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Abstract. In 1974 A.R. Curtis, M.J.D. Powell, and J.K.Reid published
a seminal paper on the estimation of Jacobian matrices which was later
coined as the CPR method. Central to the CPR method is the effective
utilization of a priori known sparsity information. It is only recently that
the optimal CPR method in its general form is characterized and the
theoretical underpinning for the optimality is shown. In this short note
we provide an overview of the development of computational techniques
and software tools for the estimation of Jacobian matrices.
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1 An Overview of Sparse Jacobian Matrix Determination

The determination of the sparse Jacobian matrix with a priori known sparsity
pattern of at least once continuously differentiable mapping F : IRn → IRm can
be viewed as a computation of the form AS ≡ B where A is an approximation
of the Jacobian matrix F ′(x) but has the same sparsity pattern and S ∈ IRn×p
is a matrix of p directions. For example, using finite difference approximation
we can write

∂F (x+ ts)
∂t

∣∣∣∣
t=0

= F ′(x)s ≈ As =
1
ε

[F (x+ εs)− F (x)] ≡ b, (1)

where s ∈ IRn is a given direction. The forward mode of automatic differen-
tiation allows us to compute the product F ′(x)s with one forward sweep at
a cost equal to a small multiple of the cost of evaluating F at x. If the ρi
rows of S defined by the ρi nonzero unknowns of A(i, :) are linearly indepen-
dent then A(i, :) is uniquely determined from B(i, :). This consistency condi-
tion is achieved, for example, by taking S to be the identity matrix (p = n),
the Vandermonde matrix (p = ρ) [8], or the Pascal matrix (p = ρ) [5], ρ be-
ing the maximum number of nonzero entries in any row of A. The computa-
tional cost for recovering the nonzero unknowns from B in the Vandermonde
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and Pascal directions involve solving m linear systems of size ρ. We have di-
rect determination if the nonzero unknowns can be recovered from B without
any extra arithmetic operations. The CPR [3] method yielding direct determi-
nation, exploits A’s sparsity to define S(:, k) =

∑
j∈Ck

ej , k = 1, . . . , p where
C = {C1, . . . , Cp} is a partition of column indices such that for each pair of in-
dices j, l ∈ Ck, the product aijail, i = 1, . . . ,m is identically 0. A greedy heuristic
whereby the kth structurally orthogonal group Ck is formed by including in it the
maximum number of indices such that the corresponding columns are mutually
structurally orthogonal, is used to define the column partition. The next major
contribution to the CPR method is attributed to Coleman and Moré [1] who an-
alyze the partitioning problem as the coloring of G(A) – the column intersection
graph of A, and prove that finding minimum cardinality structurally orthogonal
column partition is NP-hard; an efficient software tool, the DSM [2], implement-
ing the graph coloring CPR was released. As observed by Stanley Eisenstat the
chromatic number of graph G(A), χ(G(A)), does not necessarily represent the
minimum number of extra function evaluations needed to determine A. A closer
examination of the Eisenstat example suggest that “columns be structurally or-
thogonal to be determined in one matrix-vector product” is rather restrictive
for effective utilization of available sparsity. Inspired by the Eisenstat example,
Hossain and Steihaug [6] define orthogonal partitioning of column segments and
settle the optimal CPR as the minimum cardinality orthogonal partitioning of
the column segments.

Theorem 1 ([6]). Matrix A ∈ IRm×n is directly determined using p matrix-
vector products AS, S ∈ IRn×p if and only if the nonzero entries of A are parti-
tioned into p groups of “isolated elements” [8]. The minimal number of matrix-
vector products needed in any direct determination of A is p = χ(GI(A)) where
GI(A) is the “element isolation graph [8]” or, the “column segments graph”
corresponding to m block row partition.

In [6] it is further shown that the minimum cardinality row partition Π such
that χ(GΠ(A)) = χ(GI(A)) can always be found and in practical problems the
number of row blocks is usually much less than m.

Table 1. Structurally Orthogonal Column Partition

Matrix m n nnz ρ p (DSM) [2] p [4]

af23560 23560 23560 484256 21 41 32

cage11 39082 39082 559722 31 62 81

cage12 130228 130228 2032536 33 68 96

e40r0100 9661 9661 306356 62 70 66

ihr34 14270 14270 307858 63 63 65

ihr71c 70304 70304 1528092 63 63 65

Total 273 367 405
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Table 1 displays problem instances (m rows, n columns, nnz nonzero entries)
and partitioning results (number of structurally orthogonal column groups) ob-
tained by publicly available software tool DSM (a C++ implementation of the
original F77 code) and the result of a greedy “partial distance 2 coloring” heuris-
tic applied on bipartite graph representation of the test matrices as reported in
[4]. We note that both the DSM and the bipartite model of [4] require Θ(nnz)
storage – thus achieving an important design objective identified in [7] for solving
large and sparse problems.

2 Concluding Remarks

We have provided a brief account of the significant milestones in the development
of the CPR method. Mathematical derivatives constitute an essential algorithmic
ingredient in many computational procedures for solving scientific and engineer-
ing problems. Computation of derivative information is therefore an important
computational task for which efficient algorithms and software tools are needed
especially with the ever increasing size of the scientific problems needed to be
solved.
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