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Abstract. We consider a complex production planning problem in inte-
grated steel production. Coils of sheet metal need to be coated in several
stages with few of a broad variety of coating materials. Different coil
geometries as well as changes in the required coating materials may ne-
cessitate time-consuming setup work. Most coating stages are equipped
with so-called shuttles, i.e., two parallel color tanks are available at a
coater to reduce setup time. Devising a production plan for coil coat-
ing comprises the sequencing of coils, the assignment of coils to color
tanks, and the scheduling of scarce work resources for setup work, partly
performed concurrently with production. The aim is to minimize the
makespan for a given set of coils.
We present a precise mathematical formulation of the problem in its en-
tirety and develop a graph theoretical model for the integrated tank as-
signment and setup scheduling problem. The latter can be solved quickly
to optimality in the case where no constraints on work resources are
present. For the resource constrained case, the model gives rise to a fast
heuristic which is integrated into a genetic algorithm to solve the sequenc-
ing problem in practice. We evaluate the quality of our algorithm via a
combinatorial relaxation of the problem. This is formulated as an integer
program and solved by branch-and-price. It shows that our solutions are
within 5–15% of the optimum.
Based on our model and the fast heuristic, we developed a software pack-
age in cooperation with PSI Business Technology, which is about to enter
production at Salzgitter Flachstahl GmbH, a major German steel pro-
ducer. Our optimized plans yield a reduction in non-productive time by
over 20% compared to the system in place and have greatly exceeded
expectations. The integrity of the solutions obtained has been verified
by the responsible planners in Salzgitter.

Keywords. sequencing, scheduling, coil coating, mutli-interval graphs,
heuristics, branch-and-price

1 Introduction

Almost every stage in integrated steel production requires solving a sequencing
problem as subproblem, that is, deciding about a good order of steel slabs or coils
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in which they should be processed. This starts with the melt in the blast furnace,
adding product specific alloys, and casting the strand of hot melt to solid slabs;
continuing with surface treatment of the slabs, rolling them in the hot and cold
rolling mills to coils, before applying the surface finishing. Even with today’s
state-of-the-art operations research methodology, this entire process is far too
complex to be planned in an integrated manner. In practice, the different stages
are considered hierarchically, and much planning is essentially done manually. In
this paper we deal with the final processing step in sheet metal production, the
coating of steel coils, which turns out to be much more than just a complicated
sequencing problem.

The coil coating process plays an essential role in shaping steel producers’
extremely diverse product portfolio: The coils used for home appliances, for
instance, already have their typical white coating when bought from the steel
supplier; the sheet metal used for car bodies already has an anti-corrosion coating
before it arrives at the automotive plant for pressing; coils destined for building
construction receive their coatings, which are very specific for technical as well
as aesthetic reasons, while still at the steel plant.

Steel producers and manufacturers of coating materials on the one hand and
distributors of pre-coated sheet metal on the other hand have formed associations
to promote the evolution of coil coating on national1 and international2 levels
already in the 1960s. Progress in the development of new and improved coating
materials and techniques fosters an ongoing diversification in pre-coated metal
products, and in recent years there have been quite a few scientific publications
on coil coating, e.g., [1], [2]. Yet, to the best of our knowledge, the present work
is the first dealing with optimization in the planning process for coil coating.

As is typical for paint jobs, the coil coating process may be subject to long
setup times, mainly for the cleaning of equipment, and thus very high setup cost.
In order to reduce this cost, so-called shuttle coaters have been introduced. In
our application, four coaters apply one of two required coating layers to either
the top or the bottom side of a coil. Three of these coaters are shuttle coaters,
i.e., they possess two separate tanks which allow to hold two different coatings
at the same time. The advantage is twofold: The shuttle can be used to switch
between two different coatings on the same coater at (essentially) no setup cost;
or alternatively, the unused tank can be set up already while coating is performed
from the other tank in the meantime. This possibility of setting up a coater
during production is called concurrent setup; see Fig. 1 for an example. It is of
key importance for the whole paper.

The introduction of shuttles significantly changes the flavor and the com-
plexity of the sequencing problem. As we will see, it necessitates the solution of
an integrated resource allocation and scheduling problem for the evaluation of a
given sequence: Which tank do we use for which coil, and how do we schedule
concurrent setup work without exceeding available work resources?

1 http://www.coilcoating.org/
2 http://www.eccacoil.com/

http://www.coilcoating.org/
http://www.eccacoil.com/
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Fig. 1. Coils of different widths as they are processed in the coating line (from
left to right). Setup work (such as color or roller changes, to be defined later)
has to be performed whenever a coil has to coated with another color or is wider
than its predecessor on that tank.

We develop a fast, practical heuristic which solves the integrated sequenc-
ing, resource allocation, and scheduling problem and computes an exact and
detailed production plan for the coil coating line. An elegant connection to a
graph theoretic model paves the way for the design of our algorithm. The qual-
ity of our plans is assessed with the help of an integer program which we solve
by branch-and-price.

Our algorithm is being integrated into PSI Business Technology’s planning
software suite3, and is about to be installed at Salzgitter Flachstahl GmbH4

(SZFG for short). There, it yields a 20% reduction in setup times as compared
to the previous manual planning process. In addition, our lower bounds prove
that the makespan of the solutions computed by our algorithm is within 5–15%
of the optimal makespan for typical instances.

Furthermore, we justify our heuristic approach by proving strong NP -hardness,
even for the resource allocation and scheduling subproblem, for which we still
present a fixed-parameter tractable algorithm.

2 Problem Formulation

We consider the coil coating process, the very last production step of the inte-
grated steel production line. On-site logistics before and after the surface finish-
ing steps are amply dimensioned, thus, the actual coating process poses a main

3 www.psi-bt.de
4 www.salzgitter-flachstahl.de/en/

www.psi-bt.de
www.salzgitter-flachstahl.de/en/
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bottleneck in filling customer orders on time. Since orders have strict deadlines,
the set of coils which need to be coated in roughly a 24-hour planning period is
fixed by a higher-level planning system.

Coils are coated continuously, and during non-productive time, scrap coils
are run in between actual coils, so essentially a never-ending strip of sheet metal
is running through the coating line. When entering, a coil is unrolled and stapled
to the end of its predecessor. After undergoing some chemical conditioning of
their surface, the coils run through a top and bottom primer coater, an oven, a
top and bottom finish coater, and through a second oven. A coater essentially
consists of one or two tanks holding the required coating material, which is
applied from the tank to the surface of the coil by a rubber roller. Coaters with
two parallel tanks are called shuttle coaters. In the ovens, the respective coating
layers are fixed. After the coating process, the coils are rolled up again, now
ready for shipping.The coil coating line at SZFG is equipped with three shuttle
coaters and one classical coater; seeFig. 2.We will intuitively refer to the possible
types of coating material as colors.

chem coater

oven

primer coater

oven
finish coater

finish
coater

Fig. 2. Schematic view of the coil coating line.

Non-productive time may ensue during production for various reasons: De-
pending on the order of the coils and the usage of the shuttle coaters, setup
work must be performed. To satisfy certain technical restrictions, intermediate
(scrap) coils of different lengths are required in between certain coils. Finally,
sample runs need to be conducted at certain points in the sequence. We refer to
all of the above as setup, which may (or may not) entail an increase of the time
needed to coat the given set of coils, as we will describe in Sect. 2.3.

