
Parameterized Analysis of Online Steiner Tree

Problems

Spyros Angelopoulos

Max Planck Institut für Informatik
66123, Saarbrücken, Campus E1 4, Germany

sangelop@mpi-inf.mpg.de

Abstract. Steiner tree problems occupy a central place in both areas of
approximation and on-line algorithms. Many variants have been studied
from the point of view of competitive analysis, and for several of these
variants tight bounds are known. However, in several cases, worst-case
analysis is overly pessimistic, and fails to explain the relative performance
of algorithms. We show how parameterized analysis can help resolve this
problem. As case studies, we consider the Steiner tree problem in directed
graphs and the priority Steiner tree problem.

Keywords. Online computation, competitive analysis, Steiner tree prob-
lems

1 Introduction

The Steiner tree problem occupies a central place in the area of approximation
and online algorithms. In its standard version, the problem is defined as follows.
Given an undirected graph G = (V, E) with a weight (cost) function c : E → R

+

on the edges, and a subset of vertices K ⊆ V with |K| = k (also called terminals),
the goal is to find a minimum-cost tree which spans all vertices in K. When the
input graph is directed, the input to the problem must specify, in addition to G
and K, a vertex r ∈ V called the root. The problem is then to find a minimum
cost arborescence rooted at r which spans all vertices in K.

In the online version of the problem, the terminals in K are revealed to the
algorithm as a sequence of requests. When a request for terminal u ∈ V is issued,
and assuming a directed graph, the algorithm must guarantee a directed path
from r to u. The input graph G is assumed to be known to the algorithm. Using
the standard framework of competitive analysis (see, e.g., [9]), the objective is
to design online algorithms of small competitive ratio. More precisely, the com-
petitive ratio is defined as the supremum (over all request sequences and input
graphs) of the ratio of the cost of the arborescence produced by the algorithm
over the optimal off-line cost assuming complete knowledge of the request set
K.

Apart from its theoretical importance and its application in several combi-
natorial optimization problems, the Steiner tree problem is useful in modeling

Dagstuhl Seminar Proceedings 09171
Adaptive, Output Sensitive, Online and Parameterized Algorithms
http://drops.dagstuhl.de/opus/volltexte/2009/2121

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62914438?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 S. Angelopoulos

efficient multicast communication over a network. Indeed, multicasting involves
dissemination of information from a designated source to members of a subscrib-
ing group. The online variant describes then the situation in which subscribers
to the service are not known beforehand, but rather issue dynamic requests to
join the group. The reader is referred to [16] for a study of the relation between
Steiner tree problems and network multicasting.

In this paper we focus on the following on-line Steiner tree problems, and
review some recent results obtained in [2,3,4].

• In the asymmetric Steiner tree problem, the underlying graph is directed, and
a specific vertex r ∈ V is designated as the root. We define the asymmetry α
of graph G as the maximum ratio of the cost of antiparallel links in G. More
formally, let A denote the set of pairs of vertices in V such that if the pair u, v
is in A, then either (v, u) ∈ E or (u, v) ∈ E (i.e, there is an edge from u to v or
an edge from v to u or both). Then the edge asymmetry is defined as

α = max
{v,u}∈A

c(v, u)

c(u, v)

Given a set K ⊆ V of terminals, we seek the minimum cost arborescence rooted at
r that spans all vertices in K. In addition, our aim is to express the performance
of the algorithm in terms of the parameters k and α.

• The priority Steiner tree problem. Here, the underlying network is represented
by a graph G = (V, E) (which unless specified, is assumed to be undirected). Let
r ∈ V denote the source of the multicast group (which we also call root). We let
K ⊆ V denote the set of receivers of the multicast group, also called terminals.

