SCHLOSS DAGSTUHL

INTERNATIONAL
CONFERENCE

AND RESEARCH CENTER
FOR COMPUTER SCIENCE

Dagstuhl News

January - December 1999

Volume 2
2000

Dagstuhl Publications
Dagstuhl News January-December 1999
http://drops.dagstuhl.de/opus/volltexte/2009/2048



ISSN 1438-7581

Copyright © 2000, IBFI GmbH, Schlo3 Dagstuhl, 66687 Wadern, Germany
Period: January - December 1999

Frequency: 1 per year

The International Conference and Research Center for Computer Science is
operated by a non-profit organization. Its objective is to promote world-class
research in computer science and to host research seminars which enable new
ideas to be showcased, problems to be discussed and the course to be set for
future development in this field.

Associates: Gesellschaft fur Informatik e.V., Bonn
Technische Universitat Darmstadt
Universitat Frankfurt
Universitat Kaiserslautern
Universitat Karlsruhe
Universitat Stuttgart
Universitat Trier
Universitat des Saarlandes

The Scientific Directorate is responsible for the program:

Prof. Dr. Thomas Beth, Karlsruhe

Prof. Dr. Oswald Drobnik, Frankfurt

Prof. Dr. Klaus Madlener, Kaiserslautern

Prof. Dr. Christoph Meinel, Trier

Prof. Dr. Horst Reichel, Dresden

Prof. Dr. Peter H. Schmitt, Karlsruhe

Prof. Dr. Otto Spaniol, Aachen

Prof. Dr. Ingo Wegener, Dortmund

Prof. Dr. Reinhard Wilhelm (Scientific Director)

Funding: The state governments of Saarland and Rhineland Palatinate
Address: IBFI Schlof3 Dagstuhl
Octavieallee

D-66687 Wadern

Tel.: +49 - 6871 - 905127

Fax: +49 - 6871 - 905130
E-mail: service@dagstuhl.de
Internet: http://www.dagstuhl.de/



Welcome

Rather late in the year, you receive the second edition of the “Dagstuhl
News”, a publication for the members of the Foundation “Informatikzen-
trum Schloss Dagstuhl”, the Dagstuhl Foundation for short. The delay
was caused by the efforts taken by the preprocessing, the running, and
the postprocessing of our 10th Anniversary Conference, “Informatics —
10 Years Back, 10 Years Ahead”. The conference offered very inter-
esting talks by leading scientists of our discipline. They leaned back,
looked what has happened in their respective areas during the existence
of Dagstuhl and tried to speculate what will happen in the near future.
The proceedings of the conference will soon be published as LNCS volume
2000 by Springer Verlag.

The main part of this leaflet consists of collected resumees and other
valuable information taken from the Dagstuhl-Seminar Reports. We hope
that you will find this information valuable for your own work or infor-
mative as to what colleagues in other research areas of Computer Sci-
ence are doing. The full reports for 1999 are on the Web under URL
www.dagstuhl.de/DATA /Seminars/99.

The State and the Activities of the Dagstuhl Foundation

The foundation currently has 44 personal members and 9 institutional
members.

In 1999, the foundation has supported a few guests with travel grants
and a reduction of the Seminar fees. According to German law only the
interests earned can be used to support the aims of a foundation.

Thanks

I would like to thank you for supporting Dagstuhl through your member-
ship in the Dagstuhl Foundation. Thanks go to Fritz Miiller for editing
the resumees collected in this volume.

Reinhard Wilhelm (Scientific Director)






CONTENTS 5

Contents
1 Decision Diagrams — Concepts and Applications 7

2 Software Engineering Research and Education: Seeking a
new Agenda 9

3 Component-Based Programming under Different Paradigms 13

4 Deduction 17
5 Computational Geometry 18
6 Systems Integration 19
7 Unsupervised Learning 24
8 Program Analysis 26

9 Instruction-Level Parallelism and Parallelizing Compila-
tion 35

10 High Level Parallel Programming: Applicability, Analysis
and Performance 41

11 Mobile Multimedia Communication — Systems and Net-
works 45

12 Geometric Modelling 45
13 Graph Decompositions and Algorithmic Applications 48
14 Requirements Capture, Documentation, and Validation 49
15 Competitive Algorithms 50
16 Foundations for Information Integration 50

17 Agent Oriented Approaches in Distributed Modeling and
Simulation: Challenges and Methodologies 51



CONTENTS 6

18 Parallel and Distributed Algorithms 55
19 Computer Science in Astronomy 55
20 Linear Logic and Applications 56
21 Multimedia Database Support for Digital Libraries 59
22 Social Thinking — Software Practice 61
23 Declarative Data Access on the Web 64

24 Computational Cartography — Cartography meets Com-
putational Geometry 67

25 Finite Model Theory, Databases, and
Computer Aided Verification 69

26 Temporal Logics for Distributed Systems — Paradigms
and Algorithms 71

27 Efficient Language Processing with High-level Grammar
Formalisms 74

28 Scheduling in Computer and Manufacturing Systems 76
29 Complexity of Boolean Functions 7

30 Rigorous Analysis and Design for Software Intensive Sys-
tems 78

31 Computability and Complexity in Analysis 80

32 Symbolic-Algebraic Methods and Verification Methods —
Theory and Applications 81

33 Content-Based Image and Video Retrieval 81



1 DECISION DIAGRAMS — CONCEPTS AND APPLICATIONS 7

1 Decision Diagrams — Concepts and Appli-
cations

Seminar No. 99041 Report No. 229 Date 24.01.—29.01.1999
Organizers: Bernd Becker, Christoph Meinel, Shin-Ichi Minato, Fabio
Somenzi

The fifth workshop Decision Diagrams — Concepts and Applica-
tions in the series Computer Aided Design and Test at the IBFI Schlof3
Dagstuhl was organized by Bernd Becker (Univ. Freiburg), Christoph
Meinel (Univ. Trier), Shin-Ichi Minato (NTT Optical Network, Japan),

and Fabio Somenzi (Univ. of Colorado). It was attended by 31 scientists.

Decision Diagrams (DDs) have found widespread use in computer-
aided design of digital circuits. They form the heart of many tools for
formal verification and are also commonly used in logic synthesis, circuit
testing and in the verification of communication protocols. With increas-
ing number of applications, also in non—CAD areas, classical methods to
handle DDs are being improved and new questions and problems evolve
and have to be solved.

