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Abstract. The security of many efficient cryptographic constructions,
e.g. collision-resistant hash functions, digital signatures, and identifica-
tion schemes, has been proven assuming the hardness of worst-case com-
putational problems in ideal lattices. These lattices correspond to ideals
in the ring Z[ζ], where ζ is some fixed algebraic integer.

In this paper we show that the density of n-dimensional ideal lattices
with determinant ≤ b among all lattices under the same bound is in
O(b1−n). So for lattices of dimension > 1 with bounded determinant,
the subclass of ideal lattices is always vanishingly small.

Keywords: post-quantum cryptography, provable security, ideal lat-
tices.

1 Introduction

Following the seminal result of Ajtai from 1996, where he showed a worst-case
to average-case reduction for computational problems in lattices[1], the security
of many lattice-based cryptographic schemes was proven assuming the hardness
of these worst-case problems, e.g. [4,6,3,9].

Using similar methods, Lyubashevsky and Micciancio found in 2006, that
a worst-case to average-case reduction exists for a different class of lattices,
namely lattices corresponding to ideals in the ring Z[ζ], where ζ is some algebraic
integer that is fix for the reduction. The additional structure of these lattices
allows the cryptographic schemes which use them to be much more efficient
and require smaller keys. In each case, the change for keysizes and trapdoor
evaluation time is from Õ(n2) for general lattices to Õ(n) for ideal lattices.
Again, many cryptographic schemes were proven secure assuming the hardness
of worst-case problems in ideal lattices, see [5,6,7].

For all these schemes, the authors recommended to use rings Z[ζ], that are
equal to the ring of algebraic integers of a number field, because the connection
to worst-case problems is tightest in these cases. So, we will only consider ideal
lattices corresponding to ideals in the ring of integers of a number field.

Until today, there has been no in depth work on the relationship of the hard-
ness for these two worst-case problems which have become the basis of security
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for so many schemes. We give an indication that worst-case computational prob-
lems in ideal lattices are potentially much simpler. We show that the number
of n-dimensional lattices with bounded determinant ≤ b, is Ω(bn) as b goes to
infinity. In comparison, the number of ideal lattices under the same constraints
is only O(b), a vanishingly small quantity.

2 Preliminaries

A lattice L is a discrete, additive subgroup of Rn. It can always be described
as L = {

∑d
i=1 xi bi : xi ∈ Z}, where b1, . . . ,bd ∈ Rn are linearly independent.

The matrix B = [b1, . . . ,bd] is a basis of L. The number of vectors in the basis is
the dimension, or rank of the lattice dim(L) = d. The fundamental parallelepiped
spanned by the basis is P(B) = B[0, 1]d, so it consists of all linear combinations
of basis vectors with coefficients between 0 and 1. The determinant of a lattice is
the volume of the fundamental parallelepiped, i.e. det(L) =

√
det(BTB). This

value is independent of the choice of basis.
For any integral lattice L of full-rank, there exists a unique basis B such that

bi,j = 0 for i < j, bi,i > 0 for 1 ≤ i ≤ n, bi,i > bi,j ≥ 0 for 1 ≤ j < i ≤ n.

This basis is in Hermite Normal Form, B = HNF(L).
Throughout this paper K = Q(ζ) will always be a number field of degree

deg(K) = [K : Q] = n, i.e. there is a monic, irreducible polynomial f ∈ Q[x] of
that degree with f(ζ) = 0.

Definition 1. An order O in K is a subring of K which is a free Z-module of
rank n = deg(K).

The integral combinations of powers of ζ form an order Z[ζ] = [1, ζ, . . . , ζn−1]Zn.
Another order, the ring of integers in K, is

OK = {α ∈ K : ∃ monic f ∈ Z[x], f(α) = 0}.

This order is maximal in the sense that it contains all other orders. By definition,
there exist β1, . . . , βn ∈ OK such that OK = [β1, . . . , βn]Zn.

We can embedded K into rational vectorspace via the coefficients

σ : K −→ Qn : a0 + a1ζ + · · ·+ an−1ζ
n−1 7−→ (a0, a1, . . . , an−1)T = a.