In addition, the network can support a set of different Quality of Service
(QoS) levels that are modeled by b integral priorities 1 . . . b, where b is the highest
priority and 1 the lowest. Every edge e ∈ E is associated with its own priority
value p(e), which reflects the level of QoS capabilities of the corresponding link
(e.g., the bandwidth of the link) as well as with a cost value c(e) which reflects the
cost incurred when including the link in the multicast tree. Last, every terminal
t ∈ K is associated with a priority p(t) ∈ [1, b], which describes the QoS level it
requires. A feasible Steiner tree T in this model is a tree rooted in r that spans
K, and is such that for every terminal t ∈ K, the priority of each edge in the
path from r to t in T is at least p(t). The interpretation of this requirement is
that terminal t should be able to receive traffic at a level of QoS at least as good
as p(t). The objective of the problem is to identify a feasible tree of smallest
cost, where the cost of the tree is defined as the total edge-cost of the tree.

The asymmetric Steiner tree problem is motivated by the observation that
a directed graph is a more appropriate and realistic representation of a real
network. A typical communication network consists of links asymmetric in the
quality of service they provide. In [13], studies on the traffic of network back-
bones reveal marked asymmetry in parameters such as speed, link utilization
and reliability. For instance, a subscription to a home internet-cable service will
normally incur more traffic on the incoming (“download”) link than the outgo-
ing (“upload”) link. Nevertheless both directed links are expected to be present,

Parameterized Analysis of Online Steiner Tree Problems 3

albeit they may have different characteristics. This situation becomes even more
prevalent in wireless networks, due to differences in noise levels, power of trans-
mission, and mobility levels of its endpoints.

Note that according to this measure, undirected graphs are graphs of asym-
metry α = 1, whereas directed graphs in which there is at least one pair of
vertices v, u such that (v, u) ∈ E, but (u, v) /∈ E are graphs with unbounded
asymmetry (α = ∞). Between these extreme cases, graphs of small asymmetry
model networks that are relatively homogeneous in terms of the cost of antipar-
allel links.

On the other hand, the priority Steiner tree problem can formulate mul-
ticast communication in an environment comprised by heterogeneous users. A
multicast group consists of a source which disseminates data to a number of
receivers, i.e., the members of the group. These members may vary significantly
in their characteristics (such as the bandwidth of the end-connection or their
computational power), which implies that they may require vastly different QoS
guarantees in terms of the delivered traffic. The objective is to deliver infor-
mation to all members of the group, while meeting the requirements of each
individual member. Furthermore, this dissemination must be efficient in terms
of utilization of network links.

Parameterized analysis The asymmetric Steiner tree problem is a parameter-
ized version of the Steiner tree problem in directed graphs. It has long been
known, that in general directed graphs (i.e., graphs of unbounded asymmetry),
the competitive ratio can be as bad as Ω(k), which is trivially matched by a naive
algorithm that serves each request by buying a least-cost path from the root to
the requested terminal [17]. This motivates the study of the problem in graphs of
bounded asymmetry. In particular, one should expect that in graphs of bounded
α, the competitive ratio should be a function of both α and k; moreover, the
performance of an efficient algorithm should degrade gently as the asymmetry
increases.

A similar picture can be drawn for the priority Steiner tree problem. When
b at least as large as k (the number of terminals), it is easy to show that the
competitive ratio is Θ(k), which is again matched by the naive algorithm that
buys least-cost paths from the root of sufficient priority. In other words, the
competitive ratio is not a reliable measure unless the analysis is performed as-
suming a given value of b. Once again, we aim to express the competitive ratio
of algorithms as a function of both the number of terminals k and the number
of the priority levels b, and we expect that as b increases, the competitiveness of
the problem degrades.

1.1 Related work

Steiner tree problems have been extensively studied from the point of view of on-
line algorithms. For graphs of either constant or unbounded asymmetry, the com-
petitive ratio is tight. For the former class, Imase and Waxman [15] showed that
a simple greedy algorithm is optimal and achieves competitive ratio Θ(log k).

4 S. Angelopoulos

Berman and Coulston [8] extended the result to the Generalized Steiner prob-
lem by providing a more sophisticated algorithm. The performance of the greedy
algorithm for online Steiner Trees and its generalizations has also been studied
by Awerbuch et al. [5] and Westbrook and Yan [18]. For the online Steiner Tree
in the Euclidean plane, the best known lower bound on the competitive ratio is
Ω(log k/ log log k) due to Alon and Azar [1].

