
Distillating knowledge about Scotch

François Pellegrini1

ENSEIRB-MATMECA, LaBRI and INRIA Bordeaux � Sud-Ouest
351, cours de la Libération, 33405 TALENCE, FRANCE

pelegrin@labri.fr

Abstract. Scotch is a software package for sequential and parallel
graph partitioning, static mapping and sparse matrix ordering, and for
sequential mesh/hypergraph ordering. It has been designed in a highly
modular way, so that new methods can be easily added to it, in order for
it to be used as a testbed for the design of new partitioning and ordering
methods.
This paper discusses the internal structure of the libScotch library
and describes, step by step, how a new method, for instance a sequential
vertex separation method, can be added to it.

Keywords. graph partitioning, data structures, API, library, modular
programming

1 Introduction

Scotch is a project carried out at the Laboratoire Bordelais de Recherche en

Informatique (LaBRI) of the Université Bordeaux I, and now within the Bacchus
project of INRIA Bordeaux Sud-Ouest. Its goal is to study the applications of
graph theory to several problems in scienti�c computing.

It focused �rst on static mapping, and has resulted in the development of the
Dual Recursive Bipartitioning (or DRB) mapping algorithm and in the study of
several graph bipartitioning heuristics [1], all of which have been implemented in
the Scotch software package [2]. Then, it focused on the computation of high-
quality vertex separators for the ordering of sparse matrices by nested dissection,
by extending the work which had been done on graph partitioning in the context
of static mapping [3, 4]. Afterwards, the ordering capabilities of Scotch have
been extended to native mesh structures, thanks to hypergraph partitioning
algorithms. New graph partitioning methods have also been added [5, 6]. Version
5.0 of Scotch was the �rst to comprise parallel graph ordering routines [7].
Parallel graph partitioning was introduced in version 5.1 [8], and parallel static
mapping in version 5.2.

Scotch is available under a dual licensing basis. On the one hand, it is
downloadable from the Scotch web page as free/libre software, to all inter-
ested parties willing to use it as a library or to contribute to it as a testbed for
new partitioning and ordering methods. On the other hand, it can also be dis-
tributed, under other types of licenses and conditions, to parties willing to embed

Dagstuhl Seminar Proceedings 09061 
Combinatorial Scientific Computing 
http://drops.dagstuhl.de/opus/volltexte/2009/2091

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62914394?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 F. Pellegrini

it tightly into closed, proprietary software. The free/libre software license under
which Scotch 5 is distributed is the CeCILL-C license [9], which has basically
the same features as the GNU LGPL (�Lesser General Public License�) [10]:
ability to link the code as a library to any free/libre or even proprietary soft-
ware, ability to modify the code and to redistribute these modi�cations.

This paper does not describe how to use the Scotch library, which is already
documented in the Scotch and PT-Scotch user's manuals [11, 12]. Rather, it
presents to potential contributors the internal structure of the Scotch soft-
ware package, and outlines how new partitioning, mapping or ordering methods,
whether sequential or parallel, can be added to it.

The rest of the paper is organized as follows. Section 2 presents the API
model, the internal data structures, and some coding conventions. Section 3 de-
scribes the general architecture of the library, the module naming conventions,
and the structure of the computation modules which are the heart of the li-
brary. Section 4 outlines the steps to follow to add a new method, in this case a
sequential vertex separation method, to the library.

2 API and data structures

2.1 API model

Unlike most partitioning libraries, Scotch does not provide an application pro-
grammer interface (API) based on single calls. Rather, it is based on the �build-
use-destroy� paradigm: prior to performing the actual computations, building
routines must be called to �ll the data structures on which the core of the li-
brary will operate, and destructing routines have to be called afterwards to free
the internal arrays which may have been created in the course of computations;
this is most true for parallel routines, which have to keep track of halo vertices
by means of speci�c data structures.