Naturally, in order to ensure smooth operation, a production plan needs to
include all information relevant to the above in sufficient detail. Let us assume
[n] := {1, . . . , n} is the set of coils to be coated. A plan for the coil coating
process consists of the following three parts:

– a sequence π ∈ Πn, i.e., a permutation stating the order in which the coils
are to be run through the plant,
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– a tank assignment T ∈ {1, 2}n×3 stating for each coil from which tank it is
coated for each of the three shuttle coaters,

– a schedule S ∈ [n] × R|W | assigning to each setup task w ∈ W , the set of
necessary setup, a pair (iw, sw), where iw is the last coil which started no
later than w, and sw ≥ 0 is the time from iw’s start time until w starts.

The optimization goal is to determine a coil coating plan (π, T, S) minimizing
the makespan, i.e., the completion time of the last coil in the sequence π. The
schedule S needs to be feasible w.r.t. criteria described in Sect. 2.3. Throughout
this paper, we refer to the included non-productive time in between coils due
to setup work, scrap coils and coils for sample runs, as cost, which is always
associated with time durations, e.g., time needed for setup work or the runtime
of scrap coils.

As we will describe below in more detail, the set W of necessary setups
is completely determined by the coil order π and the tank assignment T . It is
essential to note, that setup does not necessarily have an impact on the makespan
of a plan. In Sect. 2.3, we discuss when setup tasks may be performed while coils
are being coated, thus entailing no cost. We refer to such setup tasks, which are
performed concurrently with production, as concurrent setup.

Since all necessary setup depends on the characteristics of the coils, we will
state the most important ones for a better understanding. Coils usually have
a length of 1–5 km, running for 20–100 minutes, and some of their central at-
tributes are of course the colors for the four coating stages, chosen from a palette
of several hundred. But also their width and height—usually 1–1.8 m, and 1–
3 mm, respectively—their processing speeds, temperatures in the primer and
finish oven, or the information if they require a protective surface lamination
impact setup times. We refrain from listing further coil attributes, since their
list is very long; yet all relevant information is included in our setup calculations.

We classify every setup either as local or global setup. By a local setup, we
refer to a setup depending only on a pair of consecutive coils in the sequence π,
whereas a global setup depends on consecutive coils run on the same tank, and
thus may depend on the whole subsequence up to its occurrence.

2.1 Local Setup

Local setups are always associated with the insertion of scrap coils in the produc-
tion sequence. They mainly occur due to restrictions on the difference in certain
attributes of the coils. An example is a difference in the weight per meter of the
coil. The reason is the long distance between the supporting points in the oven:
If the weights of consecutive coils differ too much, the stapled joint between the
coils could break. There are many more restrictions that limit certain differences.
We omit a detailed description, since for the later considerations only the struc-
ture of these restrictions is important. Let δr(i, j) denote the necessary length
of a scrap coil between consecutive coils i, j to bridge the difference in criterion
r, then the total time for scrap coils needed in between i and j is given by

sloc(i, j) := max
r
{δr(i, j)}.
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Another class of local setup is caused by sample runs, i.e., a coating of scrap
coils to check the quality of the coating. Local sample runs are e.g., required
when protective surface lamination is applied to a coil for the first time, i.e., its
predecessor did not receive lamination. Let tloc(i, j) denote the duration of the
local sample run necessary if coils i and j are run consecutively. The time for
the sample is added to the remaining setup time, since a sample run requires
the same conditions as the actual coil coated afterwards, hence, we cannot use
a scrap coil inserted previously for a different reason.

Also note that local setup is completely oblivious of tank assignment and
solely depends on the order of the coils given by π.

2.2 Global Setup

At each stage of the coating process, the coating is extracted from a tank in
the coater and applied to the coil surface by a rubber roller. When the tank
assignment T assigns coils i and j to the same tank t in some coating stage, i is
the last coil run before j on that tank, and i and j require different colors in this
coating stage, tank t needs to be cleaned and refilled with j’s color, resulting in a
setup task added to the set W of tasks scheduled by S that has to be performed
after i ends, but before j starts.

Quite similarly, the rollers incur wear at the edges of the coil in the coating
process. Consequently, a roller that has been used to coat a coil i of width w1

cannot be used to coat a coil j of width w2 > w1 later in the plan, as j′s coating
would bear imperfections stemming from the wear the roller incurred at the
edges of i. So whenever a coating plan calls for the coating of a coil j which is
wider than the coil i coated last on the same tank, the roller needs to be changed
after i ends and before j starts—a corresponding setup task is added to W .

Color and roller changes require the same amount of time. We denote the
setup time for a color or roller change by tc. Furthermore, let s(m)

cc (i, j) and
src(i, j) denote the time for setup in between coils i and j on coater m due to a
color and roller change, respectively. Then

s(m)
cc (i, j) =

{
tc if i and j have different colors on m

0 otherwise
,

src(i, j) =

{
tc if i is wider than j

0 otherwise
.

We define s(m)
glob(i, j) = s

(m)
cc (i, j) + src(i, j).

A third source of global setup can be global sample runs, which are required
for some predetermined complicated coatings when they are first applied for the
first time from a certain tank, i.e., after a color change. Let tglob(i, j) denote the
duration of the global sample run necessary if coils i and j are run consecutively
on the same tank. One example for global sample runs are coils for home ap-
pliances, where the correct shade of white is very important. When there is a
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global as well as a local reason for a sample run (cf. Sect. 2.1), only one sample
run needs to be performed.

In the case that no setup for coil i could be performed concurrently with
production, the total setup s(i) for i is given by

s
(
predtank(i), predseq(i), i

)
= max

{
sloc(predseq(i), i),

∑
m

s
(m)
glob(predtank(i), i)

}
+ max

{
tloc(predseq(i), i), tglob(predtank(i), i)

}
,

where predseq(i) and predtank(i) denote the coil directly preceding i in the se-
quence, and on the same tank, respectively.

In order to determine if a global setup occurs for a coil i in the sequence, it
is clearly not sufficient to consider i’s predecessor in π as it is for local setup—
rather the last coil run before i on the same tank as i needs to be taken into
account. Consequently, in order to evaluate the setup of a given (sub-)sequence,
a tank assignment T for it must already be given.

As mentioned before, global setup does not necessarily result in cost, as
illustrated in Fig.3: The first, orange part of global setup w on tank 2, takes
place after coil i while coils are being coated on tank 1, and tank 2 is idle. When
coil j finishes coating, a period of non-productive time begins. First, a scrap coil
is run to prepare for coil k—during this time, the global setup still does not
cause any additional cost. Only once this scrap coil has finished, an additional
scrap coil needs to be inserted for the remaining duration of w, now leading to
an actual increase in cost due to w. Once w finishes, the required sample for coil
k may begin and production continues.

In the following section, we will describe how concurrent setups may be sched-
uled and it will become even clearer, why the problem of computing a coating
plan (π, T, S) does not decompose well into the underlying subproblems, but
that the problem needs to be tackled in its entirety.

2.3 Tank Assignment and Concurrent Setup

As described in the previous section, a good tank assignment can save global
setup by “keeping” a color and/or a roller for a later coil and using the other
tank for coating coils in the meantime. Essentially, this reduces the number of
jobs in W , such that we may hope to be able to find a schedule S for W which
results in a shorter makespan.

