
Probabilistic Analysis of LLL Reduced Bases

Michael Schneider, Johannes Buchmann, and Richard Lindner

Technische Universität Darmstadt, Department of Computer Science
Hochschulstraße 10, 64289 Darmstadt, Germany
mischnei@cdc.informatik.tu-darmstadt.de

Abstract. Lattice reduction algorithms behave much better in practice
than their theoretical analysis predicts, with respect to output quality
and runtime. In this paper we present a probabilistic analysis that proves
an average case bound for the length of the first basis vector of an LLL
reduced bases which reflects LLL experiments much better.
Keywords: lattice reduction, LLL, worst case bounds

1 Introduction

Lattice reduction is a useful tool in cryptanalysis. Different cryptosystems are
broken using lattice reduction, e.g. knapsack systems [LO85,CJL+92] as well as
RSA in special settings [May07]. Further on, factoring composite numbers and
computing discrete logarithms is possible using lattice reduction [Sch91,May07].

The most famous algorithm for lattice reduction is the LLL algorithm by
Lenstra, Lenstra and Lovász [LLL82]. Every lattice reduction algorithm used
today is in some sense a variant of the LLL. Theoretically, the best algorithm to
find short vectors is the slide reduction algorithm [GN08a]. Practically, the most
promising algorithms are the L2 algorithm by Nguyen and Stehlé [NS05] and the
BKZ algorithm by Schnorr [SE94]. A comparison of lattice reduction algorithms
can be found in [BLR08].

In this paper we present an average analysis that predicts the expected value
of the first basis vector of an LLL reduced basis to be at most 1.0439(n−1) ·
|detL|1/n whereas the worst case analysis only yields the bound 1.078n·det(L)1/n.
To obtain this result, we assume that the Gram-Schmidt coefficients that arise
in lattice reduction are random variables. The distribution is a polynomial of de-
gree four. This distribution is deduced from experiments that we performed on
random lattices chosen as in [GN08b,NS06] and on modular lattices like those
of [BLR08]. Our new bound reflects the practical results of lattice reduction
far better than the existing worst case bound and will be helpful in estimating
cryptographic key sizes of lattice based systems.

First approaches concerning the gap between theory and practice were made
in [NS06] and [GN08b]. Both papers analyse the practical behaviour of reduction
algorithms by evaluating their experiments.

2 Preliminaries

Let n, d ∈ N, n ≤ d, b1, . . . ,bn ∈ Rd linearly independent. Then L(B) =
{
∑n
i=1 xibi : xi ∈ Z} is the lattice spanned by B = [b1, . . . ,bn]. L(B) has

Dagstuhl Seminar Proceedings 09221
Algorithms and Number Theory
http://drops.dagstuhl.de/opus/volltexte/2009/2126

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62914448?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

dimension n, B is a basis of a lattice. Such a basis is uniquely determined up to
unimodular transformations. We write L instead of L(B) if it is clear which basis
is concerned. The first successive minimum λ1(L) is the length of the shortest
vector of a lattice. The lattice determinant det(L(B)) is defined as

√
det(BBt).

It is invariant under basis changes. For full-dimensional lattices (n = d) there is
det(L(B)) = |det(B)| for every basis B.

Denote the Gram-Schmidt-orthogonalization (GSO) with b∗i = πi(bi) where
πi(b)→ span (b1 . . .bi−1)⊥ is the orthogonal projection. The GSO is calculated
via b∗i = bi −

∑i−1
j=1 µi,jb

∗
j where µi,j = bTi b∗j/

∥∥b∗j∥∥2 for all 1 ≤ j ≤ i ≤ n. We
know that

∏n
k=1 ‖b∗k‖ = |detL|.

Lattice reduction. Creating a basis consisting of short and nearly orthogonal
vectors is the goal of lattice reduction. A more detailed notion of a reduced
lattice is the following. A basis b1, . . . ,bn is called LLL-reduced with δ ∈ (1

4 , 1],
if |µi,j | ≤ 0.5 for 1 ≤ j < i ≤ n and δ‖b∗i−1‖2 ≤ ‖b∗i ‖2 + µ2

i,i−1‖b∗i−1‖2 for
i = 2, . . . , n [LLL82].

