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Abstract. The C++ package ADOL-C described in this paper facili-
tates the evaluation of first and higher derivatives of vector functions that
are defined by computer programs written in C or C++. The numeri-
cal values of derivative vectors are obtained free of truncation errors at
mostly a small multiple of the run time and a fix small multiple random
access memory required by the given function evaluation program.
Derivative matrices are obtained by columns, by rows or in sparse for-
mat. This tutorial describes the source code modification required for
the application of ADOL-C, the most frequently used drivers to evaluate
derivatives and some recent developments.
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1 Introduction

ADOL-C is an operator overloading based AD-tool that allows to compute
derivatives for functions given as C or C++ source code. ADOL-C can han-
dle codes based on classes, templates and other advanced C++-features. The
resulting derivative evaluation routines may be called from C, C++, Fortran, or
any other language that can be linked with C.

ADOL-C facilitates the simultaneous evaluation of arbitrarily high direc-
tional derivatives and the gradients of these Taylor coefficients with respect to
all independent variables. Hence, ADOL-C covers the computation of standard
objects required for optimization purposes as gradients, Jacobians, Hessians, Ja-
cobian × vector products, Hessian × vector products, etc. The exploitation of
sparsity is possible via a coupling with the graph coloring library ColPack [1]
developed by the authors of [2] and [3]. For solution curves defined by ordinary
differential equations, special routines are provided that evaluate the Taylor co-
efficient vectors and their Jacobians with respect to the current state vector. For
explicitly or implicitly defined functions derivative tensors are obtained with a
complexity that grows only quadratically in their degree. The numerical values
of derivative vectors are obtained free of truncation errors at a small multiple
of random access memory required by the given function evaluation program.
The derivative calculations involve a possibly substantial but always predictable
amount of data. Most of this data is accessed strictly sequentially. Therefore,
it can be automatically paged out to external files if necessary. Furthermore,
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ADOL-C provides a so-called tapeless forward mode, where the derivatives are
directly propagated together with the function values. In this case, no addition-
ally sequential memory or data is required.

Applications that utilize ADOL-C can be found in many fields of science
and technology. This includes, e.g., fish stock assessment by the software pack-
age CASAL [4], computer-aided simulation of electronic circuits by fREEDA [5]
and the numerical simulation of optimal control problems by MUSCOD-II [6].
Currently, ADOL-C is further developed and maintained at the University of
Paderborn by a research group that is guided by Andrea Walther.

The key ingredient of automatic differentiation by overloading is the con-
cept of an active variable. All variables that may be considered as differentiable
quantities at some time during the program execution must be of an active type.
Hence, all variables that lie on the way from the input variables, i.e., the inde-
pendents, to the output variables, i.e., the dependents have to be redeclared to
be of the active type. For this purpose, ADOL-C introduces the new data type
adouble, whose real part is of the standard type double. In data flow terminology,
the set of active variable names must contain all its successors in the dependency
graph. Variables that do not depend on the independent variables but enter the
calculation, for example, as parameters, may remain one of the passive types
double, float, or int. There is no implicit type conversion from adouble to any of
these passive types; thus, failure to declare variables as active when they depend
on other active variables will result in a compile-time error message.

The derivative calculation is based on an internal function representation,
which is created during a separate so-called taping phase that starts with a call to
the routine trace on provided by ADOL-C and is finalized by calling the ADOL-
C routine trace off. All calculations involving active variables that occur between
the function calls trace on(tag,...) and trace off(...) are recorded on a sequential
data set called tape. Pairs of these function calls can appear anywhere in a
C++ program, but they must not overlap. The nonnegative integer argument
tag identifies the particular tape, i.e, internal function representation. Once, the
internal function representation is available, the drivers provided by ADOL-C
can be applied to compute the desired derivatives.

In some situations it may be desirable to calculate the derivatives of the func-
tion at arbitrary arguments by using a tape of the function evaluation at another
argument. Due to the avoidance of an additional taping process, this approach
can significantly reduce the overall run time. Therefore, the routines provided
by ADOL-C for the evaluation of derivatives can be used at arguments other
than the point at which the tape was generated, provided that all comparisons
involving adoubles yield the same result. The last condition implies that the
control flow is unaltered by the change of the independent variable values. The
return value of all ADOL-C drivers indicate this validity of the tape. If the user
finds the return value of an ADOL-C routine to be negative the taping process
simply has to be repeated by executing the active section again, since the tape
records only the operations that are executed during one particular evaluation
of the function.
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2 Preparing a Code Segment for Differentiation

The modifications required for the algorithmic differentiation with ADOL-C
form a five step procedure:

1. Include needed header-files
For basic ADOL-C applications the easiest way is to put
#include “adolc.h”
at the beginning of the file.
The exploitation of sparsity and the parallel computation of derivatives re-
quire additional header files.