The organizers took the opportunity to bring together researchers
from different areas in computer science, electrical engineering and indus-
try. The common aim of all researchers is to deepen the understanding
of DDs as a data structure, to improve existing techniques and to explore
new fields of application. At the workshop, 23 lectures were presented
covering different topics of DD research among them being:

e Potential and limitations of DDs, complexity of algorithms for
(Boolean) function manipulation

e Minimization and approximation of Binary DDs (BDDs)
e Formal verification of sequential circuits with BDD based methods

e Extensions beyond Boolean functions to represent and manipulate
word-level circuit functions

e Applications in synthesis, design and test of real-time systems,
state/event systems



1 DECISION DIAGRAMS — CONCEPTS AND APPLICATIONS 8

There were many discussions concerning challenging open questions
— at universities and in industry as well — and future directions of
research in the DD area.

The detailed program including the abstracts and some full papers
can be found on the WWW-page:

http://ira.informatik.uni-freiburg.de/events/
design_and_test_99/program.html

An interesting abstract selected by the Dagstuhl News editor:

Nonapproximability Results
for OBDD- and FBDD-Minimization

Detlef Sieling, Universitat Dortmund

The variable ordering problem for OBDDs is the problem to compute
a variable ordering minimizing the OBDD size of a function given by
an OBDD. Its complexity is of theoretical and practical importance be-
cause the choice of the variable ordering can decide between polynomial
or exponential OBDD size and between success or failure of an applica-
tion. The known NP-hardness results do not exclude polynomial time
approximation algorithms for the variable ordering problem, i.e. algo-
rithms which guarantee to obtain variable orderings for which the OBDD
size is larger than the optimum by at most some constant factor. The
main result is that the existence of such an algorithm implies P=NP.
Hence, we get a justification to use heuristics and to give up the search
for approximation algorithms for the variable ordering problem.

Besides OBDDs, Free BDDs (FBDDs) can be used as a data structure
for Boolean functions. The manipulation of FBDDs is efficient if only FB-
DDs respecting a fixed graph ordering are used. Graph orderings are a
generalization of variable orderings. Hence, we get the problem of min-
imizing FBDDs and of optimizing graph orderings for a function given
by an FBDD. The other main result is that polynomial time approxima-
tion schemes for these problems imply P=NP or ZPP=NP, respectively.
Approximation schemes are algorithms whose result is larger than the
optimum by a factor of at most 1 4+ € where ¢ > 0 is part of the input.
Again, we get a justification to use heuristics.



2 SOFTWARE ENGINEERING RESEARCH AND EDUCATION 9

2 Software Engineering Research and Edu-
cation: Seeking a new Agenda

Seminar No. 99071 Report No. 230 Date 14.02.—-19.02.1999
Organizers: Ernst Denert, Daniel Hoffmann, Jochen Ludewig, David Par-
nas

Taking Stock of Software Engineering Research and Education
What do we know? What should we know?

Introduction

Software Engineering should address, and solve, existing problems.

Software Engineering as a branch of computer science emerged from
discussions and conferences in the late sixties. Its goal was to apply
knowledge and techniques from traditional engineering to the construc-
tion and maintenance of software.

Now, as the end of the century draws near, many people apply con-
cepts, techniques, and notations created in, and around, the field of soft-
ware engineering. But we are far away from a common understanding of
what the important problems are and which approaches are appropriate.
We have many conferences and magazines of questionable value, and lit-
tle agreement about what should be taught in universities, and which
topics should be further investigated.

These ideas in mind, four people, namely Dan Hoffman and David L.
Parnas in Canada, Ernst Denert and Jochen Ludewig in Germany, orga-
nized a Dagstuhl workshop. Stefan Krauf served as a secretary before,
during, and after the event.

This workshop attempted to reach an agreement about these ques-
tions, for those who participated, but hopefully also with some effect
on our colleagues who did not. By discussing our ability to solve those
problems which actually occur in software engineering, we identified what
should be in the curriculum and in the research agenda.

As part of the announcement and invitation, a list of eleven suggested
tasks was distributed, ranging from “Analyse intended application, write
requirements document.” to “Revise and enhance software systems.”
Those who intended to participate were asked to submit a position paper



2 SOFTWARE ENGINEERING RESEARCH AND EDUCATION 10

on at least one of the subjects, and to judge the current state of all the
subjects.

At the beginning of the workshop, participants reduced and modified
the topics for various reasons, until nine topics for discussion and elab-
oration were selected. The topics and the most fundamental questions
related to these topics are listed below; no attempt is made in this sum-
mary to discuss the results in detail; full information is provided in the
report.

For each topic, one of the participants was selected as the “secre-
tary” (see below). Most attendees participated in two of the subgroups.
Plenary meetings were held once or twice the day, allowing for critical
discussions and feedback.

All results were (almost) uniformly cast into tables, using criteria and
attributes that had been agreed in the plenary meetings. These tables
contain judgements like this one (about the state of the art in statistical
testing):

Effectiveness: low
Affordability: low
Teachability: medium
Penetration: none

Research potential: low

These schematic judgements were often complemented by remarks.

The Topics

1. Requirements (Joanne Atlee)

How can we analyze the intended application to determine the re-
quirements that must be satisfied? How should we record those require-
ments in a precise, well-organized and easily-used document?

In practice, this goal is rarely achieved. In most projects, a significant
number of software development errors can be traced back to incomplete
or misunderstood requirements.

We need to improve the state of requirements engineering by improv-
ing our application of existing practices and techniques, evaluating the
strengths and weaknesses of the existing practices and techniques, and



2 SOFTWARE ENGINEERING RESEARCH AND EDUCATION 11

developing new practices and techniques where the existing ones do not
suffice.

2. Software Design (Johannes Siedersleben)

How can we design the basic structures of the software, evaluate com-
peting design alternatives, and reuse existing designs whenever possible?

Participants felt that the design task is solved at the level of individual
modules, but not solved at the level of system architecture. Designing
system architectures, the known techniques are not sufficient. Another
important question is how to relate different levels of abstraction in a
large system.

We need a collection of architectural patterns, i.e. proven architec-
tural building blocks aimed at particular problems, possibly domain-
specific.

3. Implementation (Peter Knoke)

The problem is that the quality of the software implementation (i.e.
the code) is generally not as good as it could be, and should be. How
can this situation be improved by various means, including SE teaching,
SE research, or other means?

The participants agreed in the importance of this field which is often
neglected in higher education. Good programming is not that easy; it
should be taught, and it should be generally recognized.

There is little need for research in this area, but education should be
greatly improved, emphasizing good craftsmanship.

4. COTS (Commercial-Off-The-Shelf) (Paul Strooper)

The use of COTS is where a portion of an application is not custom-
developed , but instead provided by a COTS product. This is the problem
we addressed here: Do we know how we can integrate COTS products
into software systems?

There are significant problems with the integration of COTS software
and there is a lack of documented solutions and experience reports deal-
ing with these problems. It was therefore concluded that the problem of
integrating COTS products into software products is mainly unsolved,
except for small-scale COTS products, such as GUI and component li-
braries.