The first study of the online asymmetric Steiner tree problem is due to
Faloutsos et al. [14] who showed that a simple greedy algorithm has compet-
itive ratio O(min{α log k, k}). On the negative side, they showed a lower bound

of Ω
(

min
{

α log k
log α , k

})

on the competitive ratio of every deterministic algorithm.

It is important to note that when α ∈ Ω(k) the lower bound on the compet-
itive ratio due to [14] is Ω(k), which is obviously tight (using the trivial upper
bound of O(k) for the greedy algorithm). Thus the problem is interesting only
when α ∈ o(k).

The priority Steiner tree problem was introduced by Charikar, Naor and
Schieber [11]. In their work, they provided a O(min{log k, b}) approximation
algorithm. The question of whether the problem could be approximated within
a constant factor was left open in [11], and sparked considerable interest in
this problem, until Chuzoy et al. [12] showed a lower bound of Ω(log log n)
(under the complexity assumption that NP has slightly superpolynomial time
deterministic algorithms). Interestingly, this is one of few problems for which a
log log inapproximability result is currently the best known.

2 Results and techniques

In this section we summarize some recent improved bounds for the online asym-
metric and priority Steiner tree problems. We provide only sketches of the proofs;
the interested reader is referred to [2,3,4] for the technical details.

The upper bounds for both problems are achieved by simple greedy algo-
rithms (to which we refer as Greedy). For the asymmetric Steiner tree problem
Greedy works by connecting each requested terminal u to the current arbores-
cence by buying the edges in a least-cost directed path from the current arbores-
cence to u. For the priority Steiner tree problem, Greedy serves a request of the
form (u, p) (namely, a new terminal u issues a request for a path of priority at
least p), by buying the edges in a least-cost path from the current arborescence
to u, such that there exists a path from the root to u of priority at least p (among
edges already bought).

2.1 Summary of results

For the online asymmetric Steiner we derive following upper bound:

Theorem 1 ([2,3]). The competitive ratio of Greedy for an input graph of
asymmetry α and a request sequence of k terminals is

O
(

min
{

max
{

α log k
log α , α log k

log log k

}

, k
})

.

Parameterized Analysis of Online Steiner Tree Problems 5

On the negative side, one can show the following near-tight lower bound:

Theorem 2 ([3]). Any deterministic algorithm for the Steiner tree problem in

graphs of asymmetry α has competitive ratio Ω
(

min
{

max
{

α log k
log α , α log k

log log k

}

, k1−ε
})

(where ε is any arbitrarily small constant).

For the online priority Steiner tree problem, we obtain a tight bound for both
deterministic and randomized algorithms:

Theorem 3 ([4]). The competitive ratio of every deterministic or randomized
online algorithm for priority Steiner tree is Θ

(

min{b log k
b , k}

)

.

Last, as a combination of the two problems, we study the competitiveness
of priority Steiner tree assuming directed graphs. If antiparallel links have the
same costs, but their priorities can differ by as little as one, it is easy to show
a tight bound of Θ(k) on the competitive ratio. Hence we focus on the case in
which antiparallel links have the same priority, but their costs may vary. In par-
ticular, we consider directed graphs of bounded edge-cost asymmetry α. For this

case, we derive an upper bound of O
(

min
{

max
{

αb log(k/b)
log α , αb log(k/b)

log log(k/b)

}

, k
})

,

and a corresponding lower bound of Ω
(

min
{

αb log(k/b)
log α , k1−ε

})

(where ε is any

arbitrarily small constant).

2.2 Outline of techniques

We begin with some preliminary notation and definitions. The cost of a directed
path p will be denoted by c(p). We denote by c(T) the cost of arborescence
T , namely the sum of the cost of the directed edges in T . We emphasize that
only edges in T and none of their antiparallel edges contribute to c(T). We
will always use T ∗ to denote the optimal arborescence on input (G, K), with
|K| = k, and OPT = c(T ∗). For any K ′ ⊆ K, we let cGR(K ′) denote the cost
that Greedy pays on the subset K ′ of the input (in other words, the contribution
of terminals in K ′ towards the total cost of Greedy). Similar definitions extend
to the priority Steiner tree problem.