2.2 Opaque user data structures

Like for many libraries, API data structures are provided as opaque objects,
from which users cannot read or write without resorting to the accessor and
mutator routines also provided by the API. In order for compilers to enforce
memory alignment constraints when de�ning and padding these data structures
in memory, they are de�ned, in user include �les, as structures containing each
a �xed-size data array of double-precision values. The size of the data arrays
depends on the architecture for which the library is compiled. To compute and
set these sizes properly, a small program, called dummysizes, is compiled and
executed during the library building process. This solution is e�cient, but has
some drawbacks. First, it may pose problems when cross-compiling the library
for target architectures which have di�erent word sizes than the ones used by the
compilation platform. Also, when compiling the parallel version of Scotch, the



Distillating knowledge about Scotch 3

size of some MPI objects, such as communicator and datatype handles, must be
known. The simplest way to do that is to use the mpicc compilation command,
which provides access to the mpi.h include �le; however, on some architectures, it
requires the resulting program to be run by means of the mpirun or the mpiexec
commands, possibly in batch mode, hence causing compilation problems. This
is why the dummysizes program has a special compilation line which gives him
access to the mpi.h include �le without requiring to run it through the parallel
system of the target machine.

2.3 Integer type

In order for users to be able to handle large graphs on 32-bit systems with
extended address space, all integer quantities related to graphs are not directly
coded as int natural integer types, but instead use a speci�c type called Gnum,
which can derive from any integer type at least as large as int, such as int

itself, long or even long long.
This type is available to users, through the API include �le scotch.h, as

type SCOTCH_int. Since this declaration as no equivalent in the Fortran interface,
Fortran users have to specify explicitly the size of the integer type of the variables
used to interact with the Scotch API, by means of INTEGER*4 or INTEGER*8
declarations.

2.4 Base value and based accesses

Scotch can be called either from C or from Fortran. However, in C, arrays
start at index 0, while in Fortran they start at index 1. This is not a problem
for accessing the arrays themselves (in both languages, the reference which is
passed always points to the �rst cell of the array), but it impacts how to access
an array from indices stored in another array. In this case, the values stored in
the indexing array may start from 0 or 1, according to the language used, and
if these values are used to access another array, the library must know whether
index 1 should refer to its �rst cell (Fortran style) or to its second cell (C style).

To solve this problem, the Scotch API requires that the index base value
be passed when declaring data structures which make use of indirect indexing,
such as graph structures. This base value, referred to as baseval in the Scotch
coding rules, is used to adjust all internal references to arrays. Let datatab

be some reference to the �rst cell of an array as returned from malloc, for
instance. This array will always be accessed through the datatax (for �table
access�) reference, de�ned as datatax = datatab − baseval. Hence, datatax
[baseval] always refers to the �rst cell of an array, whether indexing starts from
0 or 1. The �tab� su�x is reserved to arrays which are never accessed through
other index arrays.

2.5 Basic and augmented graph data structures

Scotch being a graph-based library, the main data structures it handles are
unoriented graphs, declined on many �avors depending on their internal use



4 F. Pellegrini

(for edge bipartitioning, vertex separation, k-way static mapping, etc). These
graphs are classically represented as adjacency lists, with some implementation
speci�cities. Readers interested in these aspects can refer to the user's guides of
Scotch [11] and PT-Scotch [12], which describe extensively the implementa-
tion of the centralized and distributed graph data types, respectively.

Augmented graph data structures are used, in each computation module, to
store the current state of a bipartition, a vertex separator or a static mapping.
Basically, a centralized (resp. distributed) augmented graph data structure con-
tains a standard Graph (resp. Dgraph) structure, plus speci�c �elds depending
on the type of augmented graph.

For instance, the centralized bipartition graph Bgraph contains, among oth-
ers, �elds which represent the ideal load in part 0 (called compload0avg, and
which may be di�erent from half of the overall graph load if unequal parts are
desired), the current load in part 0 (called compload0), an array holding the cur-
rent part of each vertex (parttax), an array holding the indices of all frontier
vertices (frontab, which accelerates the initialization of FM-like algorithms),
etc.

