View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Dagstuhl Research Online Publication Server

Algorithmic Differentiation Through
Automatic Graph Elimination Ordering
(ADTAGEO)

Jan Riehme!, Andreas Griewank?

! Department of Computer Science, University of Hertfordshire, UK,
riehme@stce.rwth-aachen.de
2 Department of Mathematics, Humboldt Universitét zu Berlin, Germany,
griewank@mathematik.hu-berlin.de

Keywords. Automatic Differentiation, Instant Elimination, Live-DAG,

symmetric Hessian-DAG, forward mode, reverse mode, checkpointing,
ADTAGEO

Algorithmic Differentiation Through Automatic Graph Elimina-
tion Ordering (ADTAGEO) is based on the principle of Instant Elimina-
tion: Instead of storing a representation of the complete Computational
Graph (tape-based approach of ADOL-C [1]) during the execution of
the code to be differentiated and applying some elimination sequence
afterwards, we dynamically maintain a DAG representing only active
variables that are alive at any point in time. Whenever an active vari-
able is deallocated or its value is overwritten the corresponding vertex in
the Live-DAG will be eliminated immediately by the well-known vertex
elimination rules [2].

Consequently, the total memory requirement is similar to that
of the sparse forward mode. However, if local variables are destructed
in the opposite order of their construction (as in C++), single assign-
ment sequences of a code are in effect differentiated in reverse mode.
Especially if compiler generated temporaries are destroyed in this way
Instant Elimination leads to statement level reverse mode of ADIFOR
[3] naturally.

More generally, the user determines the elimination order inten-
tionally (or unintentionally) by the order in which he declares variables.
This opens the opportunity to overcome the categorical separation be-
tween forward and reverse mode by creating hybrid modes by splitting
the computation of derivatives in forward and reverse parts. So a trade-
off can be achieved between the time consuming forward mode and the
memory intensive reverse mode of AD.

If the subgraph spanned between the independent and depen-
dent variables becomes bipartite by Instant Elimination than the desired
derivatives are full accumulated in the Live-DAG. Thus no explicit ini-
tiation of sweeps is required. Note that a bipartite Live-DAG can be
achieved often easily by restructuring the source code: Define a top-
level routine with independents and dependents only as arguments and
all other active variables locally in that top-level routine. Then Instant
Elimination makes sure that all vertices located between independent
and dependent variables will be removed on termination of the top-level
routine execution.

Dagstuhl Seminar Proceedings 09061
Combinatorial Scientific Computing
http://drops.dagstuhl.de/opus/volltexte/2009/2085

https://core.ac.uk/display/62914385?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

J. Riehme, A. Griewank

On the other hand propagation routines can be implemented that
allow to send initial tangents of independents (forward propagation),
or initial adjoints of dependent variables (reverse propagation) through
non-bipartite Live-DAGs (or subgraph only) at any point in time. Since
a Live-DAG contains only variables alive propagation in a Live-DAG is
much cheaper than a propagation within the complete Computational
Graph. Note that a Live-DAG is build for the given evaluation point
only, since Instant Elimination will incorporate the evaluation point into
local partial derivatives determined by the vertex elimination rules. Nev-
ertheless repeated Jacobian-vector products for a fixed evaluation point
can be computed efficiently by propagation through the Live-DAG.

Second-order models of a function Y = F(X) can be evaluated by
extending the vertices of the Live-DAG with local Hessians and apply-
ing second-order elimination rules during vertex elimination. A Hessian-
vector product YF"X can be computed by an initial forward propaga-
tion of tangent X in the Live-DAG resulting in Y = F'X. Afterwards a
reverse sweep has to propagate both the given adjoint Y and the com-
puted tangent Y to accumulate the Hessian-vector product. Note that
the Live-DAG annotated with local Hessians stores one half of the sym-
metric Hessian graph only as suggested in [2].

Solving a least squares problem min, ., & ||y —y*[|* s.t. F(y,u) =
0 with a Gauss-Newton algorithm needs derivatives at two points: Solv-
ing the system F(y,u) = 0 for fixed control u with Newton’s method
requires OF (y,u)/0y (inner iteration). The system has to be solved at
every step of the Gauss-Newton method (outer iteration), which itself re-
quires the derivatives dy(u)/0u to update the control u. Computing the
nested derivatives dy(u)/Ou and dF (y,u)/dy within a Live-DAG is ab-
solut painless since sensitivities between live variables can be determined
at any point in time.

The concept of maintaining a Live-DAG is very simple and fits
optimally into the strategy of overloaded operators for classes, it is a
very natural example of Object Oriented Programming. ADTAGEO is
a proof of concept implementation in C++ using the map-class of the
Standard Template Library (contact first author to get a copy).

Maintaining a Live-DAG is clearly a runtime issue. Nevertheless
source transformation AD-tools might augment the generated AD-code
with calls of runtime support routines that handle a graph structure
and perform Instant Elimination. Thus, the concept of Live-DAGs is not
restricted to AD-tools based on overloading.

References

1. Griewank, A., Juedes, D., Utke, J.: ADOL-C, a package for the auto-
matic differentiation of algorithms written in C/C++. ACM Trans.
Math. Soft. 22 (1996) 131-167

2. Griewank, A.: Evaluating Derivatives. Principles and Techniques of
Algorithmic Differentiation. STAM (2000)

3. Bischof, C.H., Carle, A., Khademi, P., Mauer, A.: ADIFOR 2.0: Au-
tomatic differentiation of Fortran 77 programs. IEEE Computational
Science & Engineering 3 (1996) 18-32

	Algorithmic Differentiation Through Automatic Graph Elimination Ordering (ADTAGEO)
	Jan Riehme, Andreas Griewank