Asymmetric Steiner tree

Upper bound In order to prove Theorem 1, we first show that it applies to
situations in which the spanning arborescence has a fairly simple structure: in
particular, to instances called comb instances in [2] (see Figure 1 for an illustra-
tion).

Definition 1. Let T ′ denote a tree rooted at vertex r′ ∈ V and let K ′ ⊆ K, with
|K ′| = k′. We call the triplet C = (T ′, K ′, r′) a comb instance, or simply comb
if the following hold: T ′ consists of a directed path P from r′ to a certain vertex
v1, which visits vertices vk′ , . . . , v1 in this order (but possibly other vertices too);
there are also disjoint directed paths ti from vi to ui. No other edges are in T ′.

6 S. Angelopoulos

Finally the set K ′ is precisely the set {u1, . . . , uk′}. We call P the backbone of
C, and the paths ti the terminal paths of the comb. The vertex set of C is the set
of vertices in T ′.

The following is a key theorem in the analysis of Greedy. Essentially the
theorem states that we can achieve the desired competitive ratio if we know, for
instance, that (T ∗, K, r) is a comb.

Theorem 4. Given the comb C = (T ′, K ′, r′), let z ∈ K ′ denote the terminal
requested the earliest among all terminals in K ′. Then cGR(K ′) = cGR(z) +

O
(

max
{

α log k′

log α , α log k′

log log k′

})

c(T ′).

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

tk′

. . .

u1 u2

v1 v2 vk′
−1 vk′

uk′uk′
−1

r
′

t1 t2 tk′
−1

Fig. 1. The structure of a comb instance.

Given Theorem 4, the main result follows by partitioning the set of all re-
quests K into a collection of near-disjoint comb-instances. Here, by near-disjoint
we require that every edge in T ∗ appears in at most two comb instances.

In order to prove Theorem 4, let π denote a permutation of {1, . . . , k′} such
that σ = uπ1

, . . . , uπk′
is the sequence of the requests in K ′ in the order in

which they are requested (hence z = uπ1
). Note that we aim towards bounding

cGR(K ′\uπ1
). To this end, we need to determine an assignment for every terminal

uπi
with 2 ≤ i ≤ k′ to a specific terminal uπi

∈ {uπ1
, . . . uπi−1

}. We call terminal

uπi
the mate of uπi

. Let qi denote the directed path in T̂ from uπi
to uπi

, also

called the connection path for uπi
. Since cGR(K ′ \ uπ1

) ≤ ∑k′

i=2 c(qi) suffices to
show that:

C
def
=

k′

∑

i=2

c(qi) = O

(

max

{

α
log k′

log α
, α

log k′

log log k′

})

c(T ′). (1)

Comb instances were identified in [2] as the hard instances for the problem,
and for such instances, a weaker version of Theorem 4 was proved (c.f. Lemma
3.2 in [2]). More precisely, the definition of the comb in [2] requires a strict upper
bound of O(α) on the number of terminals in the comb: this leads to an upper

bound for cGR(K ′ \ uπ1
) equal to O

(

α log α
log log α

)

c(T ′). The proof of the main

result in [2] proceeds then by first extending the result to all subtrees of T ∗ of

Parameterized Analysis of Online Steiner Tree Problems 7

O(α) terminals (not necessarily combs), and then by applying it, in a recursive
manner, in a hierarchical partition of T ∗ in trees of O(α) terminals each. This
process yields an additional multiplicative overhead of log k/ log α compared to
the cost incurred by a comb instance of size O(α).

In [3] we follow a different approach. We allow the combs to contain an
arbitrarily large number of terminals, which may very well be in Ω(α). This
allows us to bypass the need for recursion, and thus to save the factor log k/ logα.
Instead, as already mentioned, suffices to decompose T ∗ (and K) into a collection
of near-disjoint comb instances. In this more general setting, some of the high-
level proof ideas remain as in [2]: we still partition the terminals in a comb in
appropriately defined subsets called runs which dictate how to select the proper
mate for each terminal. However, the definition of runs and the assignment of
mates in [2] is not applicable anymore when k′ ∈ Ω(α): more specifically, a
connection path can be as costly as the cost of the backbone (which becomes
far too expensive if the number of terminals in the comb is in Ω(k)). Instead, a
substantially more involved assignment is required. We then perform an amortize
analysis so as to bound the overall cost incurred by the assignment.