3 Library architecture

The modularity of the API of Scotch is re�ected in the modularity of its coding.
The source code of Scotch is made of more than 450 �les written in C, 410 of
which belong to the libscotch library itself.

3.1 Global structure

The modular structure of the libScotch library is outlined in Figure 1, page 5.
Although it is coded in an imperative language, its design follows the principles
of object-oriented programming. A module is a set of �les, the functions of which
all operate on instances of a common data type, de�ned by a typedef struct

construct of the C language. In that respect, the module functions represent the
private and public methods of the class the abstract type of which is de�ned by
the structure.

3.2 Naming conventions

Naming conventions strongly re�ect our object-oriented coding model. The data
structure representing the main data type of a module is named after the name
of the abstract type, with a capital �rst letter, e.g. Graph for the centralized
graph, Ordering for the centralized ordering, Strat for the syntactic tree of a
parsed strategy, etc.

Types derived from the Graph type receive one or more pre�x letters, e.g.
Vgraph is the augmented graph structure used to compute vertex separators
(vertex cut), Bgraph is used to compute bipartitions (edge cut), Kgraph is used to
compute k-way static mappings, and Hgraph is used to compute halo orderings.



Distillating knowledge about Scotch 5

API

I/O

Vertex
separation

Apprx. min
degree/fill

Recursive
bipartitioning

Static
mapping

Ordering

Error
handling

Strategy
parsing

Target
architecture

API

Binaries I/O

Vertex
separation

OrderingStatic
mapping

Recursive
bipartitioning

Binaries

Parallel
Processing

Processing
Sequential

Routines
Service

modules
Internal

modules
Public

Fig. 1. Sketch of the modular structure of the libScotch library. The core capabilities
of Scotch, that is, static mapping and sparse matrix ordering, are implemented both
as sequential and parallel routines, the latter taking advantage of the former when sub-
graphs are small enough to be handled on a single processing element. Lines represent
major dependencies between the main modules.

Similarly, the Dgraph type, which de�nes distributed graphs, is derived into
Vdgraph, Bdgraph, Kdgraph and Hdgraph.

Every data type of name �Type� is de�ned in a �le named type.h, with at
least a corresponding type.c �le holding the constructor and destructor rou-
tines, among others. All routines are pre�xed by the name of the type they
apply to. Basic routines have a normalized name, e.g. type Init for the con-
structor, type Exit for the destructor, type Load and type Save for I/O, type
View for debug output, etc. In order to save time and improve memory usage,
data structures are never allocated dynamically in the constructors themselves.
Following the paradigm of passing every variable by reference, every routine is
passed a pointer to an instance of the structure on which to operate (analog
to the �this� reference in object-oriented languages). This pointer is used by
the constructor to initialize the structure �elds and/or allocate secondary data
structures whenever necessary, and by the destructor to free such secondary
data structures (but the structure itself is not, as it was not allocated by the
constructor).

Callers have therefore full control on memory allocation for data structures:
either by allocating them dynamically in the heap, or in the stack as a local



6 F. Pellegrini

storage, or else statically. This latter option is almost never used in Scotch, be-
cause global variables prevent routines from being reentrant. Since PT-Scotch
may make use of threads, and as users of Scotch may want to use it in a multi-
threaded environment, all of the library routines have been coded so as to be
reentrant; the only exceptions concern the strategy parser (depending on the
code produced by Lex and Yacc), and error handling, for which the name of
the calling program is stored as a static variable.

3.3 Consistency checking

As part of our coding standards for quality, every structured type must possess
a type Check routine, to assert the validity of as many data type axioms as
possible. For instance, for the Graph type, graphCheck veri�es that for each
edge (i, j) there exists an edge (j, i) of same weight, that the graph has no loops,
etc. Every violated axiom leads to the output of a speci�c error message, to
track down problems as precisely as possible. These type Check routines are
called at the end of any routine which modi�es an instance of the given type.
Since these routines can be costly, their calling is conditioned by the de�nition of
a preprocessor debug symbol, one per module. This allows developers to activate
only part of the debug routines and save time in other parts of the code.