2. Define the region that has to be differentiated
That is, mark the active section with the two commands:

trace on(tag,keep); Start of
... active section
trace off(file); and its end

These two statements define the part of the program for which an internal
representation is created

3. Declare all independent variables and dependent variables of type adouble
and mark them in the active section:

xa ≪= xp; mark and initialize independents
... calculations
ya ≫= yp; mark dependents

4. Declare all active variables, i.e., all variables on the way from the independent
variables to the dependent variables of type adouble

5. Calculate derivative objects after trace off(file)

Before a small example is discussed, some additional comments will be given.
The optional integer argument keep of trace on as it occurs in step 2 determines
whether the numerical values of all active variables are recorded in a buffered
temporary file before they will be overwritten. This option takes effect if keep = 1
and prepares the scene for an immediately following reverse mode differentiation
as described in more detail in the sections 4 and 5 of the ADOL-C manual. By
setting the optional integer argument file of trace off to 1, the user may force
a tape file to be written on disc even if it could be kept in main memory. If
the argument file is omitted, it defaults to 0, so that the tape array is written
onto an external file only if the length of any of the buffers exceeds BUFSIZE
elements, where BUFSIZE is a user-defined size.

ADOL-C overloads the two rarely used binary shift operators ≪= and ≫=
to identify independent variables and dependent variables, respectively, as de-
scribed in step 3. For the independent variables the value of the right hand side
is used as the initial value of the independent variable on the left hand side.

Choosing the set of variables that has to be declared of the augmented data
type in step 4 is basically up to the user. A simple strategy that can be applied
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with minimal effort in many cases is the redeclaration of every floating point
variable of a given source code to use the provided augmented data type adouble.
This can be implemented by a MAKRO statement. Then, code changes are
necessary only for a limited and usually very small part of the source files.
However, due to the resulting taping effort, this simple approach may result in an
unnecessary higher run time of both the function evaluation and the derivation
calculations. A more advanced technique to determine the active variables is the
compiler-aided augmentation. For this purpose, only the independent variables
are redeclared to be of the augmented data type adouble. During the compilation
process of the program, the compiler will issue error messages concerning data
type conversions that are not allowed. Based on these error messages the user
redeclares additional variables, i.e., certain intermediates or dependents, to be
of the augmented data type adouble. Then, the program compilation process is
invoked again, possibly issuing different error messages. This loop of changing the
type of variables and examining the compiler messages has to be carried out until
the last error message has been resolved. Compared to the global change strategy
described above, a reduced set of augmented variables is created resulting in a
smaller internal function representation that is generated during the taping step.

3 Example of a Modified Code Segment

To illustrate the required source code modification, we consider the following
lighthouse example from [7]. The lighthouse on the left emanates a light beam
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Fig. 1. Lighthouse Example

that hits the quay-wall at
a point (y1, y2). Apply-
ing planar geometry yields
that its coordinates are
given by

y1 =
ν ∗ tan(ω ∗ t)

γ − tan(ω ∗ t)

and

y2 =
γ ∗ ν ∗ tan(ω ∗ t)

γ − tan(ω ∗ t)
.

These two symbolic expressions might be evaluated by the simple program shown
below in Fig. 2. Here, the distance x1 = ν, the slope x2 = γ, the angular velocity
x3 = ω, and the time x4 = t form the independent variables. Subsequently, six
statements are evaluated using arithmetic operations and elementary functions.
Finally, the last two intermediate values are assigned to the dependent variables
y1 and y2.
For the computation of derivatives with ADOL-C, one has to perform the changes
of the source code as described in the previous section. This yields the code seg-
ment given on the left hand side of Fig. 3, where modified lines are marked with
/* ! */. Note that the function evaluation itself is completely unchanged. If this
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...
int main()
{

double x1, x2, x3, x4; /* inputs nu, gamma, omega, t */
double v1, v2, v3; /* intermediates */
double y1, y2; /* outputs */

x1 = 3.7; x2 = 0.7; /* some input values */
x3 = 0.5; x4 = 0.5;

v1 = x3*x4; /* function evaluation */
v2 = tan(v1);
v1 = x2-v2;
v3 = x1*v2;
v2 = v3/v1;
v3 = v2*x2;

y1 = v2; y2 = v3; /* output values */
}

Fig. 2. Source Code for Lighthouse Example (double Version)

/* ! */ #include “adolc.h”
...
int main()
{

/* ! */ adouble x1, x2, x3, x4;
/* ! */ adouble v1, v2, v3;
/* ! */ adouble y1, y2;

/* ! */ trace on(1);