5. Test (Dan Hoffman)

How can we perform systematic or statistical testing of the software
and the integrated computer system?



2 SOFTWARE ENGINEERING RESEARCH AND EDUCATION 12

Many companies do no systematic testing. Some companies do per-
form systematic testing; it is often reasonably effective but very expensive
in effort and calendar time. Unit testing is usually ad hoc, if performed
at all. Test automation is primitive. Test education, especially in uni-
versities, 1S PooOr.

Given the importance of testing to industry, there is relatively little
research done.

6. Families (David Weiss)

This section is concerned with identifying the tasks involved in iden-
tifying (and documenting) defined families.

In general, few techniques exist for defining families, i.e., for per-
forming the analysis needed to identify a defined family. There are a few
techniques that have become commercially available in the last 2-3 years,
but they are just starting to be tried by the early adopters in industry.
As a result, the problem was rated as partially solved.

7. Maintenance (Andreas Zeller)
How can we maintain a product’s integrity during its evolution?

This problem is partially solved. There is a number of well-understood
solutions that help in software maintenance. However, there is a need
and a potential for better solutions, especially in the areas of reverse
engineering and reengineering.

8. Measurement (Motei Azuma)

Specifically, when dealing with software using metrics, we can assess
metrics with the following basic questions: Are we able to describe and
forecast process and product characteristics by metrics? Are we able to
control process and product using metrics, possibly continuously?

Some metrics are widely known and sometimes used in practice. Yet
there are many metrics to be developed, validated and taught for prac-
tical use. Therefore the general problem is only partially solved.

The leading role of some standards organizations was pointed out
(ISO/IEC JTC1/SC7, JTC1/SC7/WG6).

9. Software Configuration Management (Walter Tichy)
How can we manage and control the evolution of a product?

This problem is solved for standard situations. Software configura-
tion management is a well-understood discipline that offers a number of
solutions for managing software evolution.



3 COMPONENT-BASED PROGRAMMING 13

Distributed software configuration management still requires more
attention. Also, composition of complex systems from versioned compo-
nents brings problems with configuration consistency.

Conclusions

Several participants have expressed their interest in a permanent activity
along the lines initiated at Dagstuhl; we will try to keep the spirit alive
by presenting our results in conferences and magazines, hopefully stim-
ulating responses from those who were missing. Software Engineering
needs definitely more work like this.

3 Component-Based Programming under Dif-
ferent Paradigms

Seminar No. 99081 Report No. 231 Date 21.02—26.02.1999
Organizers: Philip Wadler, Karsten Weihe

Motivation

Throughout the last decades, much research has focussed on object-
oriented, template-oriented, and functional programming techniques. How-
ever, there is not much interaction between these research communities.
Although there is a high overlap of fundamental ideas and concepts, ideas
are expressed in terms of sharply different language features. Worse, the
public discussion in each of these communities seems to be dominated
by a “purist” viewpoint, which regards the other paradigms as strongly
inferior.

Recently, new threads of research have been initiated that try to find
practical combinations of different programming styles in mainstream
programming languages. This research is centered around Java and
C++. Java has turned out to be too restricted for many applications.
Consequently, a number of extensions to Java have been proposed and
implemented, to add parametric and functional features. On the other
hand, the full power of the generic features of C+4 and the possibility
to simulate other features from the functional realm have been discov-
ered only recently. Since the C++ standard library - and many other



3 COMPONENT-BASED PROGRAMMING 14

recent libraries - is designed according to these principles, there is a prac-
tical need for further research on combinations of generic and functional
techniques with an object-oriented programming style.

The notion of components, or component-based programming, seems
to be a useful fundament for this kind of research. The meaning of
this word is intuitive: programs are broken down into primitive build-
ing blocks, which may be flexibly “plugged together” according to well-
defined protocols. In fact, each of the above-mentioned programming
paradigms may be viewed as an attempt to realize such a component-
based programming style, however, the definition of components and
the techniques for combining them varies significantly. Hence, analyzing
these differences is crucial for a deeper understanding of the problem.

Workshop Experience

This workshop was an experiment. Researchers from different software—
engineering and programming language camps were brought together un-
der the leitmotif of components. In the motivation text we defined com-
ponents as “primitive building blocks, which may be flexibly ‘plugged to-
gether’ according to well-defined protocols,” and we called this definition
“intuitive.” It was clear beforehand that the “big camps”—functional,
object—oriented, generative, etc.,—would probably agree on this defini-
tion but interpret it quite differently. An early outcome of the workshop
was the experience how incompatible these interpretations actually are,
and that an agreement is not even reachable inside each camp separately.

The scientific and practical backgrounds of the participants were very
different, and there was no evidence that people would easily understand
each other and have fruitful discussions. Fortunately, the ice was broken
right at the beginning of the workshop, within a quarter of an hour. The
opening talk was not regularly finished but resulted almost immediately
in a lively, highly controversary discussion (loosely moderated by the
speaker), in which the majority of all particants were actively involved.
This had set the tone for the rest of the workshop, and so it became one
of the most lively workshops we have ever seen.

The workshop was a real success, but the success was not of the kind
we expected and aimed at. The motivation text specified three concrete
goals, however, our experience is that concrete results are still too ambi-
tious. The goal to understand each other and to establish fruitful paths of



3 COMPONENT-BASED PROGRAMMING 15

communication across the camps has turned out to be ambitious enough.
These paths were the basis for many minor, unanticipated success stories.

A striking example of these minor success stories was a session that
was jointly organized by a functional-programming guy and a C++/tem-
plate-programming guy. They proved convincingly that C++ can be
viewed as a real (though not perfectly purist) functional language. This
path of communication is in great contrast to the public discussion across
the camps in newsgroups and other media, which is all too often frus-
trating and sometimes even hostile and offending.

What is a component? Beyond the intuitive, informal definition from
our motivation text, there is probably no satisfactory, commonly agree-
able answer to this question at all. The workshop brought to our mind
that our definition left many crucial details open. It does not even spec-
ify whether components should be defined to be types or objects, and in
fact, we did not come up with an agreement on this point.

Another point of major disagreement was the question of static type
safety. Of course, plug and play relies on the assumption that the “plug”
and the “socket” fit perfectly together. Translated into this metaphor,
static type safety means that a plug does not fit into a socket unless it
makes sense. We learned about very good pros and cons—and again, no
chance for an agreement.

We also learned a lot about further properties and characteristics that
may or may not be essential for a useful notion of components. In a sense,
this established a “common language of discourse across the cultures” as
stated in the first concrete goal in the motivation text. This is much
more than one would expect in retrospect.