In this section, we describe a second, in a sense opposite way of utilizing the
second tank of a shuttle coater to obtain better solutions. As mentioned before,
many of the setup times incurred in coil coating are due to tank cleaning and
roller changes. However, whenever a tank is not used for an extended period of
time, setup work on this tank may be performed simultaneously with regular
production, thus avoiding some cost (cf. Fig. 3). Since regular production re-
quires a share of the work resources available, concurrent setup work cannot be
performed as quickly as setup work during non-productive time, i.e., in between
processing two coils. We denote the time for a color and roller change during
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(full work speed)
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global setup larger
than local setup
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Fig. 3. Components of necessary non-productive time, i.e., of cost.

non-productive time by tc. The slowdown factor incurred by concurrent setup
during production is denoted by λ ≥ 1. In our application, there is only one
team of workers who can perform setup work during regular production, so at
any point in time, only one concurrent setup job may be performed. Moreover,
concurrent setup work does not allow preemption by another concurrent setup
job, i.e., a concurrent setup job on one coater must be finished before concurrent
setup work is started on another.

In particular, concurrent setup is possible on all idle tanks (and their rollers),
but only on one tank at a time. On the one hand, concurrent setup can save cost,
but on the other hand, it conflicts with keeping a certain color and/or roller in a
shuttle tank for a later coil. This illustrates another inherent difficulty in optimal
planning for shuttle coaters: a plan needs to include an assignment of tanks to
coils for every shuttle coater, such that maximum savings in cost are realized from
a combination of concurrent setup and keeping colors and/or rollers in unused
tanks for later coils (thereby avoiding some setup completely).Already very small
examples show that simple rules like the one previously in use at SZFG, which
switched tanks on a shuttle coater whenever a new color is required, fail to be
optimal;see Fig. 4.

Note that it suffices to consider global setup tasks only, when scheduling the
tasks in W . Scrap coils and local sample runs can easily be added to the schedule
S after it has been computed for the remaining tasks: Scrap coils do not require
any work resources and can thus be added to S in parallel, delaying the start
time of the following coil j only if the length of the scrap coils exceed the length
of global setup in between coils, i.e., setup work performed after the previous coil
i and before j starts. Since the start time of j is not specified by S, but rather
follows from it, this has no impact on S. Sample runs, on the other hand, bind
all work resources available and are always performed directly before the actual
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Fig. 4. Suboptimal canonical tank assignment rules.

coil j they are for. Thus, unless a global sample run is specified by S right before
j already, local sample runs definitely delay the start of the subsequent coil by
their length, which as above is not specified by S. Thus, we will call tasks in W
stemming from scrap coils and local sample runs trivial.

In the next section, we introduce a model to simultaneously compute an
optimal tank assignment and a schedule for all non-trivial setup tasks, assuming
a given order of the coils.

3 A Graph Model for Optimal Tank Assignments

In this section we lay the theoretical ground for the design of our heuristic.
Given a fixed sequence π of coils, we now aim to find a tank assignment T and
concurrent setup schedule S leading to a coil coating (π, T, S) plan with minimal
cost. We develop a representation of π and all possible tank assignments with
feasible concurrent setup schedules (T, S) as a 2-union graph [3]:

Definition 1. A graph G = (V,E) is called a 2-union graph, if its nodes v ∈ V
can be associated with axis-parallel rectangles Rv positioned in the plane, such
that (v, w) ∈ E if and only if the projections of Rv and Rw on one of the
coordinate axes intersect.

In our model, an optimal pair (T, S) will correspond exactly to a maximum
weight independent set (MWIS) in the corresponding graph. The MWIS prob-
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lem is APX-hard for 2-union graphs [3], and we will show later, that it is still
strongly NP -hard on 2-union graphs of the special structure resulting from the
construction described in this section. Still, in Sect. 4.2 we will describe a dy-
namic programming approach which is fixed-parameter tractable in k, the num-
ber of coaters.

We model every possible assignment of a maximal subsequence of coils to the
same tank and every resulting possibility to perform concurrent setup work as
weighted intervals called coater intervals and work intervals, respectively. Then,
we will combine coater and work intervals to form rectangles, i.e., the nodes of
G.

The weights of intervals represent the reduction in cost (which may be neg-
ative) achieved by the corresponding tank assignment and the concurrent setup
work performed, compared to processing all coils on the same tank without per-
forming concurrent setup work, which would incur cost cinit =

∑n−1
i=1 s(i, i, i+1).

Work intervals of all coaters compete for the one available resource for concurrent
setup work, i.e., a chosen work interval for one coater impacts the choice of work
intervals on other coaters. In contrast, we can choose coater intervals of different
coaters independently. We will position the rectangles in the plane accordingly,
such that there is a one-to-one correspondence between tank assignments with
concurrent setup work schedules and maximal independent sets of rectangles.

We denote by pi the processing time of coil i, and throughout this section,
we assume that the coils are numbered as they appear in the fixed sequence, i.e.,
π = id ∈ Πn.

3.1 Coater Intervals

Coater intervals associated with a particular coater represent maximal sequences
of coils that are processed on the same tank. So before and after it, we switch
tanks. Hence, a set of non-intersecting coater intervals covering every coil defines
a unique tank assignment.

We denote an interval which contains coils i, j ∈ [n], i ≤ j, and all interme-
diate coils by I = [i, j]. The length of I is |I| :=

∑j
k=i pk. The last coil before

and the first coil after the interval I is referred to as predecessor pred(I) and
successor succ(I), respectively. The last coil in interval I is denoted by last(I).

We define the weight wcoat(I) of a coater interval I as the cost savings be-
fore coil succ(I) resulting from keeping color and roller in the idle tank be-
tween pred(I) and succ(I) as compared to running succ(I) on the same tank
as last(I). Savings resulting from concurrent setup work during production will
be assigned to work intervals as described in the next section. Thus, wcoat com-
putes as

wcoat(I) = c
(
last(I), last(I), succ(I)

)
− c
(
last(I), pred(I), succ(I)

)
.

Note that some coater intervals with negative savings may have to be selected
in the definition of a tank assignment due to the requirement that all of π be
covered.
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3.2 Work Intervals

Every work interval is associated with a coater interval I = [i, j]. It repre-
sents concurrent setup work performed for succ(I) on this coater’s idle tank
during coils k = i, . . . , j. Since concurrent setup work must not be preempted
by other concurrent setup, partial concurrent setup work is only allowed directly
before succ(I), i.e., at the end of the corresponding coater interval—it is com-
pleted during non-productive time in this case. Hence, there are at most two
work intervals for a coater interval, one for color and one for roller change. The
sum of their lengths must not exceed |I|.

If s(m)
cc (pred(I), succ(I)) > 0 for a coater m, cost may be saved by adding a

work interval of length λ tc to I. This interval may start at an arbitrary point in
I and may only have shorter length if starting later than λ tc before the end of
I. We proceed analogously for roller changes.

Due to varying start times, there may be many work intervals corresponding
to a particular coater interval I. Fortunately, we do not need to consider all of
them in the model. It is sufficient to consider start times of the form

∑`
k=0 pk +

q λ tc for some ` ≤ i and q ∈ N, ignoring non-productive time. In Sect. 4.2 we
will show that the number of work intervals needed in the model to guarantee
an optimal solution is polynomially bounded in the n.

We now define saving rectangles R = (I, Ic, Ir) as a combination of a coater
interval I and two (possibly empty) work intervals Ic and Ir for color and roller
changes. By construction, the cost savings wwork due to these work intervals is

wwork(Ic, Ir) = 1/λ (|Ic|+ |Ir|).

