε > 0. This is the
intuitive definition of so called almost sure convergence [13].

2. The algorithm should quickly find points with a small response.
3. If the algorithm determines point x as the point with the smallest response,

then a confidence interval for |µ∗−f(x)| should be computable, ifW is finite.

For general problems of the type considered here the first point cannot be
achieved and the second one will be hardly achieved with available methods.
Thus, usually the parameter space is restricted to W ⊆ INm such that W be-
comes countable or even finite. This is from a practical point of view not a hard
restriction since in real problems parameters are rarely continuous. Consequently,
we consider only this case in the sequel.

However, even with this restriction, the mentioned optimization techniques
do usually fulfill none of the three requirements. In particular, there is a conflict
between methods observing 1 and those observing 2. To obtain almost sure con-
vergence, one has to assure that all points in W are visited infinitely often, if the
number of experiments tends to infinite. To compute good solutions quickly, it is
often better to improve after some global search the best solutions locally with-
out considering the rest of the search space. This indicates that a combination
of different methods or the decomposition of the optimization process in phases
is the best way to optimize stochastic simulation models. In the next section the
corresponding algorithms are briefly outlined.

3 Hybrid Approaches

To observe the points 1 and 2 above, an optimization algorithm usually has
to contain two phases, namely an exploration phase where the search space is
explored to find promising regions and an exploitation phase where the promising
regions are further exploited by finding local minima in the regions [14,15] which
in a final step have to be compared to find the global minimum. The final steps
can be made by some ranking and selection procedure [16] which computes out
of a set of configurations X one configuration x such that

Prob

((
min
y∈X

(f(y))− f(x)
)
≤ δ

)
≥ 1− p∗ for any predefined δ, p∗ > 0 .
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Ranking and selection methods can also be applied to fulfill the third condition
above, if W is finite. In this case, the whole set W is used as set of configurations
in a ranking and selection approach. However, since ranking and selection meth-
ods are usually very conservative, the effort for finding the best configuration can
be very high and the resulting probability is often much higher than the bound
1− p∗.

Exploration and exploitation phase can be combined sequentially, iteratively
or in an interleaved way, depending on the concrete realization of the algorithm
[14,15,17]. Although the practical impact of the research in the area of simulation
optimization is limited (see also the remarks in [14]), most available commercial
software also use some combination of improved heuristics [18] which goes in a
similar direction without proving confergence or computing confidence probabil-
ities.

For the exploration and exploitation phase different methods may be used.
The goal of the exploitation phase is to find regions that potentially contain
the global optimum. To observe the first condition, the used algorithm has to
be almost surely convergent to the global optimum. In [14] a niching genetic
algorithm [19] is adapted which has shown to observe the convergence property.
In [15] a random search approach is used which is also almost surely conver-
gent. Alternatively, Kriging models may be used as global metamodels and the
optimization step is performed using the results of the Kriging model [20,7].
However, Kriging models have originally been developed for deterministic func-
tions, their use for stochastic functions still introduces some problems that are
only partially solved yet [21,22] and almost sure convergence of the approach has
not been proved yet. Nevertheless, the use of Kriging models to identify promis-
ing regions is interesting, in particular, if combined with some search heuristics
since it uses some structure of the solution space. The corresponding algorithms
have to the best of my knowledge not been fully developed yet.

For the exploitation phase one can use some local optimization algorithm.
[23] presents a framework for locally convergent random search algorithm and
an improved version of the COMPASS algorithm [24] for discrete optimization
via simulation. In [25] pattern search is combined with ranking and selection
procedures for the stochastic optimization. With both algorithms a configuration
can be identified which contains with probability 1− εL a local optimum for any
εL > 0.

4 Conclusions and Open Research Questions

It seems that the gap between commercial optimization approaches and opti-
mization algorithms developed in academia is slowly bridged by using newly de-
veloped hybrid algorithms which provide some stochastic guarantees and show
for most models a performance comparable to commercially used approaches
without any guarantees. However, to be really used in practice algorithms have
to be further improved. It seems that the combination of different steps or phases
in an algorithm results in a compromise between fast convergence towards a lo-
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cally optimal solution and a probability of finding a configuration with a response
that differs from the global optimum by less than ε > 0 converges towards 1 when
the runtime of the algorithms converges towards infinity. However, it is still un-
clear which are the best algorithms for each phase and how the phases have to
be combined. Additionally, available algorithms have to be integrated in publi-
cally available software tools which can be combined with different simulation
engines. First prototype versions of those tools are available [26,27] but have to
be improved to be really usable for practical problems.
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9. Buchholz, P., Thümmler, A.: Enhancing evolutionary algorithms with statistical
selection procedures for simulation optimization. In: Proc. 37th Winter Simulation
Conference, ACM (2005) 842–852
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13. Andradóttir, S.: Simulation optimization with countably infinite feasible regions:
Efficiency and convergence. ACM Trans. Model. Comput. Simul. 16 (2006) 357–
374

14. Xu, J., Hong, L.J., Nelson, B.L.: Industrial strength COMPASS: A comprehen-
sive algorithm and software for optimization via simulation. ACM Trans. Model.
Comput. Simul. (to appear)
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