/* ! */ x1 ≪= 3.7; x2 ≪= 0.7;
/* ! */ x3 ≪= 0.5; x4 ≪= 0.5;

v1 = x3*x4;
v2 = tan(v1);
v1 = x2-v2;
v3 = x1*v2;
v2 = v3/v1;
v3 = v2*x2;

/* ! */ y1 ≫= v2; y2 ≫= v3;

/* ! */ trace off();

}

<<=, x1, 3.7

ADOL−C tape

<<=, x2, 0.7

<<=, x3, 0.5

<<=, x4, 0.5

*, x3, x4, v1

tan, v1, v2

trace_on, tag

−, x2, v2, v1

*, x1, v2, v3

/, v1, v3, v2

*, v2, x2, v3

>>=, v2, y1

>>=, v3, y2

Fig. 3. Source Code for Lighthouse Example (adouble Version) and Tape
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adouble version of the program is executed, ADOL-C generates an internal func-
tion representation contained in the tape. The tape for the lighthouse example
is sketched on the right hand side of Fig. 3. Once the internal representation
is generated, drivers provided by ADOL-C can be used to compute the desired
derivatives.

4 Easy-To-Use Drivers

For the convenience of the user, ADOL-C provides several easy-to-use drivers
that compute the most frequently required derivative objects. Throughout, it is
assumed that after the execution of an active section, the corresponding tape
with the identifier tag contains a detailed record of the computational process
by which the final values y of the dependent variables were obtained from the
values x of the independent variables. This functional relation between the input
variables x and the output variables y is denoted by

F : R
n
7→ R

m, x → F (x) ≡ y.

The presented drivers are all C functions and therefore can be used within C
and C++ programs. Some Fortran-callable companions can be found in the
appropriate header files.

For the calculation of whole derivative vectors and matrices up to order 2
there are the following procedures:

int gradient(tag,n,x,g)
short int tag; // tape identification
int n; // number of independents n and m = 1
double x[n]; // independent vector x

double g[n]; // resulting gradient ∇F (x)

int jacobian(tag,m,n,x,J)
short int tag; // tape identification
int m; // number of dependent variables m

int n; // number of independent variables n

double x[n]; // independent vector x

double J[m][n]; // resulting Jacobian F ′(x)

int hessian(tag,n,x,H)
short int tag; // tape identification
int n; // number of independents n and m = 1
double x[n]; // independent vector x

double H[n][n]; // resulting Hessian matrix ∇2F (x)

The driver routine hessian computes only the lower half of ∇2f(x) so that all
values H[i][j] with j > i of H allocated as a square array remain untouched during
the call of hessian. Hence only i + 1 doubles need to be allocated starting at the
position H[i].
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To use the full capability of automatic differentiation when the product of
derivatives with certain weight vectors or directions are needed, ADOL-C offers
the following three drivers:

int jac vec(tag,m,n,x,v,z) // result z = F ′(x)v
int vec jac(tag,m,n,repeat,x,u,z) // result z = uT F ′(x)
int hess vec(tag,n,x,v,z) // result z = ∇2F (x)v

A detailed description of the interface of these drivers can be found in the ADOL-
C documentation. Furthermore, ADOL-C provides several drivers for special
cases of derivative calculation. For solution curves defined by ordinary differen-
tial equations, special routines are provided that evaluate the Taylor coefficient
vectors and their Jacobians with respect to the current state vector. For explicitly
or implicitly defined functions derivative tensors are obtained with a complexity
that grows only quadratically in their degree. In addition to the routines for
derivative evaluation, ADOL-C provides functions for an appropriate memory
allocation. Using these facilities, one may compute derivatives of the lighthouse
example presented in the last section by the following code segment given in
Fig. 4.

... /* as above */
trace off();

double xp[4]; /* passive inputs nu, gamma, omega, t */
xp[0] = 3.7; xp[1] = 0.7; /* some input values */
xp[2] = 0.5; xp[3] = 0.5;

double** J; /* Calculate F’ */
double *x1, *y1; /* Calculate y1 = F’(xp)*x1 */
double *x2, *y2; /* Calculate x2 = y2ˆT*F’(xp) */

J = myalloc(2,4);
x1 = myalloc(4); y1 = myalloc(2);
x2 = myalloc(4); y2 = myalloc(2);

jacobian(1, 2, 4, xp, J);

xp[0] = 2.0; xp[1] = 1.0; /* change independents */

jac vec(1, 2, 4, xp, y1, x1);
vev jac(1, 2, 4, 0, xp, y2, x2);
... /* do something with the derivatives */

Fig. 4. Derivative Calculation with ADOL-C

Quite often, the Jacobians and Hessians that have to be computed are sparse
matrices. Therefore, ADOL-C provides additionally drivers that allow the ex-
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ploitation of sparsity. The exploitation of sparsity is frequently based on graph

coloring methods, discussed for example in [2] and [3]. To compute the entries
of sparse Jacobians and sparse Hessians, respectively, in coordinate format one
may use the drivers:

int sparse jac(tag,m,n,repeat,x,&nnz,&rind,&cind,&values,&options)
int sparse hess(tag,n,repeat,x,&nnz,&rind,&cind,&values,&options)

Once more, a detailed description of the calling structure can be found in the
documentation of ADOL-C.