Lower bound We sketch how to derive a lower bound of Ω(min{α log k
log log k , k1−ε}),

which in conjunction with the lower bound of [14]) yields Theorem 2. Consider
the graph G illustrated in Figure 2: this graph will provide the motivation behind
the definition of the actual adversarial input graph. Graph G is such that all
“downwards” edges are cheap, whereas all “upwards” edges are expensive, and
each has cost α times the cost of its antiparallel upwards edge. In particular,
there is a path from the root r to a vertex t such that the cost of the directed
path r → t is equal to 1 (hence the cost of the path t → r is α). Call P the path
from s to t.

In addition, there are Θ(k) pairs of vertices, of the form (vi, ui), defined in a
recursive manner as follows. Let x be such that xx = k, hence x = Θ(log k

log log k),
and assume without loss of generality that x is integral. The first group of ver-
tices, namely group K1, consists of x pairs such that the v′is are all evenly
distributed over the path P (namely the cost of the path from vi to vi+1, over
edges of P is the same for all i’s such that vi ∈ K1, and is also the same as the
cost of the path r → v1 and vx → t). In addition, the cost of the edge (vi, ui) is
equal to 1

x2 whereas is antiparallel edge has cost α 1
x2 .

Suppose now that groups K1, . . .Kj have been defined, we will show how
to define Kj+1. For every pair of consecutive vertices (vi, vi+1) in P such that
each of vi, vi+1 belongs in some Km with m ≤ j, we insert x vertices of the
form v1

i , . . . , vx
i , all distributed evenly over the path vi → vi+1. In addition, we

insert x vertices of the form ul
i, l ∈ [1, x] such that the cost of the edge (vl

i, u
l
i)

is 1
xj+2 , while the antiparallel edge (ul

i, v
l
i) has cost α 1

xj+2 . We do the same with
the pairs (r, v1) and vlast, t), where vlast is the bottom vertex among all groups
Km with m ≤ j We continue until x groups have been defined. Note that the
total number of u-vertices is then Θ(k).

The adversary will request u-vertices as terminals in rounds. In particular,
in round i, with 1 ≤ i ≤ x, the adversary will request the u-vertices of group

8 S. Angelopoulos

Ki, in a bottom-up manner (i.e., starting from the u-vertex which is the farthest
away from r and ending with the one that is the closest).

t

r

Fig. 2. The structure of the adversarial graph G, for the case x = 2. Only
“cheap” edges are shown while “expensive” antiparallel edges are omitted.

To illustrate the intuition behind our argument, we will make the following
assumption: suppose that every time the algorithm establishes a new connection
path for a certain request (i.e., a path from a previously requested terminal),
several new edges must be bought, in the sense that there is little overlapping
between the new connection path and the ones which have already been estab-
lished. Of course this is not the case in G itself, and enforcing this requirement
is by no means a trivial task. In fact, much of the details in the formal proof of
Theorem 2 is dedicated to this issue.

Consider then the l-th u-vertex (terminal) requested in round j. There are
three options concerning the connection path for this u-vertex: either i) will
originate in r; or ii) originate in a “higher” vertex which was requested in an
earlier round; or iii) originate in a “lower” vertex which was requested before
u. In the second and third cases, a cost (roughly) of at least α 1

(x+1)j will be

incurred. It is easy to show that round j consists of Θ((x + 1)j) vertices. Thus,
if the majority of the requests in round j fall in the last two cases, a cost of
Ω(α) is incurred for the round. Otherwise, the majority of the requests in the
round are for terminals u which incur cost roughly the cost of the directed path
from r to u, which translates to a total cost of Ω(kj), where kj is the number
of requests in Kj. This argument shows that each round contributes a cost of
Ω(min{kj , α}). Since there are x rounds, the result will then follow by combining
the contribution of each round to the overall cost, and the observation that the
the optimal algorithm will buy the path P and all edges of the form (v, u), for
a total cost which can be shown that it is bounded by a constant.