Thus, the total weight of a saving rectangle R is

w(R) = wcoat(I) + wwork(Ic, Ir).

This weight may be negative. Also note that we use the term rectangle in a
slightly generalized way, since up to two work intervals may be associated with
each coater interval. As will become clear in Sect. 4.2 however, this poses no
problem for our algorithmic ideas.

3.3 Positioning Rectangles

We say that two saving rectangles conflict if their work intervals intersect, or
if their coater intervals belong to the same coater and intersect. Coater inter-
vals whose intersection contains a coil i lead to a conflicting tank usage, since
both intervals assign i to a different tank. Intersecting work intervals violate the
constraint that only one work resource is available.

Consequently, we position rectangles in the x-y-plane as follows: Each coater’s
rectangles have their own section of the x-axis, namely (m − 1)n is added to
the x-coordinate of the mth coater’s rectangles, while all y-coordinates remain
unchanged. Now, the savings corresponding to two rectangles Rv, Rw conflict if
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coater 1

coater interval
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coater intervals
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of rectangle R
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of rectangle R

Fig. 5. Correspondence of conflicting saving rectangles and adjacent nodes in
the 2-union graph.

and only if Rv’s and Rw’s projections on the x-axis or on the y-axis, correspond-
ing to their coater intervals or their work intervals, respectively, intersect. This
is exactly the case if nodes v and w in G share an edge, see Fig. 5.

By the construction above, the rectangles have a specific structure.

Definition 2. A 2-union graph is called diagonally k-partitionable, if it has a
rectangle representation in which one of the axes, say the x-axis, can be subdi-
vided into k sections such that

– the projections of all rectangles onto the x-axis are contained completely in
one of the sections

– the affine line through origin for each of the sections goes through both sides
parallel to the x-axis of each rectangle in that section.

In our model, the coater intervals for different coaters define k sections, and
since work intervals are always contained in coater intervals, the second property
follows as well.

Diagonally k-partitionable 2-union graphs have the following nice property,
which follows immediately from their definition:

Proposition 1. When the projections on the y-axis of two rectangles belonging
to the same section intersect, their projections on the x-axis intersect as well.

We will exploit this fact in Sect. 4.2 to devise a dynamic programming algorithm
for the MWIS problem on these graphs, which runs in polynomial time if we
assume k to be fixed in advance.

For the case that k is part of the input, we can prove the following result,
suggesting that our dynamic programming approach is the best possible.

Theorem 1. The maximum independent set problem on diagonally k-partitionable
2-union graphs is strongly NP-hard, even in the unweighted case.

Proof. We give a reduction from 3-SAT [4]. Let I denote an arbitrary instance of
it with n variables x1, . . . , xn and m clauses c1, . . . , cm. We may assume w.l.o.g.,
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that no clause contains two literals of the same variable. With k = n, we now
construct a k-composite 2-union graph G, such that G admits an independent
set of cardinality n+m if and only if there is a truth assignment for the variables
of I such that all clauses are satisfied.

We will construct G in terms as the edgewise union of two simple interval
graphs G1 and G2, or equivalently, as a non-homogeneous 2-interval represen-
tation where the rectangles’ latitudes in the two dimensions are given by the
corresponding intervals in the two interval graphs.

We introduce a node for each of I’s 2n literals. The intervals for the nodes
in G1 and G2 are given in Tab. 1.

Literal Interval in G1 Interval in G2

xi [(i − 1) · 2m; (i − 1
2
) · 2m) [i − 1; i)

xi [(i − 1
2
) · 2m; i · 2m) [i − 1; i)

Table 1. Intervals associated with literals in the two simple interval graphs G1

and G2.

Thereby, the intervals belonging to literals of different variables are always dis-
joint in both G1 and G2, while the two literals of one variable share an edge in
G2 (see Fig. 6).

Furthermore, we introduce a node for each occurrence of a literal in a clause.
Let y denote a literal in cj and s the start point of the interval associated with
y’s negation in G1 as in Tab. 1. These nodes’ intervals in G1 and G2 are defined
in Tab. 2.

Occurrence in clause Interval in G1 Interval in G2

cj [s + (j − 1)/m; s + j/m) [n + j − 1; n + j)

Table 2. Intervals associated with occurrences of literals in clauses in the two
simple interval graphs G1 and G2 where s denotes the start point of the interval
in G1 associated with the negation of the occurring literal according to Tab. 1.

Now all occurrences of literals in the same clause are adjacent in G2, while
occurrences of literals in different clauses are always independent in both G1

and G2 (again see Fig. 6).
Now suppose the graph G, i.e., the edgewise union of G1 and G2, admits

an independent set S of cardinality at least n + m. Since the two literals of
each variable are adjacent, S may contain at most n nodes corresponding to
literals. On the other hand, the three occurrences of literals in each clause form
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x1 x1

x2x2

x3 x3

x4 x4

G1

G2

Fig. 6. Non-homogeneous 2-interval representation of the graph constructed
from the 3-SAT instance with four variables and clauses (x2 ∨ x3 ∨ x4),
(x2 ∨ x3 ∨ x4), (x1 ∨ x2 ∨ x3), (x1 ∨ x3 ∨ x4).
The 2-intervals associated with the two literals of variable x3 are highlighted
green, those belonging to the fourth clause (x1 ∨x3 ∨x4) blue. The adjacency of
the occurrences of literal x2 in the first two clauses with x2 is highlighted golden.

a triangle, so similarly, S may contain at most m of these nodes. Consequently,
S contains exactly one literal of each variable and one occurrence of a literal for
each clause. Let us interpret the choice of literals in S as a truth assignment X
for the variables of I. Each occurrence of a literal in a clause is adjacent to its
negation in G, so such occurrence being in S implies it is true in X, for S is an
independent set. Hence, X fulfills at least one literal in each clause of I, which
is consequently a yes-instance.

Conversely, suppose I is a yes instance and X is a truth assignment fulfilling
all clauses. Then an independent set in G can be constructed in the same way,
picking n nodes corresponding to the literals in X and an occurrence of a literal
true in X for each clause.

Furthermore, for k = 2n,G is clearly k-composite: No interval inG1 intersects
the end points of the intervals corresponding to literals, so these intervals define
k connected components of G1. Finally, also by construction, the intervals in G2

of no two nodes in such component intersect, since every clause of I was assumed
to contain at most one literal of each variable.

3.4 Building Schedules from Maximal Independent Sets

First note that by adding a sufficiently large constant to the weight of each
rectangle weighted by its length, we can force each MWIS to be maximal, i.e.,
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the selected rectangles to have coater intervals covering all coils, even if some
rectangles have negative weight.

Given an independent set of saving rectangles such that every coil is covered
by a coater interval on every coater, a feasible tank assignment and concurrent
setup schedule can be constructed as follows. At the end of each coater interval,
we switch tanks on the corresponding coater. The schedule for concurrent setup
work is given directly by the work intervals. For performing setup work dur-
ing non-productive time, and for adding scrap coils and sample runs, we insert
sufficiently long breaks in between coils. By construction, there is a one-to-one
correspondence between the cost of this schedule and the cost of the chosen
saving intervals R, i.e.,

c(R) = cinit −
∑
R∈R

w(R) .