Large modules are naturally split into several �les. Each �le name is pre�xed
by the name of the module, followed by one or more quali�ers describing the
contents of the �le, separated by underscores, e.g. dgraph_coarsen.c, dgraph_
match_sync_coll.c, etc.

3.4 Structure of computation modules

Computation modules are the modules of the augmented graphs, which contain
the expertise of the library. They contain the di�erent methods which can be
called through strategy strings. Each method �le is identi�ed by a uniform, two-
letter su�x: �fm� for Fiduccia-Mattheyses (FM) [13] like partitioning algorithms,
�gg� for greedy graph growing partitioning methods, �hf� for halo minimum �ll
ordering, �ml� for the multi-level framework, etc. Hence, the edge and vertex
variants of FM methods for centralized graphs can be found in bdgraph_bipart_

fm.c and vdgraph_separate_fm.c, respectively. All of the method �les have
an associated header �le of same name, which contains the prototype of the
public method routine, e.g. vgraphSeparateFm, and eventually of its private
subroutines as well as the de�nition of internal data types.

For each computation module, a speci�c �le, of method code �st�, handles
the interpretation of the strategy string for the given type of augmented graph.
All of such �st� method �les have the same structure. Basically, they contain
two main tables, and an entry point routine. These tables contain all of the
data needed by the strategy string parser to build a syntactic tree from strategy
strings, and to interpret it at run-time. The �rst table associates with each single-
letter code representing the method (e.g. �f� for a FM method), the pointer to
the corresponding method routine. The second table lists the names of all the



Distillating knowledge about Scotch 7

method parameters, their type, and the o�set in the tree node data structure
where to write the parsed values.

The entry point routine, when passed pointers to the augmented graph to
process and to the root of the strategy syntactic tree, acts according to the type
of the tree node. If the node is a method node, it calls the proper method; if the
node is a selector node, it recursively calls itself on each of the two sons of the
node, recording the partition computed by each, and keeps the best of the two,
etc.

All of the methods can take advantage of service routines which operate on
the fundamental graph types, e.g. graphCoarsen for the sequential multi-level
routine, dgraphInduce for the parallel nested dissection method, etc.

4 Adding a new method

The libScotch has been carefully designed so as to allow external contributors
to add their own partitioning or ordering methods. This can be done in few, easy
steps.

4.1 Computation modules

There are currently ten types of methods which can be added: sequential k-way
graph mapping methods (kgraph_map_), sequential graph bipartitioning meth-
ods by means of edge separators (bgraph_bipart_), sequential graph order-
ing methods (hgraph_order_), sequential graph separation methods by means
of vertex separators (vgraph_separate_), sequential mesh ordering methods
(hmesh_order_), sequential mesh separation methods by means of vertex sep-
arators (vmesh_separate_), parallel k-way graph mapping methods (kdgraph_
map_), parallel graph bipartitioning methods by means of edge separators (bd
graph_bipart_), parallel graph ordering methods (hdgraph_order_), and par-
allel graph separation methods by means of vertex separators (vdgraph_sepa
rate_). Each of these methods operates on corresponding augmented graph
structures. To date, Scotch does not comprise any parallel mesh ordering or
separation features, nor any mesh partitioning capabilities, whether sequential
or parallel.

4.2 Coding the new method

Let us assume that a contributor wants to add a new sequential graph separation
routine. This routine will operate on a Vgraph structure, and will be stored in
�les called vgraph_separate_xy.[ch], where xy is a yet unassigned two-letter
code for the new method. If the implementation of the method requires more
than one source �le, extended names can be used, such as vgraph_separate_
xy_subname.[ch].

In order to ease coding, the �les of a simple and already existing method
can be used as a pattern for the interface of the new method. Contributors are



8 F. Pellegrini

encouraged to browse through all existing methods to �nd the one that looks
closest to what they want. In order to understand better the meaning of each
of the �elds used by augmented graph or mesh structures, contributors can take
advantage of the source code of the consistency checking routines, located in �les
ending with �_check.c�, e.g. vgraph_check.c for the Vgraph structure.