Priority Steiner tree

Parameterized Analysis of Online Steiner Tree Problems 9

Upper bound We show a simple algorithm for the problem that is asymptot-
ically optimal. The result also implies that algorithm Greedy has the same
competitive ratio. We use the online greedy algorithm for the (plain) Steiner
tree problem in undirected graphs, which we denote by Gr. In particular, our
algorithm maintains b Steiner trees, T1, . . . Tb, one for each priority value, in an
online fashion (the trees may not be edge-disjoint, i.e., Ti may share edges with
Tj). When a request ri = (vi, bi) is issued, the algorithm will assign node vi to
forest Tbi

, by running the Gr algorithm for terminal vi (ignoring the priority
values). We denote the resulting algorithm by PrGr.

For any fixed integer j ≤ b, let Gj denote the subgraph of G induced by all
edges e of priority at least j. For any sequence of requests R = r1, . . . rk, partition
R into subsequences R1, . . . , Rb such that Rj consists of all requests in R of
priority equal to j. Let (Gj , Rj) denote an instance of the (plain) online Steiner
tree problem on graph Gj and request sequence Rj : here we ignore the priority
of edges and requests, and our objective is to minimize the cost of the Steiner
tree for the sequence Rj without concerns about priorities. Let OPTj denote
the cost of the optimal Steiner tree for the above instance. Since the greedy
algorithm is O(log |Rj |)-competitive, it follows that c(Rj) = O(log |Rj |)OPTj =
O(log |Rj |)OPT (this follows from the fact that OPTj ≤ OPT). Here, we denote
by c(Rj) the cost paid by PrGr on request set Rj (which is the same as the
cost of the greedy algorithm for instance (Gj , Rj), and by OPT the cost of the
optimal offline solution to the problem.

Therefore, the total cost of PrGr on sequence R is bounded by

c(R) = O

b
∑

j=1

log |Rj |OPT

 = O

log

b
∏

j=1

|Rj |

 OPT,

which is maximized when |Rj | = k
b (for k > b.) Hence c(R) = O

(

b log k
b · OPT

)

.

In addition, c(R) ≤ k · OPT . Therefore, c(R) = O
(

min
{

b log k
b , k

})

OPT ,
when k > b, and c(R) = O(k)OPT , otherwise.

Lower bound The crux in the proof of the lower bound in the statement of
Theorem 3 is to use an input graph and an appropriate request sequence such
that the following hold: there are b different groups of terminals, with each group
consisting of Θ(k/b) terminals. Group i ∈ [1, b] consists of terminals with priority
equal to i. Furthermore, the construction enables us to derive a lower bound of
Ω(log(k/b) on the total cost paid by any deterministic or randomized algorithm
to serve the requests in group i. This is achieved by creating a construction based
on the idea of the diamond graph for the standard online Steiner tree problem
(see [15]).

3 Conclusions and open problems

The objective of this report is to demonstrate that parameterized analysis can
yield more realistic bounds for online Steiner tree problems. As case studies we

10 S. Angelopoulos

considered the directed and priority Steiner tree problems. For the former, the
parameter of interest is the asymmetry of the graph, whereas for the latter, the
total number of different priority levels. Since in real networks these parameters
usually attain small values, our analysis establishes bounds which we believe
reflect better the true complexity of the problems.

We expect that similar types of analysis can be applicable to other on-line
optimization problems. A representative example is the problem of file alloca-
tion in general undirected networks, which is a well-studied problem in both
theory and applications of distributed systems. The influential work of Bartal
et al. [7] shows that if A is a c-competitive algorithm for the online Steiner
tree problem (in undirected graphs), then it is possible to derive a (randomized)
(2 +

√
3)c-competitive algorithm for file allocation. In a similar vein, Awerbuch

et al. [6] show that a (stronger) upper bound of O(min{log k, log Diam}) on the
competitive ratio of the greedy Steiner tree algorithm implies a deterministic al-
gorithm for file allocation with the same competitive ratio (here Diam denotes
the diameter of the graph). Notice that, as with multicasting, file allocation is
a problem motivated by distributed networks, and once again, it would only be
natural to study it under directed graphs. Therefore, we expect results for online
Steiner tree problems will provide a useful tool in resolving other online network
problems, in settings which are more realistic in practice.