Definition 2. Let O be an order in K. An O-ideal lattice is a lattice L ⊆ Zn
such that L = σ(i) for some ideal i ⊆ O.

In the special case O = Z[ζ] this matches the definition of Lyubashevsky and
Micciancio in [5].

We will often use the embedding σ implicitly and write, for example, det(i)
instead of det(σ(i)). The norm of an ideal i in O is N(i) = |O / i|. This is related
to the determinant of the corresponding ideal lattice

N(i) = det(i) · det(O). (1)
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For the case O = OK this is the field norm.
Conforming with notations in previous works, we will write vectors and ma-

trices in boldface. We will also use greek letters for elements of K and (fractional)
ideals of OK will be set in fraktur.

3 Density of ideal lattices

General lattices. For integers n, b > 0, let all full-rank sublattices of Zn with
determinant ≤ b be

Ln(b) = {L ⊆ Zn : 0 < det(L) ≤ b}, ln(b) = |Ln(b)|.

In 1968 Schmidt showed in [10] that as b tends to infinity ln(b) ∈ O(bn). We will
use a similar methodology to derive a lower bound.

Theorem 1. For integers n, b > 0, we have ln(b) ≥ bn/n.

Proof. Let L′n(d) = {L ⊆ Zn : det(L) = d}, l′n(d) = |L′n(d)|. We start by showing

l′n(1) = l′1(d) = 1, (2)

l′n(d) =
∑
c|d

cn−1 l′n−1(d/c). (3)

It suffices to count the number of possible lattice bases in HNF, because this
form is unique for each lattice. Equations (2) are an immediate consequence.

Now, let L ∈ L′n(d), B = HNF(L), and c = bn,n. Consider the last row of B.
We know c | d and 0 ≤ bn,i < c for i = 1, . . . , n−1. These are

∑
c|d c

n−1 possible
rows. The remaining upper left (n − 1) × (n − 1) submatrix of B could be the
HNF of any lattice in L′n−1(d/c), which shows Equation (3).

We can now show the claim

ln(b) =
b∑

d=1

l′n(d) =
b∑

d=1

∑
c|d

cn−1l′n−1(d/c) ≥
b∑

d=1

dn−1 ≥
∫ b

0

dn−1 dd ≥ bn/n.

ut

Remark 1. Note that, during the proof we counted lattices whose Hermite nor-
mal form differs from the identity matrix only in the last row and we found there
are at least Ω(bn) of those. Since Schmidt showed in [10], that O(bn) is also an
upper bound on the number of n-dimensional lattices with determinant ≤ b, it
follows that lattices with this special Hermite normal form are a dense subset of
all lattices. This was shown less elementary by Goldstein and Mayer [2].
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Ideal lattices. Let O be an order in some number field K of degree n. For integers
b > 0, let the set of all O-ideal lattices with determinant ≤ b be

IOn (b) = {L ⊆ Zn : L is O-ideal lattice, 0 < det(L) ≤ b}, iOn (b) = |IOn (b)|.

We adapt an old result of Dedekind and Weber, which was recently made more
precise by Murty and Van Order [8].

Theorem 2. Let K be a number field of degree n, then for integers b > 0

iOK
n (b) ≤ hK(2cKb1/n + 1)n/(w det(OK)),

where hK is the number of ideal classes, w is the number of roots of unity in K,
and cK is another real constant depending only on K.

Proof. Let C be some ideal class in OK ,

ICn(b) = {a ∈ C : 0 < N(a) ≤ b}, iCn(b) = |ICn(b)|.