Some methods can be passed parameters at run time, from the strategy string
parser. These parameters can only be of four types: integer (in fact, a parser INT,
equivalent to a Gnum, so as to be able to store any discrete value as large as the
size of the graph), double precision �oating-point, enumeration (this char type
is used to make a choice among a list of single character values, such as �yn�,
which is more readable than giving integer numerical values to method option
�ags), and strategy (Scotch Strat type). Indeed, a method can be passed a
sub-strategy of a prescribed type, which can be applied to any augmented graph
of this type. For instance, the nested dissection method in hgraph_order_nd

.c calls the graph separation strategy entry point in vgraph_separate_st.c to
compute its vertex separators.

The method parameters to be passed from the strategy string must be de-
clared in a speci�c structure de�ned in the method header �le, e.g. structure
VgraphSeparateXyParam in �le vgraph_separate_xy.h.

4.3 Declaring the new method to the parser

Once the new method has been coded, its interface must be known to the parser,
so that it can be referred to in strategy strings. All of this is done in the module
strategy method �le, the name of which always ends in �_st.[ch]�, e.g. vgraph_
separate_st.[ch] for the Vgraph module. Both the �.c� and �.h� �les must
be updated.

In strategy method header �le vgraph_separate_st.h, a new upper-case
enum value must be created for the new method in the declaration of the Vgraph
SeparateStMethodType enumerated type, preferably placed in alphabetical or-
der, e.g. VGRAPHSEPASTMETHXY (in this only case, �SEPARATE� has been shortened
in �SEPA�).

In �le vgraph_separate_st.c, several updates have to be performed. First,
at the beginning of the �le, the header �le vgraph_separate_xy.h of the new
method must be added to the list of included method header �les, preferably in
alphabetical order for the sake of readability.

Then, if the new method has parameters, an instance of the method parame-
ter structure must be created, which will hold the default values for the method.
This is in fact a union structure, of the following form:

static union {

VgraphSeparateXyParam param;

StratNodeMethodData padding;

} vgraphseparatedefaultxy = { { ..., ..., ... } };

where the dots should be replaced by the list of default values of the �elds
of the VgraphSeparateXyParam structure. Note that the size of the StratNode



Distillating knowledge about Scotch 9

MethodData structure, which is used as a generic padding structure, must always
be greater than or equal to the size of each of the parameter structures. If the new
parameter structure is larger, it is necessary to update the size of the StratNode
MethodData type in �le parser.h. The size of the StratNodeMethodData type
does not depend directly on the size of the parameter structures (as could have
been done by making it an union of all of them) so as to reduce the dependencies
between the �les of the library. In most cases, the default size is su�cient, and
a safety test is added in the beginning of all method routines to ensure it is the
case in practice.

Finally, the �rst two tables of the �le must be updated. In the �rst one, of
type StratMethodTab, one must add a new line containing the character code
used to name the method in strategy strings (which must be chosen among all
of the yet unused letters), the pointer to the method routine, and the pointer to
the above default parameter structure if it exists (else, a NULL pointer must be
given). It is essential that the order in which the methods are declared in this
table be the same as the one of the enum declaration in the strategy header �le.
Else, the wrong method will be called.

In the second table, of type StratParamTab, one line must be added per
method parameter, each giving the identi�er of the method, the type of the
parameter, the name of the parameter in the strategy string, the base address of
the default parameter structure, the actual address of the �eld in the parameter
structure (both �elds are required because the relative o�set of the �eld with
respect to the starting address of the structure cannot be computed at compile-
time), and an optional pointer which references either the strategy table to be
used to parse the strategy parameter (for strategy parameters) or a string holding
all of the values of the character �ags (for an enumerated type), this pointer being
set to NULL for all of the other parameter types (integer and �oating point).