Discussion: C++ as a Functional Language

Moderated by Erik Meijer and Lutz Kettner

If you look closely at many C-APIs such as the Win32 API, you
can recognize a lot of concepts such as lazy evaluation, call-backs, and
closures from functional languages. Perhaps surprisingly this means that
many “low-level” programs can be coded more cleanly in a functional
language than in C or C++.

Besides the obvious fact that C++ is not a functional programming
language, it is surprising to see to what extend C++ has borrowed concepts
from functional programming languages. One of the first examples in



3 COMPONENT-BASED PROGRAMMING 16

the introduction to the Standard Template Library STL, part of the C++
standard, makes extensive use of function objects. Function objects are
first class citizens in STL. Even currying and higher-order functions can
be expressed and easily used. However, the implementation of them is
considerably longer than in functional programming language.

Another surprising fact about C++ is a kind of lazy-evaluation at
compile time. A member function of a class will only be compiled if
it is actually used. In consequence, there will be no error messages for
even syntactically wrong code (besides basic rules such as matching curly
braces) in the body of unused member functions.

At the previous day a generic function flatten was used as an ex-
ample for polytypic programming in functional languages. It raised
the question whether a similar program could be written using tem-
plates in C++. Besides that the meta-information for the self-inspection
of user-defined types must be given explicitly, it can be written, see
http://www.inf.ethz.ch/personal/kettner/pieces/flatten.html

Discussion Session

Moderated by Philip Wadler

The word ‘component’ is used to denote a wide range of different
things, and the tendency to stretch its meaning is perhaps exacerbated
in a workshop that contains ‘component’ in its title. Just as Eskimos
need fifty words for ice, perhaps we need many words for components.
The following were suggested (though not everyone in the group agreed
to all of what follows).

Component (typical example: COM)

Can be used in object form, without access to source

Can be used from a variety of programming languages

e Communicate by methods, each method with a signature

Dynamically linked
Process (typical example: Erlang)

e Runs concurrently with other processes

e Processes communicate by means of a protocol



4 DEDUCTION 17

e Process may be sent messages from processes in other lan-
guages or on other machines

Module (typical example: Modula)

e Unit of independent compilation

e Used for namespace control
Functor (typical example: ML)

e A module parameterised by other modules

e Based on sophisticated type theory
Composent (typical examples: Demeter, Aspect-oriented programming)

e A unit of functionality weaved together with other units

e Lines of code adjacent in a composent may be far removed in
the program woven from the composent

e Requires access to the source code

The word ‘composent’ was a new one, coined by Wadler and adopted
by Lieberherr and Mezini.

Joe Armstrong argued that processes can be superior to components.
A key research issues for processes is to devise ways of specifying proto-
cols, analogous to the use of method signatures in a component. Erlang
processes are successful because of a number of features not shared by
other concurrent paradigms, such as threads: there may be many pro-
cesses (typically, about ten per phone call, up to 20,000 running concur-
rently on one machine); there is no shared memory; messages are struc-
tured trees (Erlang data structures, roughly similar to Lisp S-expressions
or XML trees); processes can monitor each other for errors.

4 Deduction

Seminar No. 99091 Report No. 232 Date 28.02.—-05.03.1999
Organizers: Ulrich Furbach, Harald Ganzinger, Ryuzo Hasegawa, Deepak
Kapur



5 COMPUTATIONAL GEOMETRY 18

Logic has become a prominent formal language and formalism for all
of computer science. It serves in many applications such as in problem
specification, program development, program transformation, program
verification, hardware design and verification, consistency checking of
databases, theorem proving, expert systems, logic programming, and so
on and so forth. Its strength derives from the universality of the lan-
guage as well as from the fundamental logical operations and relations.
Logical manipulations as needed in all these applications are realized by
mechanisms developed in the field of deduction which has produced a
variety of techniques of great importance in all these applications.

All these research issues have been subject of a “Schwerpunktpro-
gramm Deduktion” funded by the Deutsche Forschungsgemeinschaft.

During the last years successful research in this program has led to
the development of high performance deduction systems, and to laying a
broad basis for various applications.

This success of deduction can be observed within the international
AT and computer science scene as well. Deduction systems recently have
achieved considerable successes and even public press: it was a first-
order theorem prover which first proved the Robbins algebra conjecture
and even reached the New York Times Science section. But not only
in proofing mathematical theorems, also in various other disciplines of
Al, automated deduction made substantial progress. In planning, for
example, it turned out that propositional theorem provers are able to
outperform special purpose planning systems. This is remarkable, since
it was considered folklore that planning requires specialized algorithms,
which was only recently disproved by the development of propositional
satisfiability testing methods which can now handle much larger planning
problem sizes. A very similar development can be observed in the field
of model based diagnosis.

5 Computational (Geometry

Seminar No. 99102 Report No. 233 Date 07.03.—12.03.1999
Organizers: Michael Goodrich, Rolf Klein, Raimund Seidel

Geometric computing is creeping into virtually every corner of sci-
ence and engineering, from design and manufacturing to astrophysics



6 SYSTEMS INTEGRATION 19

and cartography. This report describes presentations made at a work-
shop focused on recent advances in this computational geometry field.

Previous Dagstuhl workshops on computational geometry dealt mostly
with theoretical issues: the development of provably efficient algorithms
for various geometric problems on point sets, arrangements of curves
and surfaces, triangulations and other sets of objects; proving various
combinatorial results on sets of geometric objects, which usually have
implications on the performance of performance guarantees of geometric
algorithms; describing the intrinsic computational complexity of various
geometric problems.

This workshop continued some of this tradition, but as one more point
there was a strong emphasis on the exchange of ideas regarding carry-
ing the many theoretical findings of the last years into computational
practice. There were presentations about the recent development of soft-
ware libraries such as CGAL, LEDA, JDSL, VEGA, and TPIE, and also
some experimentation with them. These libraries should help to simplify
the realization of abstractly conceived geometric algorithms as actually
executable software.

6 Systems Integration

Seminar No. 99111 Report No. 234 Date 14.03.—19.03.1999
Organizers: Paolo Ciancarini, Stefan Conrad, Wilhelm Hasselbring

The integration of systems which have been developed and evolved
independently is one of today’s major challenges in computer science. In
a large spectrum of application areas the necessity of integrating (pre-
Jexisting software systems is present and demands for applicable solu-
tions.

Problems of coupling and integrating heterogeneous database and in-
formation systems are for instance investigated in the database area.
Building multidatabase systems or federated database systems incorpo-
rating legacy systems is a big challenge. Current work covers topics like
schema integration, transaction models for federated database systems,
consistency enforcement in heterogeneous systems, security models, and
query processing.

On the other hand, systems integration is an important challenge
for the area of software engineering as well. Current work deals with



6 SYSTEMS INTEGRATION 20

questions of adequate software architectures and design patterns, coordi-
nation languages and models, composition of software components, de-
velopment of workflow systems, the proper use of middleware tools such
as CORBA, and methodological approaches for the integration process.