Note that in the case where there is a separate work resource available for
each coater, i.e., concurrent setup can be performed simultaneously on all coaters,
two saving rectangles conflict if and only if they belong to the same coater and
their coater intervals intersect. Thus, an optimal tank assignment and concur-
rent setup schedule can be computed independently for each coater and each
graph constructed is an interval graph. Maximum weight independent sets in
interval graphs can be computed very efficiently [5], hence our model yields a
fast algorithm for the tank assignment and concurrent setup scheduling problem
when sufficient work resources are available.

Also note that for the sake of clarity, we have omitted the case where coils
require no color in one or more coating stages in the preceding discussion. This
case can be incorporated into the model seamlessly by adapting some definitions
of interval weights and allowing coater intervals to intersect on colorless coils.
Similarly, for an exact definition of the cost savings due to coater and work
intervals, local setup directly after these intervals needs to be subtracted from
their savings, since setup work may be performed during scrap coils.

4 Algorithm

We will now describe how we produce high quality, fully detailed production
plans for the entire coil coating problem. Because of the enormous complexity
of the task, an optimal solution is currently out of reach. On top of that, quick
computation times are indispensable for the practical usability of our algorithms:
A plan covering 24 hours must be computed within 180 seconds. This is why
“intelligent” heuristics are our design of choice. We would like to make the point
that these heuristics could never have developed without the insights gained in
the previous sections. Moreover, as we detail in Sect. 5, we dedicate considerable
effort to evaluating the quality of our approach with the help of lower bounds
on the optimum makespan. This will demonstrate that our heuristics actually
perform very well.
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Mainly because of global setup cost we cannot base an algorithm on local
decisions only. Instead, meta heuristics which generate many complete solutions
quickly are a natural approach. We utilize a genetic algorithm, which, by its
nature, combines solutions in such a way that beneficial characteristics of solu-
tions found persist, while costly characteristics are eliminated. Since we need to
evaluate the cost of many sequences, tank assignment and scheduling need to be
performed very often as well. Hence, fast algorithms for these subproblems are
required. We describe these ingredients in the following subsections.

4.1 Sequencing

We use a classical genetic algorithm (see [6] for a general overview) for generating
sequences π ∈ Πn, exploiting our special cost structure for choosing the initial
population. We only state its basic ideas and describe the construction of the
initial population. See also [7] for a recent successful application to a different
production sequencing problem.

Maintaining a constant population size, we perform mutation and crossover
operations that are common for sequencing problems. We use the mutation op-
eration Invert, which inverts the order of a randomly chosen subsequence, and
crossover operations proposed by Mühlenbein [8]. Further details on the param-
eter settings are specified in Sect. 6.

Concerning the initial population, practical experience has shown that not
so much the absolute quality of the solutions used, but much more their diver-
sity w.r.t. different beneficial aspects lead to rapidly evolving individuals. Also,
choosing the initial population “too well” can lead a genetic algorithm to ap-
proach local minima quickly, but to end up with suboptimal solutions after all.

Motivated by the diversity of coil properties which may have an impact on
local and global cost (like width, height, or oven temperatures), we generate
sequences for the initial population, each trying to be good at only one (or a
few) of these properties at once. The considered properties P can all be described
as functions from [n] to R. For each property p ∈ P , there is a restriction rp
which maps the property p of two coils to the setup time between them which is
caused by this restriction. If a property value for subsequent coils is monotone,
or respects a certain maximal gap, then the corresponding restriction does not
lead to cost. We call pairs of coils with this property feasible. When sorting the
coils with respect to a certain property, the corresponding restriction never (or
rarely) leads to cost.

Using this idea, we pick as parameters to construct an initial individual a
list σ of u sorting properties σi, and a small set φ of feasibility properties. Now,
we sort the coils lexicographically by their properties in (σ1, . . . , σu) to obtain
an order πσ. Then, we develop a sequence πσφ by adding the first coil in πσ and
then greedily appending coils in the order of πσ which are feasible with respect
to all restrictions regarding properties in φ. When we reach the last coil, we add
the first coil in πσ which has not yet been added to πσφ and repeat.

Repeating this process for different σ and φ, we obtain a broad variety of
completely different individuals, each attractive regarding its own part of the
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objective, which provide a particularly diverse basis for constructing sequences
with low overall cost by simple crossover and mutation operations. Compared
to choosing only random sequences or heuristics attempting to cover all aspects
of our cost function, this initial population leads to better solutions and to a
shorter runtime of the algorithm.

Furthermore, we add one sequence which is (close to) optimal w.r.t. local
cost sloc + tloc, but which ignores all global setups. Determining such a sequence
can be formulated as an asymmetric traveling salesman problem which we (typ-
ically optimally) solve using the LKH heuristic [9].

4.2 Tank Assignment

We know that a good tank assignment aims to satisfy two, in a sense opposite,
requirements: On the one hand, try to keep a roller and/or color for a subsequent
coil in order to avoid setup whenever possible. On the other hand, try to use
idle times on the tanks to perform setup work during regular production which
otherwise might increase the makespan. Hence, try to maximize concurrent setup
work that is accomplished by the scarce work resource. Clearly, the quality of a
tank assignment w.r.t. the second goal can hardly be assessed without scheduling
the scarce work resource to perform concurrent setup whenever made possible
by the tank assignment.

We will first describe, how an optimal tank assignment and concurrent setup
schedule can be computed by a dynamic programming approach, which is fixed-
parameter tractable in the number of coaters considered.To satisfy the strict
runtime requirements of the application, we will then devise a fast tank assign-
ment heuristic based on ideas from the former exact algorithm, and state a
simple and fast rule to find a schedule for such tank assignment. Finally, we will
describe an intuitive tank assignment rule which is in use at SZFG today, and
to which we will compare our results inSect. 6.2.

Optimal Tank Assignment Based on the Interval Model Assume the
number of coaters k is fixed before hand. The runtime of our algorithm will
be polynomial in the number of coils n, but exponential in the fixed parameter
k. The core of the algorithm is a dynamic programming scheme. We define a
state of a solution as a (k + 1)-tuple R := (i, R1, . . . , Rk), where i ∈ [n] signifies
the i-th coil in the sequence and Rm = (Im, I

(m)
c , I

(m)
r ) a saving rectangle as in

Sect. 3.2, where Im either starts at or properly contains i, i.e., Rm is a certain
combination of a coater interval with two (possibly empty) work intervals. Since
at each point in the sequence, exactly one saving rectangle is selected for each
coater, there are no more than n ·Nk states, where N denotes the total number
of potential saving rectangles.

We call a state R admissible, if in the set WR :=
⋃
m∈[k]{I

(m)
c , I

(m)
r } of

all work intervals of all coaters in R, no two intervals intersect. We call two
admissible states R = (i, R1, . . . , Rk), Q = (i + 1, Q1, . . . , Qk) compatible, if for
each m ∈ [k] either
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– the saving rectangles Rm and Qm are equal or
– Qm starts with the coil right after Rm, and in the set WR ∪WQ, no two

intervals intersect.

We call a sequence of admissible states, where subsequent states are compatible,
an admissible sequence. When such sequence is viewed as a selection R of saving
rectangles, it corresponds to a tank assignment with a feasible schedule of cost
c(R) as described in Sect. 3.4.

Furthermore, we have the following optimal substructure: When R is an
optimal admissible (sub)sequence, then the admissible subsequence obtained by
removing the last state Q from R is optimal among all admissible subsequences
which end in a state R such that Q is compatible with R.