4.4 Adding the new method to the Make�le

Of course, in order to be compiled, the new method must be added to the
Makefile of the libscotch source directory. There are several places to update.

First, an entry must be created for the new method source �les themselves.
The best way to proceed is to search for the one of an already existing method,
such as vgraph_separate_fm, and to copy it to the right place, preferably in
alphabetical order.

Then, the new header �le must be added to the dependency list of the module
strategy method, e.g. vgraph_separate_st for graph separation methods. It is
easy to search for the occurrence of string vgraph_separate_st to see where
this is done.

Finally, the new object �le must be added to the contents list of the libscotch
library �le.

Once all of this is done, Scotch can be recompiled. It will then able to use
the new method within strategy strings.



10 F. Pellegrini

5 Programming tips

Several programming tips can help programmers of graph algorithms obtain
good performance on today's architectures. Here are some of them, which are
extensively used in the coding of Scotch.

5.1 Removing conditional branches

With the advent of pipelined processors, not breaking execution streams is a
prerequisite for good performance. In particular, conditional branches have to
be avoided as much as possible. Since processors are now superscalar, it is most
often more e�cient to perform more computations without conditional branches
than to use them; only if branches are heavily biased can branch prediction
mechanisms save the day. In the context of graph partitioning, where computa-
tions depend on a {0, 1} part value (or {0, 1, 2} in the case of vertex separators),
some arithmetic tricks can help save conditional branches, as illustrated below.

In the two next examples of discrete computations for graph algorithms, the
superscalar versions (right) can be three times as fast as their their branching
counterparts (left) on classical processors [14]. The �rst code fragment updates
a value positively or negatively according to the part of a vertex. The second
computes the number of vertices belonging to parts 0, 1 and 2 from some part
array. The tricks below can be adapted to many equivalent situations.

if (part[i] == 0)

value += gain;

else /* (part[i] == 1) */

value -= gain;

value += gain * (1 - (part[i] << 1));

p0 = p1 = p2 = 0;

for (i = 0; i < n; i ++) {

if (part[i] == 0)

p0 ++;

else if (part[i] == 1)

p1 ++;

else /* (part[i] == 2) */

p2 ++;

}

p1 = p2 = 0;

for (i = 0; i < n; i ++) {

p1 += part[i] & 1;

p2 += part[i] & 2;

}

p2 >>= 1;

p0 = n - p1 - p2;

5.2 Increasing data locality

Even more critical than good processor usage is good memory usage. It is com-
mon for today's high-performance architectures to comprise up to three levels
of cache, and misusing them can result in slowdowns of more than one order
of magnitude compared to cache-friendly execution. In the case of graph algo-
rithms such as the ones used in the libScotch, several tips can help save many
memory wait cycles.



Distillating knowledge about Scotch 11

The �rst one regards vertex permutations. In many probabilistic algorithms,
such as edge matching, data structure artifacts, such as the order in which can-
didate vertices are processed, may have a strong impact on the quality of the
results. In order to avoid these artifacts, randomization techniques are most of-
ten integrated in the algorithms. For instance, the initial queue of vertices to be
processed is randomly permuted after having been �lled with all vertex indices
in order. However, such global permutations negatively impact memory accesses.
Since all graph algorithms use adjacency data, when vertices are processed in
arbitrary order, their adjacency lists are also fetched in arbitrary order, which
may cause many L2/L3 cache and TLB misses (we do not consider page faults,
as we expect all data to �t in main memory for performance reasons, all the more
in the parallel case). A solution to reduce such L2/L3 cache and TLB misses is to
compute cache-friendly permutations: once the queue array has been initialized
in order, it is permuted by chunks of a ten of vertices (the size of the chunk
is also random to reduce the probability of artifacts). Since the permutation is
highly local, we call it a �cache-friendly perturbation� instead. This technique is
implemented in all of our graph and mesh coarsening routines.