The rapid development of Web-related methodologies and tools also
stimulates new problems, with respect to the access to Web data, the de-
sign and maintenance of Web sites, and their integration with traditional
applications.

This Seminar was initiated due to the fact that there was only a rather
loose coupling of the work done in these scientific communities, although
the work of these areas is obviously highly interrelated. Therefore, we
saw the chance that both areas can profit a lot from a mutual exchange
of problems and ideas.

The Seminar brought together scientists from these two areas. A main
focus of the Seminar was set on integration on system level. However, the
influence of other integration levels (e.g., integration on schema or model
level) was considered as well. Cross-disciplinary working groups were
established during the Seminar aiming at a more detailed investigation
of common problems.

Working Group I:
Applications & Processes

Myra Spiliopoulou

Working Group 1 addressed issues under the general title “Applications
& Processes” in the context of systems’ integration. A deep terminologi-
cal discussion on the notions of process, application etc was decided to be
of limited usefulness, while defining a precise notion of the term “integra-
tion” is indispensable. Two orthogonal categorizations were agreed upon.
The first covers the phases of analysis, design and implementation /run-
time. The second distinguishes between high-level interworking, inter-
operation and low-level interconnection. The level of integration agreed
upon was that of interoperation.

The notion of integration is goal-oriented. Depending on the goal,
communication is a means for integration. At any case, integration may
not focus solely at structural issues; semantic problems must also be
resolved.



6 SYSTEMS INTEGRATION 21

Integration of specifications is the first step to systems’ integration.
Beyond data, behaviour must be integrated. There is a variety of models
for describing them. Mapping those models to a universal canonical
model is not always appropriate. In this context, XML is not a solution
to the integration problem.

The final issue concerned the cost of integrating a large system,
whereby the term “large” is ambiguous. It is recognized that the cost of
integration covers expenses for equipment, installation and maintenance,
training of the users and time. Ad hoc solutions are less costly than
the establishment of a federated DBMS. A reliable budget estimation for
a FDBMS is very difficult, for the integration of software it is almost
impossible.

Working Group II:
XML and Canonical Data Models

Mark Roantree, Karl Aberer

The focus of the workgroup was to discuss whether or not XML could
function as a canonical data model for systems integration, or if it could in
some way, support an existing canonical model. The workgroup identified
a number of different themes under which to discuss the model:

XML’s relationship with Java/C+4 Java can make use of the
Domain Object Model (DOM) to interact with XML. The main point to
emerge was that it makes no sense to combine XML with Java, as this
defeats the purpose of a language like XML which should be visible as
an information transportation medium.

XML’s relationship with CORBA This topic sparked quite a lot
of debate and the Boeing Project which employs Orbix and XML to
integrate a large number of disparate systems provided a good reference
point.

For large scale projects such as the Boeing Project it was generally
agreed that CORBA could act as the main communicating technology,
but it was felt that some high level technologies such as XML also has a
role to play (where it made no sense to use CORBA). One of the prob-
lems pointed out by the group was the requirement to create Document



6 SYSTEMS INTEGRATION 22

Type Definitions (DTDs) for every time of object to be transported. Al-
though it was felt that DTDs could be specified for entire domains, it
was agreed that there would be many cases where DTDs would need to
be constructed for isolated objects.

The concept of XML replacing IDL was also raised but quickly dropped
as being non-viable. CORBA has a specific role for defining behaviour
and managing the integration of behaviour, an area where XML was
lacking.

The failure of SGML was also raised, and questions were asked as to
whether or not XML could avoid the mistakes (complexity) of SGML.
Finally, XML was highlighted as a possible replacement for CGI.

Query Languages for XML Details of upto four communities defin-
ing different query languages were provided, with XQL and XMLQL
being the most prevalent current query language proposals. Microsoft
is supporting XQL, XWL update facilities can be expected from the
providers.

What emerged from this topic is that there are query languages cur-
rently available for XML (a good thing) but no query language has
emerged as a standard (bad thing). In fact, different query languages
currently offer different types of output as a result of XML queries (doc-
uments, elements sets, restructured documents).

XML’s role in integrating data and services The focus of this
theme was on DTDs. The question of strategy was raised: do we merge
two DTDs or can we simply map the same document to different DTDs?
The idea of the query language being used to solve the integration issue
(possibly through the use of constraints) was also raised.

Can a generic DTD like XMI be used to exchange schemata? In
general, it was felt that using XML would make it easier to exchange
schemata but that the same issue of semantics still exists: it has just
moved to another platform. In fact, it was felt that D'TDs were not as
rich as database schemas.

Attaching semantics to XML This topic focused on the idea of
extending XML to include semantics or some form of rules. The group
felt that this was a bad idea, as it wasn’t possible to achieve properly. We



6 SYSTEMS INTEGRATION 23

were also reminded that SGML’s reason for failure was its complexity. If
XML is to succeed, it should use its simplicity as a key strength.

Can XML be a CDM, or is it just a model for data transfer?
The (almost) unanimous feeling is that XML cannot be a CDM, but
should be used where it is strongest: the transfer of data.

Working Group III:
Software Architectures & Coordination

Klaus-Peter Lohr

As this was the last of the three workshops, there was a strong feeling
among the participants that we should walk away with some general
insight into the overall theme of the seminar. So after surveying several
topics that had been suggested for discussion, we decided to focus on
patterns of integration.

The unevitable quest for a precise definition of terms (pattern, in-
tegration) was quickly resolved for “pattern” — to mean a recurring
structure in space and time that is revealed by abstraction of some kind.
Understanding “integration” turned out to be harder. There were widely
varying opinions on what constitutes an “integrated system” or a “sys-
tem resulting from integration”, ranging from loosely coupled systems to
supersystems where the individual components are no longer recogniz-
able.

An agreement was reached that there are three — largely orthogonal
— impediments to integration: heterogeneity, distribution and autonomy.
Different degrees of integration will exhibit different degrees of masking
heterogeneity, hiding distribution and accommodating autonomy. So a
more or less integrated system would be placed somewhere in a three-
dimensional space, and the distance from the origin would be a measure
of integration.

Typical approaches to coping with heterogeneity, distribution and
autonomy were identified to follow four important patterns:

(Heterogeneity:)

1. Homogenization: Introduce a new, well-chosen ”canonical”
entity in addition to the given heterogeneous entities. De-
fine mappings between these and the new entity. Support



7 UNSUPERVISED LEARNING 24

those mappings by providing wrappers, mediators, adaptors
and similar devices.

2. Direct accommodation: Define pairwise mappings between the
participating entities. Support those mappings by provid-
ing bridges for all pairs where accommmodation is indeed re-
quired.