We start by showing for any ideal b ∈ C−1, iCn(b) = |bICn(b)|. Obviously, ≥ holds
and we also have |bICn(b)| ≥ |(b−1)bICn(b)| = |ICn(b)|, which gives us ≤. Note that

bICn(b) = {〈α〉 ⊆ b : 0 < N(α) ≤ bN(b)},

so in order to count ideals in C it suffices to count principal ideals in b.
The span of two elements is equal if and only if they differ by a ring unit,

〈α〉 = 〈α′〉 ⇐⇒ there exists a unit ε ∈ OK , such that α′ = εα.
Let (r1, r2) be the signature of K and r = r1 + r2 − 1. Dirichlet proved the

following classification. There exist fundamental units ε1, . . . , εr ∈ OK , such that
ε is a unit in OK if and only if ε = ζεn1

1 · · · εnr
r , where ζ ∈ K is a root of unity,

and n1, . . . , nr ∈ Z. Recall, that the total number of roots of unity in K is w.
We continue by showing that for each principal ideal 〈α〉 ∈ bICn(b) there exist

w many reals 0 ≤ c1, . . . , cr < 1 such that

r∑
j=1

cj log |ε(i)j | = log(|α(i)|N(α)−1/n) for 1 ≤ i ≤ n. (4)

Note that the r×r matrix (log |ε(i)j |)1≤i,j≤r is non-singular, so for each α ∈ b

there exist (unrestricted) reals c1, . . . , cr such that (4) holds for 1 ≤ i ≤ r. Let
α′ = εα for some unit ε, then we have

log(|α′(i)|N(α′)−1/n) =
r∑

j=1

nj log |ε(i)j |+ log(|α(i)|N(α)−1/n) =
r∑

j=1

(nj + cj) log |ε(i)j |.

So, by Dirichlet’s classification, restricting the reals to 0 ≤ c1, . . . , cr < 1 leaves
only w many for each principal ideal. For the rest, fix any of the w many.

For r + 1 < i ≤ n, we have |(·)(i)| = |(·)
(i−r2)| = |(·)(i−r2)|, so Equation (4)

holds for these.
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Since N(α) =
∏n
i=1 |α(i)| and 1 = N(εj) =

∏n
i=1 |ε

(i)
j | for 1 ≤ j ≤ r, we get

n∑
i=1

r∑
j=1

cj log |ε(i)j | =
r∑
j=1

cj

(
n∑
i=1

log |ε(i)j |

)
= 0 =

n∑
i=1

log(|α(i)|N(α)−1/n).

We already knew that the summands of the left- and rightmost sum are equal
for i 6= r + 1, so this equality gives us the final case i = r + 1 for Equation (4).

Finally, we prove the theorem. Let hK be the number of ideal classes,

iOK
n (b) ≤ hK max

C
{iCn(b)}/ det(OK).

Let β1, . . . , βn be an integral basis of OK . For each principal ideal in bICn(b),
there are w many αs subject to Equation (4). For each of these α, there exist
unique integers x1, . . . , xn such that α = x1β1 + · · ·xnβn. We will show that the
total number of these integers, and thus iCn(b) is bounded.

The βs form a basis, so the matrix B = (β(i)
j )1≤i,j≤n is invertible and

‖(xi)1≤i≤n‖∞ ≤ ‖B−1‖∞ ‖(α(i))1≤i≤n‖∞.

Let mε = max{log |ε(i)j | : 1 ≤ i, j ≤ r}, by Equation (4) we know

‖(α(i))1≤i≤n‖∞ ≤ exp(rmε)|N(α)1/n| ≤ exp(rmε)(bN(b))1/n.

Minkowski showed that an ideal b in class C−1 can always be chosen such that

N(b) ≤ (4/π)r2n!
√
|dK |/nn,

where dK is the discriminant of K. Altogether, we have

‖(xi)1≤i≤n‖∞ ≤ (4/π)r2/n‖B−1‖∞ exp(rmε)(n!
√
|dK |/nn)1/n︸ ︷︷ ︸

=cK

·b1/n.

Since all possible x1, . . . , xn are bounded in this way, the total number of αs
subject to Equation (4) is (2cK + 1)n. As we know there exist at most w many
of these α for every principal ideal in bICn(b), we get

iCn(b) ≤ (2cKb1/n + 1)n/w,

which completes the proof. ut

Density.

Corollary 1. For integers n, b > 0, as b→∞

iOK
n (b)/ln(b) ∈ O(b1−n).

So the ratio vanishes for all n > 1.
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