This defines a straight forward algorithm with runtime O(n2 · N2k), com-
puting an optimal tank assignment and concurrent setup schedule: we generate
the graph of all states and two additional nodes s and t. We connect states R
and Q if and only if they are compatible, s to all states associated with coil 1,
and all states for coil n to t. The edges have weights corresponding to the cost
savings of the states they lead to, and zero if they lead to t. Due to the optimal
substructure of the states, it now suffices to compute a longest s-t- path in this
acyclic graph. For the tractability of the algorithm, it remains to show, that N
is polynomial in n, which is the case as long as the ratio between runtimes of
coils and λtc is polynomial:

Lemma 1. There is a set D of at most

|D| =
maxi∈[n] pi

λ tc
· (n− 1)(n− 2)

2

points in time such that there exists an optimal selection of saving rectangles R,
whose work intervals all have end points in D.

Proof. Work intervals may start with every but the last coil in the sequence,
accounting for the first n − 1 points necessary. In addition, given a potential
start point for a work interval, also the point exactly λ tc after it is a potential
start point. Clearly, any optimal selection of saving rectangles can always be
transformed to a solution where all work intervals start at a point specified
above by shifting every selected work intervals to the left until its start point
coincides with a point of the above form.

Assuming w.l.o.g. that the fixed sequence of coils is π = id ∈ Πn, observe
that moving through the sequence in order, the number of new potential start-
ing points during the processing of coil i is bounded by i(pi/λtc). Thus, the
total number of potential start points for work intervals necessary in an optimal
solution is ∑

i∈[n−1]

i
pi
λtc
≤

maxi∈[n] pi

λ tc
· (n− 1)(n− 2)

2
.
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Thereby, the number of savings rectangles which need to be considered for
an optimal plan in bounded by

N ≤ n2 + n2|D|+ n2|D|2 ≤ n2(|D|+ 1)2,

the sum of all possibilities to pair each coater interval with no, one, or two work
intervals. Note that N is polynomial in n as long as the ratio (maxi∈[n] pi/λ tc) is
bounded polynomially in n. In realistic instances, the maximum length of coils is
roughly equal to the time for a single setup task performed concurrently, so this
ratio is roughly one. This bound is also very coarse, since it takes into account all
possibilities to pair any work interval with each coater interval, while only work
intervals starting within the coater interval are really relevant. Theoretically,
however, extreme cases with many coils with extremely short processing time
followed by one very long coil cannot be ruled out.

Heuristic Based on Interval Model The dynamic programming approach
is obviously not reasonable for practical use due to its runtime. Nevertheless, we
can use a similar idea to define a heuristic to compute a good tank assignment.
The scheduling can then be performed by a simple rule described in Sect. 4.3,
which yields a concurrent setup schedule for a given tank assignment.

The complexity of the exact algorithm stems from the need to consider inter-
val selections for all coaters at once in order to ensure, that savings from work
intervals can actually be realized by the scarce work resource within the asso-
ciated coater interval. So intuitively, the possibility that potential cost savings
from work intervals can actually be realized by a feasible schedule for concurrent
setup across all coaters, increases with the length of the associated coater inter-
val. This intuition is the core idea for the following tank assignment heuristic.

Instead of considering all coaters at once as the exact algorithm, we consider
all coaters separately, and hence, ignore that parallel work on different coaters is
not possible. Now the cost savings from selected coater intervals can still always
be realized, but the realization of cost savings from work intervals could conflict
with work intervals corresponding of other coaters. Thus, we usually overestimate
the actual cost saving. To readjust this behavior, we scale the interval length,
i.e., the potential time for concurrent setup work, by a factor α ∈ [0, 1]. When
choosing α = 0, concurrent setup work is assumed impossible. For the contrary
extreme α = 1, the entire intervals are assumed to be available for work. In
the heuristic, we assume that we perform as much concurrent setup work in the
scaled interval as possible, and add the corresponding cost savings to the savings
of the coater interval.

Now, cost savings of intervals are independent of actual work intervals, so it
suffices to consider coater intervals only. As a consequence, similar to the case of
sufficient work resources mentioned in Sect. 3.4, our problem reduces to finding
a maximum weight independent set in a regular interval graph, which can be
dealt with very efficiently [5], yielding a fast heuristic. Finally, this results in
a tank assignment as in Section 3.4, for which we compute a concurrent setup
schedule as described in Section 4.3.
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Online Rule: First-in First-out (FIFO) Planners at SZFG have previously
used the following simple rule for tank assignment, which only regards the colors
of subsequent coils: Whenever subsequent coils have different colors, switch the
tank. If the new tank does not contain the required color, a color change on that
tank becomes necessary. So whenever a third color besides the two in the shuttle
tanks is required, the color which was in use earlier is discarded, i.e., we follow
a first-in-first-out (FIFO) rule.

The advantage of this FIFO rule is its online character: the choice of tank
depends only on the current and the previous coil. We exploit this fact in Sect. 5,
where we devise an integer programming model to compute lower bounds on the
optimal makespan of coil coating plans, assuming the FIFO rule is used for tank
assignment.In fact, planners at SZFG initially insisted this rule was also used in
our algorithm, assuming it yielded the best possible tank assignment in any case.
After observing the savings potential of our more sophisticated tank assignment
mechanisms in some of our solutions, they abandoned this initial requirement.

Improvements through Local Search Heuristics Due to the fact that the
tank assignment heuristics described above relax the constraints on work re-
sources for concurrent setup, the tank assignments computed may be subopti-
mal in the sense, that the need for setup work on different shuttle coaters occurs
within the same short part of the sequence. Consequently, a large part of this
setup work cannot be scheduled concurrently and causes cost.

In many cases, this excessive stress on the work resource can be evened out
by switching the tank assignment on some shuttle coaters for a certain subse-
quence of coils. Such possibilities for improvement can be found by a local search
heuristic on the tank assignment. Local search, however, requires too much run-
time to be performed during the sequencing process. In fact, local search in any
neighborhood of size quadratic in the number of coils turned out to be too time-
consuming for our purposes, even if only run on the final solution computed by
the sequencing algorithm.

We use the following linear-sized Twist-neighborhood for a local search on
the tank assignment of the final solution: For any coil i in the sequence, flip
the tank assignment for all coils occurring after i in π. We report on the results
obtained in Sect. 6.2.

4.3 Concurrent Setup Scheduling

Once a sequence and a tank assignment have been determined, the coil coating
plan may still be lacking a feasible schedule for concurrent setup work. A solution
to the dynamic program described in Sect. 4.2 already contains a non-intersecting
selection of work intervals, so we do not need to perform this step in that case—
an optimal schedule is given by performing concurrent setup according exactly
to the selected work intervals as described in Sect. 3.4.

If one of the heuristics for tank assignment described in Sect. 4.2 and 4.2 was
used, we now have a sequence and a tank assignment at hand, but still need to
perform scheduling in order to even assess the cost of the coating plan.
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Obviously, the dynamic program could be used to compute an optimal sched-
ule for the given tank assignment, by only specifying exactly the coater intervals
corresponding to it, together with all necessary work intervals (cf. Lem. 1). For
practical use, however, this approach is not reasonable, again due to its run-
time. Thus, in our implementation, we use an earliest-deadline-first strategy as
a simple scheduling rule.

As before, each global setup task w ∈ W is associated with the coil i it is
for. We define a release time and a deadline for w as follows: Job w is released
at rw when the tank on which i is run becomes idle for the last time before
i; its deadline dw is the start time of coil i. Since only one concurrent setup
task may be performed at a time, we are trying to schedule all tasks on a single
work resource. Whenever the work resource becomes available, say at time t, we
schedule the setup task w with the earliest deadline for which t ∈ [rw, dw].