(Distribution:)

3. Remote invocation via proxies: This well-known approach is
the basis for several middleware systems and can achieve a
high degree of invocation transparency.

(We would have loved to come up with a pattern for choosing appro-
priate middleware in a systematic way. Unfortunately, we didn’t;
so the issue is left as a topic for further research :-)

(Autonomy:)
(This pattern was not developed in the working group; it was sug-
gested in the following plenary discussion.)

4. Higher authority: Existing authorities agree to give up part
of their autonomy in order to allow for some coordination
exercised by a higher authority.

While each of these observations is not radically new, the members of the
working group liked the “integrated view” on systems integration that
was achieved.

7 Unsupervised Learning

Seminar No. 99121 Report No. 235 Date 21.03.—26.03.1999
Organizers: Joachim M. Buhmann, Wolfgang Maass, Helge Ritter, Naf-
tali Tishby

What is unsupervised learning and how does it relate to the well
founded theory of supervised learning? These questions have been dis-
cussed during this seminar which brought together neural modellers,



7 UNSUPERVISED LEARNING 25

statisticians, computational learning theorists (“COLT people”) and the-
oretical computer scientists and physicists. The field of machine learning
with its broad range of pattern recognition applications in data mining
and knowledge discovery, in information retrieval and in classical areas
like speech and image processing, computational linguistics or robotics
is confronted with various problems beyond classification and regression.
The search for structure in large data sets requires automatic inference
tools which can also provide quality guarantees to validate the results.

The discussions after the talks and in special discussion sessions cir-
cled around two main issues of unsupervised learning:

1. What does it mean to detect structure in a data set and how can
we quantify it?

2. How can we provide guarantees that the detected structure gener-
alizes from one sample set to a second one?

It is unrealistic to expect a general answer to the first question. A general
theory of structure has not been developed yet and attempts like the
inference on the basis of Kolmogorov complexity are debated. One might
even argue that such a goal is completely elusive since it encompasses
the program of natural science, engineering and the humanities. The
different talks, therefore, covered a wide spectrum of special suggestions
how structure could be defined and detected ranging from trees in image
analysis, informative projections like PCA or ICA representations of high
dimensional data, clusters in vectorial data and histograms as well as
groups in relational data or principal surfaces.

It became apparent in the discussion of simulation results that fluctu-
ations in the data should have little influence on the learned structures.
This requirement might be enforced by bounding techniques as they have
been developed for the computational learning theory of supervised learn-
ing or by information theoretic compression ideas. The challenges of un-
supervised learning for the COLT and the modeling community seem to
crystallize around the questions how optimally generalizing structures in
data can be discovered and how they are characterized and validated in
terms of robustness, compactness (description length) and efficiency for
learning.

What does biology teach us about unsupervised learning? Apart from
the miracle how supervised learning might be organized in the brain at



8 PROGRAM ANALYSIS 26

the neuronal level, the biological substrate seems to support unsupervised
learning and related modeling ideas (or is at least compatible with them)
by a potentially large computational power in synapses. Furthermore,
spike trains might not only serve as a robust communication protocol
but possibly provide probabilistic inference with an appropriate data
format.

8 Program Analysis

Seminar No. 99151 Report No. 236 Date 11.04.-16.04.1999
Organizers: Hanne Riis Nielson, Mooly Sagiv

Motivation for the seminar. Program analysis offers static tech-
niques for predicting safe and computable approximations to the set of
values or behaviours arising dynamically during the execution of pro-
grams. Traditionally, program analysis has been used in optimising com-
pilers; more recent applications include the validation of safety properties
of software for embedded systems, applications in reverse engineering and
program understanding, and also program analysis shows promise of be-
coming an important ingredient in ensuring the acceptable behaviour of
software components roaming around on information networks.

Over the years a number of different approaches have been developed
for program analysis, all of which have a quite extensive literature. To
give an impression of the diversity let us briefly mention some of the main
approaches. The flow based approach includes the traditional data flow
analysis techniques for mainly imperative languages, but also control flow
analysis as developed for functional and object oriented languages, and
set based analysis as developed for logic and functional languages. The
model based approach includes the parameterised denotational seman-
tics techniques developed for functional and imperative languages, but
also more generally the use of mathematical modelling in the abstract
interpretation of imperative, functional, concurrent and logic languages.
The inference based approach includes general logical techniques touch-
ing upon program verification techniques, but also the type and effect
systems developed for functional, imperative and concurrent languages.

Typically, the various techniques have been developed and further
refined by subcommunities — with the result that often the commonali-
ties between analogous developments are not sufficiently appreciated. To



8 PROGRAM ANALYSIS 27

guide the research effort in our community, it is necessary with an ap-
praisal of the current technology. Therefore one of the primary aims of
the Dagstuhl Seminar was to bring researchers from the various subcom-
munities together to share their experience.

The programme of the seminar. The scientific programme of the
seminar consisted on six invited talks (60 minutes each) and a number of
contributed talks (30 minutes each); in the evenings extensive discussions
were taking place in five working groups with the goal of identifying the
most challenging research problems for the next few years. The working
groups were within the areas:

e Program modularity and scaling of program analysis;
e New applications of program analysis;

e Security through program analysis;

e Foundations of program analysis;

e Combining static and dynamic analyses.

The findings of the working groups were subsequently presented and dis-
cussed in plenum. The abstracts of the talks and the position statements
produced by the working groups can be found in the report. Two work-
ing group statements were selected by the editor of Dagstuhl News and
reproduced below.

A novel application area. At this seminar we begin to see a novel
application area for program analysis: the analysis of security problems.
As described in the position statement from the working group on “Se-
curity through program analysis” further interaction with the security
community is required in order to understand the possibilities as well as
limitations of our techniques; however, classical program analysis tech-
niques have already been successfully applied to a few security problems:

e Ensuring type and memory safety and thereby detecting leaks of se-
cure information caused by accessing memory not allocated by the
application itself — this is important for protection against certain
viruses.



8 PROGRAM ANALYSIS 28

e Detection of information flow using program dependency analysis
allows one to validate certain security and integrity constraints by
imposing a distinction between trusted and untrusted data, be-
tween secure and public data etc.

e Validation of security protocols by extraction of the actual protocol
used by an application and subsequent analyses of its properties.

Novel results presented at this Dagstuhl seminar indicate that program
analysis techniques may be superior to many of the other techniques
suggested for analysing security properties: Based on a program analysis
it was shown how to construct a “hardest attacker” that then can be
analysed in conjunction with the program of interest so as to ensure that
certain security properties are fulfilled.

Also the seminar showed quite some interests in applications of pro-
gram analysis to legacy code. Within the more traditional application
areas of program analysis in particular the combination of static and
dynamic analysis received attention.