5 Tapeless Forward Differentiation

Up to version 1.9.0, the development of the ADOL-C software package was based
on the decision to store all data necessary for derivative computations on tapes,
since these tapes enable ADOL-C to offer a very broad functionality. However,
really large-scale applications may require the tapes to be written out to corre-
sponding files. In almost all cases this means a considerable drawback in terms
of run time due to the excessive memory accesses. Nevertheless, there are some
tasks with respect to derivative computation that do not require a tape.

Starting with version 1.10.0, ADOL-C now features a tapeless forward mode
for computing first order derivatives in scalar mode, i.e., ẏ = F ′(x)ẋ, and in
vector mode, i.e., Ẏ = F ′(x)Ẋ . These tapeless variants coexists with the more
universal tape based mode in the package. Because of the different implementa-
tion strategy, also the required modification of the source code are different as
illustrated in Fig. 5 for the scalar mode. After defining the variables as adoubles
only two things are left to do. First one needs to initialize the values of the
independent variables for the function evaluation. This can be done by assigning
the variables a double value. Then, the corresponding derivative value is set to
zero. Alternatively, the ADOL-C offers a function named setValue for setting the
value of a variable without changing the derivative part. To set the derivative
components of the independent variables, ADOL-C provides two possibilities:

– Using the constructor

adouble x1(2,1), x2(4,0), y;

This would create the three variables x1, x2 and y. Obviously, the latter re-
mains uninitialized. The variable x1 holds the value 2, x2 the value 4 whereas
the derivative values are initialized to ẋ1 = 1 and ẋ2 = 0, respectively.

– Setting point values directly

adouble x1=2, x2=4, y;
...
x1.setADValue(1);
x2.setADValue(0);

The same example as above but now using setADValue-method for initializing
the derivative values.
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/* ! */ #ADOLC TAPELESS
/* ! */ #include “adolc.h”
/* ! */ typedef adtl::adouble adouble;

...
int main()
{

/* ! */ adouble x1, x2, x3, x4;
/* ! */ adouble v1, v2, v3;
/* ! */ adouble y1, y2;

x1 = 3.7; x2 = 0.7; x3 = 0.5; x4 = 0.5; /* initialization of x */

/* ! */ x1.setADValue(1); x2.setADValue(0); /* initialization of ẋ */
/* ! */ x3.setADValue(0); x4.setADValue(0);

v1 = x3*x4; v2 = tan(v1); v1 = x2-v2; /* same as before */
v3 = x1*v2; v2 = v3/v1; v3 = v2*x2;

y1 = v2; y2 = v3;

/* ! */ cout ≪ y0.getADValue() ≪ ” ” ≪ y1.getADValue() ≪ endl;

}

Fig. 5. Source Code for Lighthouse Example (Tapeless adouble Version)

The derivatives can be obtained at any time during the evaluation process by
calling the getADValue-method

adouble y;
...
cout ≪ y.getADValue();

Similar to the tapeless scalar forward mode, the tapeless vector forward mode can
be applied by defining ADOLC TAPELESS and an additional preprocessor macro
named NUMBER DIRECTIONS. This macro takes the maximal number of direc-
tions to be used within the resulting vector mode. Just as ADOLC TAPELESS
the new macro must be defined before including the adolc.h header file since it
is ignored otherwise. A more detailed description of the tapeless vector forward
mode and its usage can be found in the documentation of ADOL-C.

6 Recent Developments

Advanced differentiation techniques had been integrated recently in the ADOL-C
tool. This comprises for example the optimal checkpointing for time integra-
tions when the number of time steps is known in advance. For this purpose,
ADOL-C employs the routine revolve for a binomial checkpointing [8] to achieve
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a enormous reduction of the memory required for calculation the adjoint of the
time-dependent process. Furthermore, ADOL-C allows now the exploitation of
fixed point iterations by providing drivers for the reverse accumulation [9] for
the memory reduced computation of adjoints. Additionally, first drivers for the
differentiation of OpenMP parallel programs are included in the current version
of ADOL-C. The differentiation of MPI-parallel programs with ADOL-C is the
subject of current research. It is planed to integrate corresponding routines into
ADOL-C as soon as possible.
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