Hard lattice problems. There are several problems on lattices that are supposed
to be or proven to be hard [MG02]. The most famous problem is the shortest
vector problem (SVP). The goal of γ-SVP is to find an (approximate) shortest
non-zero vector in the lattice, namely a vector 0 6= v ∈ L with ‖v‖ ≤ γλ1(L),
where γ ≥ 1 is the approximation factor. It is possible to formulate the problem
in every norm, the most usual norm is the euclidean norm, that we are using
throughout this paper.

As the length of the shortest vector λ1(L) might not be known, it might be
hard to control the approximation factor of SVP. Therefore it is common practice
to use the Hermite-SVP variant: given a γ ≥ 1, find a non-zero vector v ∈ L
with ‖v‖ ≤ γ · (detL)1/n. Having reduced a basis B one can easily calculate the
reached Hermite factor using γHermite = ‖bmin‖ /(detL)1/n.

The γ-SVP was solved by Lenstra, Lenstra and Lovász in [LLL82] for fac-
tors γ exponential in the lattice dimension n. Their LLL algorithm requires
O(n3 logM) arithmetic operations (M is a function of the input size, i.e. M =
maxi=1,...,n(‖bi‖2 , Di) and Di = det(L(b1, . . . ,bi))2) and outputs a basis whose
first vector approximates the shortest lattice vector with an approximation fac-
tor exponential in the lattice dimension. More concretely, it can be proved that
‖b1‖ ≤ (4/3)(n−1)/4 · det(L)1/n [LLL82].

In [SE94] the authors introduce the idea of deep inserting the size-reduced
vector into the basis. The same paper presents the BKZ algorithm, that is a
blockwise variant of the LLL algorithm. BKZ is today’s best algorithm for lattice
reduction in practice. Using blocksize β it reaches a lattice vector with length
‖b1‖ ≤ (γβ)

n−1
β−1 · λ1 [Sch94], where γβ is the Hermite constant in dimension β.

Practical behaviour. In practice however, lattice reduction algorithms behave
much better than theory would suppose: in the average case they find much
shorter vectors than theoretical worst case bounds suggest. In [GN08b] Gama

2

and Nguyen give a practical analysis using the established implementation of
Shoup’s NTL library [Sho]. The authors state that a Hermite factor of 1.01n and
an approximation factor of 1.02n in high lattice dimension (e.g. dimension 500)
is within reach today, but a Hermite factor of 1.005n in dimension around 500
is totally out of reach.

3 LLL on the Average Revisited

Remember that in an LLL reduced basis it is required that |µi,j | ≤ 0.5 for
0 ≤ j < i ≤ n. For the theoretical LLL analysis one assumes [LLL82] that all
µi,i−1 match the worst case, i.e. |µi,i−1| = 0.5. Our new idea is to replace this
assumption by a more realistic, probabilistic distribution of the Gram-Schmidt
coefficients. The challenge is to find a suitable distribution function of those
random variables. In [NS06] the authors state that the coefficients µi,i−1 are not
uniformly distributed in the area [−0.5, 0.5].

In order to get a better impression of the distribution of the µi,i−1 we per-
formed some experiments on random lattices like those used in [NS06] and
[GN08b] as well as on the modular lattices of [BLR08]. For all experiments
we used a parameter δ = 0.99. It turns out that the values µi,i−1 are distributed
along a polynomial of degree four, namely p(x) = 53.85692x4 + 1.57202x2 +
0.19579 in the range [−0.5, 0.5]. Figure 1 shows the experimental data and the fit-
ting polynomial p(x). The polynomial p(x) is created such that

∫∞
−∞ p(x) dx = 1,

which allows us to use p(x) as density function of a probability distribution.

3.1 Expectation Values of ‖b1‖

We are now using the probability distribution given by p(x) to give a better
bound on LLL reduced bases. The first part of the proof is quite similar to the
analysis of the LLL bound [LLL82].