Unifying the community. A previous Dagstuhl Seminar on Abstract
Interpretation (Dagstuhl Report No. 123, 1995) showed that there were
serious gaps between the subcommunities and that there was a need for
an exchange of ideas. This view was confirmed in a number of position
statements written for the celebration of the 50th anniversary of the ACM
(ACM Computing Surveys vol. 28 no. 4, 1996). We are very pleased to
observe that today the program analysis community is moving towards
a greater appraisal of competing techniques. In addition to the informal
discussions between the subcommunities, a number of talks emphasised
the relationship between different approaches and so did the discussions
of the working group on “Foundations of Program Analysis”. Also it was
noteworthy that techniques developed in one area are being taken up in
other areas — an example is the further development of techniques used
for analysing pointer structures to analysing mobile computation.

Security through program analysis (working group)

A classification of security. Security is an important area where
there is reason to believe that techniques from program analysis may



8 PROGRAM ANALYSIS 29

prove very helpful. This includes applications to the following ingredients
of security:

e Confidentiality (or secrecy). This amounts to making sure that
certain sensitive data are not becoming generally known; to model
systems, several levels of confidentiality may be appropriate. The
properties are mainly safety properties in the sense that certain
invariants must continue to hold; we ignore here the possibility
that keys used in encryption can be compromised using brute-force
computational attacks.

e Integrity. This is based around the notion of trust, meaning the
use of data or code that is deemed to not lead to any breaches
of security; again this is largely a safety issue. Authentication is a
branch of integrity aiming at preventing a document to be tampered
with; a useful technique is digital signatures (which in RSA is much
the same as encryption). Watermarking is a branch of integrity
aiming at preventing the origins of a document to be obfuscated
even though attempts are made at masquerading it.

e Awailability. This deals with ensuring that certain services are al-
ways possible (e.g. for creating fresh keys that have never been used
before). This is mainly a liveness issue.

e Auditing. This does not enforce security per se, but is a technique
for ensuring accountability: that breaches of security can be traced
back to the offender; here it is important to check against the pos-
sibility of performing actions that are not logged appropriately.

Clarifying breaches of security. It is difficult to perform a convinc-
ing application of the techniques of program analysis unless it is made
clear what constitutes an attack. To some extent this is a “moving tar-
get” that should be addressed by the security community rather than by
the program analysis community. Two facets of this are:

e How does one detect breaches of security? It makes a big difference
whether one is only allowed to inspect the values communicated, or
also to measure computation time, or even to monitor the areas of
a chip that produce the most heat (in case an algorithm has been
laid out in silicon).



8 PROGRAM ANALYSIS 30

e The assumptions that can be made on the attacker. As an example,
is it sensible to assume that an attacker is always written in the
same programming language being used for the application being
analysed?

Possible answers might include a formalisation in terms of testing equiv-
alence or one of a number of bisimulations (as has been done for security
studies expressed in terms of the spi-calculus); somewhat similar tech-
niques have already been used in program analysis for validating classical
analyses (like live variables).

Identifying the important issues. It is a useful technique to reduce
the size of the trusted base; for example proof carrying code only requires
the checker to be trusted and not the theorem prover proving the result
in the first place. As a result, scalability of the analyses will be less of an
issue for program analysis; hence it may be feasible to perform relatively
expensive analyses in order to gain the necessary precision.

Formal notations are likely to be indispensable in expressing the bad
or unacceptable behaviour of systems. This is also related to the issue of
proof carrying code in the sense that it is useful for the code to be able
to contain annotations about its behaviour. A more general treatment
makes use of probabilistic notions in order to perform the risk analyses:
the rate at which semi-confidential data might leak. Unfortunately, it
is unclear how to integrate probabilistic considerations with program
analysis.

The precise details of the encryption and decryption techniques are
probably less relevant for program analysis. (This presupposes that we
ignore the risk of brute force cracking a code as was already stated above.)

It is also important to understand the limitations of our techniques
in attempting to guarantee against attackers. Various forms of code ob-
fuscation might be used to severely limit the abilities of program analysis
to detect useful information about the information flow happening in a
system (like multiple uses of the same variable for different purposes or
obscuring the control structure). Also it may be necessary to integrate
dynamic checks (e.g. taintedness checks) with the static analysis in order
to ensure confidentiality.

Techniques from program analysis. The classical program analyses
are often necessary preconditions for ensuring security; as an example



8 PROGRAM ANALYSIS 31

type and memory safety can be used to detect leaks of secure information
caused by accessing arrays outside their declared bounds. Only when
studying special purpose designed calculi (such as the pi-calculus, the
spi-calculus or the ambients calculus) is it meaningful to study security
without first performing the standard analyses for ensuring type and
memory safety.

Several of the approaches to program dependency analysis (like control
flow analysis, use definition chaining etc.) may form the core of analyses
for detecting information flow (including implicit flows). Another use-
ful technique for maintaining security and integrity constraints is type
systems with effect annotations (in the form of trusted/untrusted, se-
cure/public etc.). Both of these techniques are likely to be very useful in
determining the information flow that lies at the heart of many security
notions. Indeed, on top of demonstrating that certain illegal flows do not
take place, they may also be useful in determining the potential breaches
of security that may result from accidental or deliberate instances of
compromising data (e.g. by allowing only partly trusted applications to
operate on selected parts of the sensitive data).

Techniques from type and effect systems may be useful for extracting
the inherent protocols used for communication in programs (including
legacy code) so as to allow validating the overall protocol of a software
system. This will also help detecting errors that arise when the system
is implemented; similar considerations apply to deliberate code modifi-
cation so as to facilitate a later attack. Also auditing can be ensured
through these techniques by ensuring that data is only accessed or mod-
ified after the appropriate logging actions have been performed.

Recent research suggests that program analyses that abstract the se-
mantics of the program might be useful for devising tests that can be
used to validate key software components. To be specific, based on the
analysis it may be possible to characterise an infinite set of attackers by
a finite set of hard attackers; then one can simply analyse the software
component under each of the attackers and validate the component in
case none of the analyses exhibit illegal behaviour.

Challenges for program analysis. The following challenges are aimed
at demonstrating the usefulness of program analysis for security and at
studying which of our techniques are likely to be useful for security. It
should be possible to obtain progress on both within a few years from



8 PROGRAM ANALYSIS 32

now.

e Perform a successful study of one system or protocol; either find

an undetected flaw or prove that no attacks of a certain kind can
succeed. (This would be useful even for toy protocols from text
books such as the alternating bit protocol.)

Identify techniques, beyond “extended reachability analyses” and
“effect annotations” that are applicable; to which extent does this
uncover techniques not already known in the security community?

