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Algorithmic Differentiation Through Automatic Graph Elimina-
tion Ordering (ADTAGEO) is based on the principle of Instant Elimina-
tion: Instead of storing a representation of the complete Computational
Graph (tape-based approach of ADOL-C [1]) during the execution of
the code to be differentiated and applying some elimination sequence
afterwards, we dynamically maintain a DAG representing only active
variables that are alive at any point in time. Whenever an active vari-
able is deallocated or its value is overwritten the corresponding vertex in
the Live-DAG will be eliminated immediately by the well-known vertex
elimination rules [2].

Consequently, the total memory requirement is similar to that
of the sparse forward mode. However, if local variables are destructed
in the opposite order of their construction (as in C++), single assign-
ment sequences of a code are in effect differentiated in reverse mode.
Especially if compiler generated temporaries are destroyed in this way
Instant Elimination leads to statement level reverse mode of ADIFOR
[3] naturally.

More generally, the user determines the elimination order inten-
tionally (or unintentionally) by the order in which he declares variables.
This opens the opportunity to overcome the categorical separation be-
tween forward and reverse mode by creating hybrid modes by splitting
the computation of derivatives in forward and reverse parts. So a trade-
off can be achieved between the time consuming forward mode and the
memory intensive reverse mode of AD.

If the subgraph spanned between the independent and depen-
dent variables becomes bipartite by Instant Elimination than the desired
derivatives are full accumulated in the Live-DAG. Thus no explicit ini-
tiation of sweeps is required. Note that a bipartite Live-DAG can be
achieved often easily by restructuring the source code: Define a top-
level routine with independents and dependents only as arguments and
all other active variables locally in that top-level routine. Then Instant
Elimination makes sure that all vertices located between independent
and dependent variables will be removed on termination of the top-level
routine execution.
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On the other hand propagation routines can be implemented that
allow to send initial tangents of independents (forward propagation),
or initial adjoints of dependent variables (reverse propagation) through
non-bipartite Live-DAGs (or subgraph only) at any point in time. Since
a Live-DAG contains only variables alive propagation in a Live-DAG is
much cheaper than a propagation within the complete Computational
Graph. Note that a Live-DAG is build for the given evaluation point
only, since Instant Elimination will incorporate the evaluation point into
local partial derivatives determined by the vertex elimination rules. Nev-
ertheless repeated Jacobian-vector products for a fixed evaluation point
can be computed efficiently by propagation through the Live-DAG.

Second-order models of a function Y = F (X) can be evaluated by
extending the vertices of the Live-DAG with local Hessians and apply-
ing second-order elimination rules during vertex elimination. A Hessian-
vector product Ȳ F ′′Ẋ can be computed by an initial forward propaga-
tion of tangent Ẋ in the Live-DAG resulting in Ẏ = F ′Ẋ. Afterwards a
reverse sweep has to propagate both the given adjoint Ȳ and the com-
puted tangent Ẏ to accumulate the Hessian-vector product. Note that
the Live-DAG annotated with local Hessians stores one half of the sym-
metric Hessian graph only as suggested in [2].

Solving a least squares problem min(y,u)
1
2
‖y−y∗‖2 s.t. F (y, u) =

0 with a Gauss-Newton algorithm needs derivatives at two points: Solv-
ing the system F (y, u) = 0 for fixed control u with Newton’s method
requires ∂F (y, u)/∂y (inner iteration). The system has to be solved at
every step of the Gauss-Newton method (outer iteration), which itself re-
quires the derivatives ∂y(u)/∂u to update the control u. Computing the
nested derivatives ∂y(u)/∂u and ∂F (y, u)/∂y within a Live-DAG is ab-
solut painless since sensitivities between live variables can be determined
at any point in time.

The concept of maintaining a Live-DAG is very simple and fits
optimally into the strategy of overloaded operators for classes, it is a
very natural example of Object Oriented Programming. ADTAGEO is
a proof of concept implementation in C++ using the map-class of the
Standard Template Library (contact first author to get a copy).

Maintaining a Live-DAG is clearly a runtime issue. Nevertheless
source transformation AD-tools might augment the generated AD-code
with calls of runtime support routines that handle a graph structure
and perform Instant Elimination. Thus, the concept of Live-DAGs is not
restricted to AD-tools based on overloading.
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