The second one regards the implementation of hash-tables, acting as data
caches, within the FM-like algorithms. Since these algorithms operate by moving
vertices close to the current partition boundaries, the ratio of vertices which see
their partition and swap gain data being updated at some point of the algorithm
is very low, because for most graph families separators are orders of magnitude
smaller than graph size [15]. Many FM algorithms already account for this fact
by initializing vertex swap gains for boundary vertices only, a technique referred-
to as �boundary FM� in the literature [16]. However, full data arrays are reserved
for that purpose, such that L2/L3 cache lines corresponding to these arrays are
most likely to be underused. To maximize cache line usage, vertex working data is
stored in a hash array, indexed by vertex number. Vertices which do not belong
to the hash array have not already been touched by the algorithm, and most
probably will never be. Once the algorithm completes, only the partition data
corresponding to in-hash vertices is updated. Adjacency lists of in-hash vertices
are not temporarily gathered to a common space, as no performance gain was
experienced when doing so in our prototypes. Indeed, these data already have
good L2 locality and are accessed for reading only, such that data re-access is
cheap once an adjacency list has been accessed once. Moreover, this gathering of
relevant edge data to a smaller working space is already performed when building
the band graphs on which our FM algorithms now operate by default [6].

References

1. Pellegrini, F.: Static mapping by dual recursive bipartitioning of process and
architecture graphs. In: Proc. SHPCC'94, Knoxville, IEEE (1994) 486�493

2. Pellegrini, F., Roman, J.: Scotch: A software package for static mapping by dual
recursive bipartitioning of process and architecture graphs. In: Proc. HPCN'96,
Brussels. LNCS 1067 (1996) 493�498



12 F. Pellegrini

3. Pellegrini, F., Roman, J.: Sparse matrix ordering with scotch. In: Proc. HPCN'97,
Vienna. LNCS 1225 (1997) 370�378

4. Pellegrini, F., Roman, J., Amestoy, P.: Hybridizing nested dissection and halo
approximate minimum degree for e�cient sparse matrix ordering. Concurrency:
Practice and Experience 12 (2000) 69�84

5. Chevalier, C., Pellegrini, F.: Improvement of the e�ciency of genetic algorithms
for scalable parallel graph partitioning in a multi-level framework. In: Proc. Euro-
Par'06, Dresden. Volume 4128 of LNCS. (2006) 243�252

6. Pellegrini, F.: A parallelisable multi-level banded di�usion scheme for comput-
ing balanced partitions with smooth boundaries. In: Proc. Euro-Par'07, Rennes.
Volume 4641 of LNCS., Springer (2007) 191�200

7. Chevalier, C., Pellegrini, F.: PT-Scotch: A tool for e�cient parallel graph order-
ing. Parallel Computing 34 (2008) 318�331

8. Her, J.H., Pellegrini, F.: E�cient and scalable parallel graph partitioning. Parallel
Computing (2009) Submitted.

9. CeCILL: (�CEA-CNRS-INRIA Logiciel Libre� free/libre software license) Available
from http://www.cecill.info/licenses.en.html.

10. GNU: (Lesser General Public License) Available from http://www.gnu.org/

copyleft/lesser.html.
11. Pellegrini, F.: Scotch and libScotch 5.1 User's Guide. LaBRI, Université

Bordeaux I. (2008) Available from http://www.labri.fr/~pelegrin/scotch/.
12. Pellegrini, F.: PT-Scotch and libScotch 5.1 User's Guide. LaBRI, Université

Bordeaux I. (2008)
13. Fiduccia, C.M., Mattheyses, R.M.: A linear-time heuristic for improving network

partitions. In: Proc. 19th Design Automation Conference, IEEE (1982) 175�181
14. Pellegrini, F.: Architectures et systèmes des calculateurs parallèles (2008)

Class notes. Available from: http://www.enseirb.fr/~pelegrin/enseignement/
enseirb/archsys/cours/c.pdf.

15. Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM J. on
Appl. Math. 36 (1979) 177�189

16. Hendrickson, B., Leland, R.: The chaco user's guide � version 2.0. Technical
Report SAND95�2344, Sandia National Laboratories (1995)