This strategy satisfies tight practical runtime requirements and appears to
perform well for our application, even though it is in general not guaranteed to
lead to optimal concurrent setup schedules.

5 Lower Bounds from a Combinatorial Relaxation

Assessing the quality of heuristic solutions is not only a theoretical contribution,
but an important question in practice: How much optimization potential is left?
In this section we describe a general way of computing an instance-dependent
lower bound on the optimal makespan, when an online tank assignment rule is
used (cf. Sect. 4.2). Obtaining good lower bounds is strongly related to devising
good relaxations of the problem at hand. Ignoring the need for setups altogether
we obtain the trivial lower bound as the sum of processing times of all coils,
LBtriv :=

∑n
j=1 pj . A more elaborate idea is to relax the complicating global

setup costs only. In fact, this reduces the coil coating problem to determining an
optimal sequence with respect to local setup costs—which can be formulated as
a (small) asymmetric traveling salesman problem, thus we denote the obtained
bound by LBTSP.

As we stressed several times, global setup cost for a coil j depends—in the
extreme case—on the entire solution, in particular on the entire tank assignment,
prior to running coil j. Our relaxation now limits this dependency in limiting the
number of coils which are considered when computing global setup cost, i.e., we
“don’t look back too far.”More precisely, we concatenate subsequences containing
a constant number of coils, say k, for which we exactly compute the global cost.
In between subsequences we only consider local setup cost. By means of an
integer linear program we find a cheapest such concatenation among all possible
combinations. A solution is a sequence of all coils, and the tank assignment will
be given implicitly.

5.1 An Integer Program: Concatenating Short Subsequences

The logic of the model is to assign subsequences of k coils each to dn/ke time
slots, each consisting of k consecutive positions, except the last which may possi-
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bly be shorter. For a subsequence s, we denote by t(s) ∈ {1, . . . , dn/ke} its time
slot, and by p(s, j) ∈ {1, . . . , n} the absolute position of coil j in subsequence s.
We subsume all possible subsequences of k coils in the set S. We slightly abuse
the set notation j ∈ s to express that coil j is contained in subsequence s. Natu-
rally, the cardinality of S is exponential in n, and listing S explicitly in an integer
program is out of the question. The general idea is to solve the linear relaxation
of our model by dynamically adding sequences, a.k.a. column generation, and
embedding this into a branch-and-price framework [10,11].

We have binary variables xp,j for deciding whether coil j is assigned to po-
sition p or not. Variable zs ∈ {0, 1} indicates whether subsequence s ∈ S is
selected or not. Each s ∈ S has its local plus global setup cost cs which is com-
puted as if all coaters were entirely clean and empty at the beginning of s. The
local setup cost sloc(i, j) + tloc(i, j) between coils i and j is abbreviated by ci,j .

Note that in order to compute global setup cost, we need to know a tank as-
signment which we do not explicitly compute. For the optimal value of this model
to deliver a guaranteed lower bound, it is essential that the tank assignment rule
assumed within subsequences can be concatenated to a tank assignment on the
whole sequence following the same rule. It is exactly the set of online assignment
rules (cf. Sect. 4.2), which possess this property. Hence, we use the FIFO rule
in the integer program and thereby obtain lower bounds for the case when the
FIFO rule is used.

min
∑
s

cszs +
∑
i,j∈[n]

ci,jyi,j (1)

∑
p∈[n]

xp,j = 1 j ∈ [n] (2)

∑
j∈[n]

xp,j = 1 p ∈ [n] (3)

∑
s3j:

p(s,j)=p

zs = xp,j p, j ∈ [n] (4)

xlast(t),i + xfirst(t+1),j ≤ 1 + yi,j i, j ∈ [n], t = 1, . . . , dn/ke − 1 (5)
xp,j ∈ {0, 1} p, j ∈ [n] (6)
yi,j ∈ {0, 1} i, j ∈ [n] (7)
zs ∈ {0, 1} s ∈ S (8)

The constraints are interpreted as follows. Each coil gets coated exactly
once (2), each position is filled exactly once (3), and a subsequence s needs
to have coil j in position p if and only if the corresponding xp,j indicates so (4).
The precedence constraints (5) enforce that in between two consecutive subse-
quences in time slots t and t+ 1 we incur the local setup cost between coil i in
the last position last(t) in t and coil j in the first position first(t + 1) in t + 1.
The binary variable yi,j precisely takes care of that, as its use is penalized in



Coil Coating with Shuttles 23

the objective function (1) accordingly. The optimal objective value of the integer
program is denoted LBIP.

We may alternatively use variables xp,j,ta ∈ {0, 1} which additionally decide
about which tank to use on every coater in each position of the sequence. The
index ta reflects the different combinations on all coaters (in our case eight es-
sentially different tank assignments since we have three shuttle coaters). This
way, an optimal tank assignment can simultaneously be computed for each sub-
sequence, obtaining a lower bound on the makespan in any case. We did not
further follow this idea, for it would unduly increase the computational effort
necessary to obtain optimal solutions to the model.

5.2 Pricing

Initially, the integer program (1)–(8) contains all xp,j and yi,j variables, but
only some zs variables, namely those which correspond to subsequences derived
from a solution produced by our sequencing algorithm (it is restricted to use
the FIFO tank assignment rule in that case). Its linear relaxation is called the
restricted master problem. All other zs variables are generated only as needed.
The coupling constraints (4) are the only ones which contain these variables; as
a consequence the corresponding dual variables µp,j ∈ R are the only relevant
ones for calculating their reduced cost (which must be negative in order to add
the variable to the problem). The reduced cost of zs is

c̄s = cs −
∑
j∈s

µp(s,j),j , (9)

and the pricing problem is to find a subsequence of minimum reduced cost.
To the best of our understanding, there is no principal alternative to a brute
force method since we are able to evaluate the total setup cost of a subsequence
only when we see it in its entirety, thus we have to construct it. This also rules
out most of the traditionally used dominance criteria in dynamic programming.
Thus, a straight forward depth first search backtracking algorithm is used to
solve this problem. Yet, we use a pruning criterion based on the dual variable
values of coils not yet added to a subsequence, which helps in mildly reducing
the search space without compromising optimality.

5.3 Branching

When we determine an integer solution for the xp,j variables, all other variables
automatically assume integer values as well. That is, a natural candidate for
taking branching decisions in the branch-and-bound tree is to branch on∑

s3j:p(s,j)=p

zs /∈ {0, 1}

for a given coil j at position p. In fact, speaking in terms of branch-and-price
methodology, this is branching on the so-called original variables xp,j of the
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Fig. 7. Detail of the visualization of an integer optimal solution to our integer
program with subsequences with k = 4 coils each. Each block represents one
shuttle coater with its two tanks; the dark rectangles reflect the coils in the
coating sequence. It is clearly visible that the integer program ignores global
setup cost in between subsequences. The expert planner can also see where and
when which type of setup has to be performed.

problem which are present in this extensive column generation as well. The
branching itself can be realized as a modification to the pricing problem instead
of adding an explicit branching constraint to the master problem: One simply
eliminates the forbidden coil j from position p (on the down branch), or enforces
it by eliminating all other [n]\{j} coils from position p (on the up branch). Note
that the master problem has to be updated according to branching decisions:
Variables corresponding to subsequences which do not respect the branching
constraint have to be eliminated (technically, via an upper bound of zero). In
order to stay feasible after each branching decision, we further introduce artificial
variables (with large costs) in constraints (2), one for each coil.