Theorem 1. Suppose that a basis [b1 . . .bn] is chosen arbitrarily and an LLL
algorithm is performed on the basis. Suppose that after LLL-reduction, the µi,i−1

are independent random variables and their probability distribution is given by
the polynomial p(x). Then the expectation of the norm of the first lattice vector
after LLL reduction is

E(‖b1‖) ≤ 1.0439(n−1) · |detL|1/n . (1)

Proof. We start with an LLL-reduced basis B: δ
∥∥b∗i−1

∥∥2 ≤ µ2
i,i−1

∥∥b∗i−1

∥∥2 +

‖b∗i ‖
2 ∀i = 2, . . . , n. With that1

∥∥b∗i−1

∥∥2 ≤ (δ − µ2
i,i−1)−1 ‖b∗i ‖

2 ∀ i = 2, . . . , n.
Repeating this gives us

‖b∗1‖
2 ≤

k−1∏
i=1

(δ − µ2
i,i−1)−1 ‖b∗k‖

2 ∀ k = 1, . . . , n .

1 δ − µ2
i,i−1 is positive since |µi,i−1| ≤ 0.5 and δ > 0.25

3

Multiplying both sides for k = 1, . . . , n leads to

‖b∗1‖
2n ≤

n∏
k=1

(k−1∏
i=1

(δ − µ2
i,i−1)−1

)
‖b∗k‖

2 =
n∏
k=1

(k−1∏
i=1

(δ − µ2
i,i−1)−1

)
·
n∏
k=1

‖b∗k‖
2

︸ ︷︷ ︸
=|detL|2

.

Calculating the logarithm we get

ln(‖b∗1‖
2n) ≤ ln

(n∏
k=1

(k−1∏
i=1

(δ − µ2
i,i−1)−1

))
+ ln(|detL|2)

= −
n∑
k=1

k−1∑
i=1

ln(δ − µ2
i,i−1) + 2 ln(|detL|)

⇔ ln(‖b∗1‖) ≤ −
1

2n

n∑
k=1

k−1∑
i=1

ln(δ − µ2
i,i−1) +

1
n

ln(|detL|)

We now calculate the expectation value:

E(ln(‖b∗1‖) ≤ −
1

2n

n∑
k=1

k−1∑
i=1

E(ln(δ − µ2
i,i−1)) +

1
n

ln(|detL|)

Using the polynomial p(x) as density function for the random µi,i−1 we get

E(ln(δ − µ2
i,i−1)) =

∫ ∞
−∞

ln(δ − x2)p(x) dx = 2
∫ 1/2

0

ln(δ − x2)p(x) dx

For δ = 1, the expectation value E(ln(δ−x2)) becomes −0.172 (c.f. full version).
This leads to the following:

E(ln(‖b∗1‖) ≤
0.172

2n
n(n− 1)

2
+

1
n

ln(|detL|) = 0.043(n− 1) +
1
n

ln(|detL|) .

This leads to

‖b1‖ ≈ exp(E(ln(‖b∗1‖)) = exp(0.043)(n−1) · |detL|1/n = 1.0439(n−1) · |detL|1/n .
ut

The original LLL worst case bound for δ = 1 is

‖b1‖ ≤ (4/3)(n−1)/4 · det(L)1/n ≈ 1.078n · det(L)1/n . (2)

There exist bases for whom this bound is tight. In [NS06] Nguyen and Stehlé
show experimentally that practical L3 algorithms reach an average value of

‖b1‖ ≈ 1.02n · det(L)1/n . (3)

The experiments of Gama and Nguyen [GN08b] show the same behaviour of LLL
algorithms. Figure 2 gives an illustration of these norm-values, i.e. the Figure
shows the first part and leaves out the det(L)1/n-part. It is easy to see that our
expectation value is much closer to the average case than the worst case bound.

4

Fig. 1. Distribution of the values µi,i−1

and the fitting polynomial p(x)

 0

 5

 10

 15

 20

 25

 30

 35

 0 10 20 30 40 50

no
rm

dimension

LLL-bound (2)
experimental (3)

average case bound (1)

Fig. 2. Comparison of the norm bounds:
LLL worst case bound (2), experimental
value (3) of [NS06] and new average case
bound (1). The det(L)1/n-part is omitted.