Similar questions can be asked for approximation algorithms. For instance,
the directed Steiner tree problem in graphs of asymmetry α is O(min{α, kε})
approximable, as it follows from the result of Charikar et al. [10]. We conjecture
that this bound can be improved to O(min(αε, kε}), for arbitrarily small ε.

References

1. N. Alon and Y. Azar. On-line Steiner trees in the Euclidean plane. Discrete and
Computational Geometry, 10:113–121, 1993.

2. S. Angelopoulos. Improved bounds for the online Steiner tree problem in graphs
of bounded edge-asymmetry. In Proceedings of the 18th Annual Symposium on
Discrete Algorithms (SODA), pages 248–257, 2007.

3. S. Angelopoulos. A near-tight bound for the online Steiner tree problem in graphs
of bounded asymmetry. In Proceedings of the 16th Annual European Symposium
on Algorithms (ESA), pages 76–87, 2008.

4. S. Angelopoulos. Online priority Steiner tree problems. In Proceedings of the 20th
Symposium on Algorithms and Data Structures (WADS), 2009. To appear.

5. B. Awerbuch, Y. Azar, and Y. Bartal. On-line generalized Steiner problem. Theor.
Comp. Sci., 324(2–3):313–324, 2004.

6. B. Awerbuch, Y. Bartal, and A. Fiat. Competitive distributed file allocation.
Information and Computation, 185(1):1–40, 2003.

7. Y. Bartal, A. Fiat, and Y. Rabani. Competitive algorithms for distributed data
management. Journal of Computer and System Sciences, 51(3):341–358, 1995.

8. P. Berman and C. Coulston. Online algorithms for Steiner tree problems. In Proc.
of the 39th Symp. on the Theory of Computing, pages 344–353, 1997.

9. A. Borodin and R. El-Yaniv. Online computation and competitive analysis. Cam-
bridge University Press, 1998.

Parameterized Analysis of Online Steiner Tree Problems 11

10. M. Charikar, C. Chekuri, T. Cheung, Z. Dai, A. Goel, S. Guha, and M. Li. Approx-
imation algorithms for directed Steiner problems. Journal of Algorithms, 1(33):73–
91, 1999.

11. M. Charikar, J. Naor, and B. Schieber. Resource optimization in QoS multi-
cast routing of real-time multimedia. IEEE/ACM Transactions on Networking,
12(2):340–348, 2004.

12. J. Chuzhoy, A. Gupta, J. Naor, and A. Sinha. On the approximability of some
network design problems. Trans. on Algorithms, 4(2), 2008.

13. K. Claffy, G. Polyzos, and H.W. Braun. Traffic characteristics of the T1 NSFNET
backbone. In Proceedings of INFOCOM, 1993.

14. M. Faloutsos, R.Pankaj, and K. C. Sevcik. The effect of asymmetry on the on-line
multicast routing problem. Int. J. Found. Comput. Sci., 13(6):889–910, 2002.

15. M. Imase and B. Waxman. The dynamic Steiner tree problem. SIAM Journal on
Discrte Mathematics, 4(3):369–384, 1991.

16. C. A. S. Oliveira and P. M. Pardalos. A survey of combinatorial optimization
problems in multicast routing. Comput. Oper. Res., 32(8):1953–1981, 2005.

17. J. Westbrook and D. C. K. Yan. Linear bounds for on-line Steiner problems.
Information Processing Letters, 55(2):59–63, 1995.

18. J. Westbrook and D. C. K. Yan. The performance of greedy algorithms for the
on-line Steiner tree and related problems. Math. Syst. Theory, 28(5):451–468, 1995.

	Parameterized Analysis of Online Steiner Tree Problems
	Spyros Angelopoulos