6 Computational Study

Since the project was initiated with the explicit goal to develop a tool to be inte-
grated in the existing production planning software at SZFG, we were provided
with realistic data right from the beginning. In fact, we tested our algorithms
on instances provided by planners at SZFG, and in the following process of
their repeatedly validating our solutions, various issues regarding the accuracy
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of cost calculations and the practicability of work schedules were addressed, and
eventually solved.

A typical batch for a 24 hour planning horizon consists of 20–40 coils, but for
testing purposes we also considered batches which were three times larger. We
cannot report on the precise numerical characteristics of our data and results;
instead a qualitative assessment of our approach is presented.

6.1 Some Implementation Details

Parameters for the genetic sequencing algorithm were determined by rigorous
testing with the goal to have one fixed parameter set yielding good performance
across all data sets. We use a constant population size of 200 and in each gener-
ation create 100 new individuals each from mutation of random individuals and
crossover of two randomly chosen individuals, resulting in a total population of
400. We keep the 200 with the best makespan for the next generation. Especially
on small instances, the population quickly evolves to a set of individuals with
almost identical cost. When the makespan of all individuals is within 5% of the
best individual, we discard 90% of the population and replace it by individuals
generated as the initial population. This usually leads to further improvement
of the best individuals in subsequent generations.

In the construction heuristic for the initial population described in Sect. 4.1,
we use as sorting and feasibility sets the coil properties width, height, processing
speed, and temperature in primer and finish oven, respectively. We compute
sequences resulting from each combination of two sorting and one feasibility
property.

We also performed extensive testing using the tank assignment heuristic de-
scribed in Sect. 4.2 for various values of the parameter α ∈ [0, 1] when computing
a tank assignment for the evaluation of the makespan of a sequence. The best
results were obtained for α ≈ 0.5 and were equal to the makespan obtained
using the FIFO rule in most cases, insignificantly better on some instances.
Similarly, local search on tank assignments proved by far too time consuming
to be performed within the sequencing process and did not yield significantly
better final results—minor improvements in makespan were observed on some
instances when it was performed on some individuals of the final population in
the sequencing step.

While the possibility to use local search and different tank assignment heuris-
tics is preserved in the final optimization module, we refrain from reporting
detailed computational results for them here, since they do not seem to yield
conclusive evidence of their superiority over FIFO on the data sets considered—
this may be different in other data scenarios.

We implemented a branch-and-price algorithm to solve the integer program (1)–
(8) within the publicly available SCIP framework [12]. The implementation is
not tuned to performance as we used it as a proof-of-concept only.
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instance LBtriv gap% LBTSP gap% LBIP gap% genetic reference

2008-09-18_1 0.73 36.87 0.85 17.77 0.92 8.16 1.00 –
2008-09-19_1 0.86 16.87 0.87 15.11 0.95 5.18 1.00 1.19
2008-09-19_2 0.68 47.01 0.76 31.29 0.87 15.08 1.00 1.27
2008-09-22_1 0.81 23.08 0.84 18.96 0.90 11.51 1.00 1.35
2008-10-15_2 0.89 12.96 0.91 9.68 0.92 8.63 1.00 1.10
2008-10-15_3 0.88 13.10 0.92 8.37 0.93 7.44 1.00 1.09
2008-10-17_2 0.89 12.54 0.91 9.37 0.93 7.36 1.00 1.06
2008-10-28_1 0.92 8.25 0.96 4.65 0.96 4.28 1.00 –
2008-10-28_2 0.86 16.72 0.87 15.03 0.90 11.02 1.00 –

Table 3. Comparison of bounds on the makespan for representative problem
instances, normalized to the makespan obtained by our genetic algorithm. We
give the three lower bounds LBtriv, LBTSP, and LBIP (in that order), and the
makespan of a reference solution provided by SZFG (not available for every
instance). The columns headed “gap%” represent the remaining theoretical op-
timization potential when using the solution provided by our genetic algorithm,
computed as 100 · (genetic− LB)/LB.

6.2 Interpretation of Results

It was surprising for SZFG’s planners that our heuristic produces plans with
makespan reductions of up to 30% (and typically 10%) as compared to reference
solutions actually gone to production, cf.Tab. 3 and Fig. 8. Since this is also true
for manual plans which “looked optimal,” we take this as another proof that a
rigorous mathematical analysis of the savings potential of shuttle coaters fully
paid off.

A similar statement holds for our lower bounds based on combinatorial op-
timization problems which are clearly superior to a näıve approach, see again
Fig. 8. If we concentrate on setup cost—in contrast to makespan—it can be seen
from Fig. 9 that the integer programming lower bound is able to close (much)
more of the gap to the upper bound than the TSP bound which ignores global
setup cost. Yet, we did not solve all instances to integer optimality and also used
short subsequences only (k = 4), so the lower bound is certainly improvable.
We are thus convinced that the actual quality of our heuristic solutions is even
better than the currently proven 5–15% within makespan optimality.

It should be noted again that indeed every detail of production is controlled
by our plan, and that these plans were verified on-site at SZFG’s coil coating
line.

7 Summary and Conclusions

We have developed an exact mathematical model for the complex production
planning task in coil coating and implemented optimization software solving it
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Fig. 8. Comparison of bounds on the makespan for representative instances. The
ordering of bounds per instance is the same as in Tab. 3.

in practice. It fulfills all requirements regarding speed and robustness necessary
for the application in the production environment. Our model takes into account
all relevant aspects of production reality, including the subtasks of sequencing
the coils, assigning tanks in shuttle coaters, and scheduling scarce work resources
to perform setup work concurrently with production.The integrity of the plans
computed and the correctness of cost calculations have been verified by the
planners in charge of the coil coating line at Salzgitter Flachstahl GmbH.

Compared to previous plans, the optimized solutions yield double digit per-
centage reductions in makespan, greatly exceeding what was deemed possible:
After all, the careful analysis of the problem necessary for devising the mathe-
matical model has lead to a deep understanding of structure and interdependen-
cies in the planning task, which enabled the realization of hidden optimization
potential. It is not exaggerating to state that practitioners got fully acquainted
with operating their machines only because of our theoretical investigations.

For the tank assignment and concurrent setup scheduling subproblem, we
have developed a model allowing for the fast computation of optimal solutions
in an environment where sufficient work resources are available. For the present
resource-constrained case, we derived heuristic ideas from this model, which
however at best slightly improve over the obvious FIFO rule for tank assignment
on our test instances. Our ideas may still prove useful when applied to other,
similar applications.

Finally, we have developed and implemented an integer programming model
of a combinatorial relaxation of the problem, which we are able to solve to
optimality via branch-and-price.The solutions yield lower bounds on the optimal
makespan of our test instances, proving that our heuristic solutions have an
optimality gap of no more than 5–15%, suggesting that not much optimization
potential is left in the application after introducing our optimization module to
production, which is planned for April 2009.
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Fig. 9. Comparison of the quality of lower bounds in terms of cost, i.e., non-
productive time. The cost of the solution obtained by our genetic algorithm
defines the reference cost of 100%. Depicted is the percentage of the gap which
could be closed by the two non-trivial bounds. The ordering of instances is
identical to that in Tab. 3.
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