4 Further Work

To our knowledge there is no further theoretical analysis of the deep insertion
variant [SE94] concerning worst case bounds. The best upper bound known is
the standard LLL-bound. Practically the algorithm was observed in [BW02,NS06]
and [GN08b]. The average Hermite factor reached by Deep-LLL is observed to be
1.012n (maximal insertion depth not given) in [NS06] and 1.011n with maximal
insertion depth 50 in [GN08b], respectively.

It might be possible to apply our probabilistic analysis to the Deep-LLL and
to the BKZ algorithm in order to prove bounds for the deep insertion variant or
improve the known BKZ bound.

It remains an open problem to show a more precise analysis of the Gram-
Schmidt coefficients after LLL reduction. The description of our experiments in
this abstract is quite short and has to be extended. The polynomial distribution
that we assumed can only be seen as an approximation. The main difficulty
in this analysis is the fact that the random variables µi,j are dependent on
each other, i.e. µi,i−1 and µi+1,i both depend on bi and can therefore not be
considered to be independent random variables.

References

[BLR08] Johannes Buchmann, Richard Lindner, and Markus Rückert. Explicit hard
instances of the shortest vector problem. In Post-Quantum Cryptogra-
phy (PQCrypto) 2008, Lecture Notes in Computer Science, pages 79–94.
Springer-Verlag, 2008.

[BW02] Werner Backes and Susanne Wetzel. Heuristics on lattice basis reduction in
practice. ACM Journal of Experimental Algorithmics, 7, 2002.

[CJL+92] Matthijs J. Coster, Antoine Joux, Brian A. LaMacchia, Andrew M. Odlyzko,
Claus-Peter Schnorr, and Jacques Stern. Improved low-density subset sum
algorithms. Computational Complexity, 2:111–128, 1992.

5

[GN08a] Nicolas Gama and Phong Q. Nguyen. Finding short lattice vectors within
mordell’s inequality. In Proceedings of the Annual Symposium on the Theory
of Computing (STOC) 2008, pages 207–216. ACM Press, 2008.

[GN08b] Nicolas Gama and Phong Q. Nguyen. Predicting lattice reduction. In Ad-
vances in Cryptology — Eurocrypt 2008, volume 4965 of Lecture Notes in
Computer Science, pages 31–51. Springer-Verlag, 2008.

[LLL82] Arjen Lenstra, Hendrik Lenstra, and László Lovász. Factoring polynomials
with rational coefficients. Mathematische Annalen, 4:515–534, 1982.

[LO85] J. C. Lagarias and Andrew M. Odlyzko. Solving low-density subset sum
problems. J. ACM, 32(1):229–246, 1985.

[May07] Alexander May. Using LLL-reduction for solving RSA and factorization prob-
lems, 2007. A survey for the LLL+25 conference.

[MG02] Daniele Micciancio and Shafi Goldwasser. Complexity of Lattice Problems: a
cryptographic perspective, volume 671 of The Kluwer International Series in
Engineering and Computer Science. Kluwer Academic Publishers, Boston,
Massachusetts, March 2002.

[NS05] Phong Q. Nguyen and Damien Stehlé. Floating-point LLL revisited. In
Advances in Cryptology — Eurocrypt 2005, pages 215–233, 2005.

[NS06] Phong Q. Nguyen and Damien Stehlé. LLL on the average. In Algorithmic
Number Theory Symposium — ANTS, pages 238–256, 2006.

[Sch91] Claus-Peter Schnorr. Factoring integers and computing discrete logarithms
via diophantine approximations. In EUROCRYPT, pages 281–293, 1991.

[Sch94] Claus-Peter Schnorr. Block reduced lattice bases and successive minima.
Combinatorics, Probability & Computing, 3:507–522, 1994.

[SE94] Claus-Peter Schnorr and M. Euchner. Lattice basis reduction: Improved
practical algorithms and solving subset sum problems. Mathematical Pro-
gramming, 66:181–199, 1994.

[Sho] Victor Shoup. Number theory library (NTL) for C++. http://www.shoup.

net/ntl/.

6

