
Algorithmic Differentiation Through
Automatic Graph Elimination Ordering

(ADTAGEO)

Jan Riehme1, Andreas Griewank2

1 Department of Computer Science, University of Hertfordshire, UK,
riehme@stce.rwth-aachen.de

2 Department of Mathematics, Humboldt Universität zu Berlin, Germany,
griewank@mathematik.hu-berlin.de

Keywords. Automatic Differentiation, Instant Elimination, Live-DAG,
symmetric Hessian-DAG, forward mode, reverse mode, checkpointing,
ADTAGEO

Algorithmic Differentiation Through Automatic Graph Elimina-
tion Ordering (ADTAGEO) is based on the principle of Instant Elimina-
tion: Instead of storing a representation of the complete Computational
Graph (tape-based approach of ADOL-C [1]) during the execution of
the code to be differentiated and applying some elimination sequence
afterwards, we dynamically maintain a DAG representing only active
variables that are alive at any point in time. Whenever an active vari-
able is deallocated or its value is overwritten the corresponding vertex in
the Live-DAG will be eliminated immediately by the well-known vertex
elimination rules [2].

Consequently, the total memory requirement is similar to that
of the sparse forward mode. However, if local variables are destructed
in the opposite order of their construction (as in C++), single assign-
ment sequences of a code are in effect differentiated in reverse mode.
Especially if compiler generated temporaries are destroyed in this way
Instant Elimination leads to statement level reverse mode of ADIFOR
[3] naturally.

More generally, the user determines the elimination order inten-
tionally (or unintentionally) by the order in which he declares variables.
This opens the opportunity to overcome the categorical separation be-
tween forward and reverse mode by creating hybrid modes by splitting
the computation of derivatives in forward and reverse parts. So a trade-
off can be achieved between the time consuming forward mode and the
memory intensive reverse mode of AD.

If the subgraph spanned between the independent and depen-
dent variables becomes bipartite by Instant Elimination than the desired
derivatives are full accumulated in the Live-DAG. Thus no explicit ini-
tiation of sweeps is required. Note that a bipartite Live-DAG can be
achieved often easily by restructuring the source code: Define a top-
level routine with independents and dependents only as arguments and
all other active variables locally in that top-level routine. Then Instant
Elimination makes sure that all vertices located between independent
and dependent variables will be removed on termination of the top-level
routine execution.

Dagstuhl Seminar Proceedings 09061
Combinatorial Scientific Computing
http://drops.dagstuhl.de/opus/volltexte/2009/2085

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62914385?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 J. Riehme, A. Griewank

On the other hand propagation routines can be implemented that
allow to send initial tangents of independents (forward propagation),
or initial adjoints of dependent variables (reverse propagation) through
non-bipartite Live-DAGs (or subgraph only) at any point in time. Since
a Live-DAG contains only variables alive propagation in a Live-DAG is
much cheaper than a propagation within the complete Computational
Graph. Note that a Live-DAG is build for the given evaluation point
only, since Instant Elimination will incorporate the evaluation point into
local partial derivatives determined by the vertex elimination rules. Nev-
ertheless repeated Jacobian-vector products for a fixed evaluation point
can be computed efficiently by propagation through the Live-DAG.

Second-order models of a function Y = F (X) can be evaluated by
extending the vertices of the Live-DAG with local Hessians and apply-
ing second-order elimination rules during vertex elimination. A Hessian-
vector product Ȳ F ′′Ẋ can be computed by an initial forward propaga-
tion of tangent Ẋ in the Live-DAG resulting in Ẏ = F ′Ẋ. Afterwards a
reverse sweep has to propagate both the given adjoint Ȳ and the com-
puted tangent Ẏ to accumulate the Hessian-vector product. Note that
the Live-DAG annotated with local Hessians stores one half of the sym-
metric Hessian graph only as suggested in [2].

Solving a least squares problem min(y,u)
1
2
‖y−y∗‖2 s.t. F (y, u) =

0 with a Gauss-Newton algorithm needs derivatives at two points: Solv-
ing the system F (y, u) = 0 for fixed control u with Newton’s method
requires ∂F (y, u)/∂y (inner iteration). The system has to be solved at
every step of the Gauss-Newton method (outer iteration), which itself re-
quires the derivatives ∂y(u)/∂u to update the control u. Computing the
nested derivatives ∂y(u)/∂u and ∂F (y, u)/∂y within a Live-DAG is ab-
solut painless since sensitivities between live variables can be determined
at any point in time.

The concept of maintaining a Live-DAG is very simple and fits
optimally into the strategy of overloaded operators for classes, it is a
very natural example of Object Oriented Programming. ADTAGEO is
a proof of concept implementation in C++ using the map-class of the
Standard Template Library (contact first author to get a copy).

Maintaining a Live-DAG is clearly a runtime issue. Nevertheless
source transformation AD-tools might augment the generated AD-code
with calls of runtime support routines that handle a graph structure
and perform Instant Elimination. Thus, the concept of Live-DAGs is not
restricted to AD-tools based on overloading.

References

1. Griewank, A., Juedes, D., Utke, J.: ADOL-C, a package for the auto-
matic differentiation of algorithms written in C/C++. ACM Trans.
Math. Soft. 22 (1996) 131–167

2. Griewank, A.: Evaluating Derivatives. Principles and Techniques of
Algorithmic Differentiation. SIAM (2000)

3. Bischof, C.H., Carle, A., Khademi, P., Mauer, A.: ADIFOR 2.0: Au-
tomatic differentiation of Fortran 77 programs. IEEE Computational
Science & Engineering 3 (1996) 18–32

	Algorithmic Differentiation Through Automatic Graph Elimination Ordering (ADTAGEO)
	Jan Riehme, Andreas Griewank