Group members: Chris Hankin, René Rydhof Hansen, Thomas Jensen,
Flemming Nielson (editor of the position statement), Jon Riecke, Hanne
Riis Nielson, Andrei Sabelfeld, Mooly Sagiv and Helmut Seidl.

Foundations of program analysis (working group)

Program analysis has a number of foundational approaches. We identified
ten such approaches, some of which overlap with the others. Those ten
approaches, with their defining characteristics, are

1.

Type based: Uses an inductive, compositional definition of a typing
relation. Type-based analyses may require types or other annota-
tions in programs.

. Constraint based: Uses systems of equations, inequations, or, more

generally, conditional constraints generated from the program by
an algorithm. These systems are solved by another algorithm to
yield an analysis result.

Abstract interpretation: Uses concrete and abstract domains of val-
ues, with concretization and abstraction functions between them
that form a Galois connection. Widening and narrowing are im-
portant techniques to improve the efficiency and precision of the
analyses. Algorithms in this area are based primarily on least fix-
point computations.

Grammar flow: A method that traces the state spaces of tree au-
tomata, and uses alternations between bottom-up and top-down
phases.



8 PROGRAM ANALYSIS 33

10.

. Data flow: A methodology based on equations between sets of val-

ues and transfer functions, typically solved by least or greatest
fixpoints.

Context-free language reachability: A method using context-free
grammars, usually focusing on interprocedural problems and usu-
ally taking O(n®) time.

Dependence graphs: An analysis technique using data structures
with control dependence and flow dependence edges; the data struc-
tures are the basis for many algorithms.

Temporal logics and model checking: Specifies properties of pro-
grams using temporal logics. Checking of properties (that is, deter-
mining the truth/falsity of them) is done by model checking. This
technique generalizes many ideas from the data flow approach, but
is different in using logic to specify “elements” of data flow sets
rather than using sets directly.

Denotational based: Uses a compositional translation from syntax
into mathematical spaces of values. These mathematical spaces,
typically called “domains,” can be based on syntax as well as partial
orders. Strictness analysis is an example.

Abstract reduction: Uses a nonstandard rewrite semantics, often
requiring an interesting form of loop detection via a syntactic notion
of “widening.” This technique is used in the CLEAN system, a
compiler for a lazy functional language.

Some simple analyses, e.g., Barendregt’s neededness analysis for the un-
typed lambda calculus, do not seem to fit naturally into one of these
classifications. We may also have missed some frameworks, since not all
analysis communities were represented.

Criteria for choosing an analysis framework

When choosing a suitable framework for approaching an analysis prob-
lem, a number of criteria can be used:

1.

Utility: Does the framework naturally express the analysis prob-
lem?



8 PROGRAM ANALYSIS 34

2. Reliance on syntax: Does the approach rely on the syntax of the
language, or does it use some other generic data structure?

3. Specification cleanliness: How well does the approach separate
specification of “what” the analysis does from “how” the analy-
sis is performed?

4. Algorithmic issues: Does the analysis suggest an obvious algo-
rithm? An efficient algorithm?

5. Expressivity: Can one formalism express the analysis as well as
another? How succinctly can the analysis be expressed? Can an
analysis be done as efficiently in one formalism as it can in another?
For instance, temporal logics seem strictly more powerful than data
flow approaches.

6. Scalability: How well does an analysis in one formalism scale to
large programs?

7. Modularity: How modular is the specification of an analysis? Can it
be extended easily to larger programs, or to other forms of analysis?

8. Semantics directedness: Does the framework force the analysis to
look like the semantics of the language?

9. Tools: Does the framework admit the construction of tools? How
wide is the coverage of these tools?

Challenges

1. Low-complexity analyses: Are there methods in the various frame-
works for constructing lower complexity analyses? Techniques from
different frameworks may need to be combined.

2. Reductions: Can one construct reductions between different analy-
ses written in different frameworks, or between different frameworks
themselves? If so, do these reductions preserve complexity bounds
of the analyses?

3. Expand scope of foundations: Can one reformulate certain analyses
as type systems or in one of the other frameworks? Foundational
work should promulgate the use of frameworks in analyses that



9 INSTRUCTION-LEVEL PARALLELISM AND COMPILATION 35

don’t seem to use them, and should consider these analyses in po-
tential expansions of the frameworks.

4. Tools: Can one say general things about how much of a particu-
lar framework—that is, how many analyses developed in a certain
framework—a tool covers? Can one expand the coverage of tools
using foundational methods?

5. Open systems: Can one devise or extend analysis frameworks to
dealing with open systems (i.e., those with processes, mobile code,
or simply modules)?

6. Probabilities: Can one devise foundational understandings of anal-
yses that use probabilities (e.g., an analysis that predicts, with
probabilities rather than yes/no, when a definition reaches a use)?

7. Redundant code: Are there ways of building analyses that eliminate
redundant code?

Group members: Chris Hankin, Jorgen Gustavsson, René Rydhof
Hansen, Thomas Jensen, Flemming Nielson, Hanne Riis Nielson, Jon G.
Riecke (editor of the position statement) and Mooly Sagiv.

9 Instruction-Level Parallelism and Paral-
lelizing Compilation

Seminar No. 99161 Report No. 237 Date 18.04.—23.04.1999
Organizers: Damal K. Arvind, Kemal Ebcioglu, Christian Lengauer, Ke-
shav Pingali, Robert S. Schreiber

Introduction

Parallel programming has been around for three decades and has re-
mained a difficult field. The biggest challenge arises when the main pur-
pose of parallelism is to increase performance, i.e., computation speed.
Parallel programs are notoriously hard to get correct and efficient. Al-
though progress has been made on the semantics and verification of par-
allel programs in certain domains, no practical technique for the devel-



9 INSTRUCTION-LEVEL PARALLELISM AND COMPILATION 36

opment of reliable, portable application parallelism for high performance
has been achieved.

One approach towards this goal is to unburden the programmer from
the difficult task of handling parallelism and delegate this to the compiler
or the machine architecture. The research area which gives the compiler
the control over the parallelism is parallelizing compilation, the research
area which lets the machine infuse the parallelism is instruction-level

parallelism (ILP).

The aim of the seminar was to bring together these two research ar-
eas, which have developed side by side with little exchange of results.
Both areas are dealing with similar issues like dependence analysis, syn-
chronous vs. asynchronous parallelism, static vs. dynamic parallelization,
and speculative execution. However, the different levels of abstraction
at which the parallelization takes place call for different techniques and
impose different optimization criteria.

In instruction-level parallelism, by nature, the parallelism is invisible
to the programmer, since it is infused in program parts which are atomic
at the level of the programming language. The emphasis is on driving
the parallelization process by the availability of architectural resources.
Static parallelization has been targeted at very large instruction word
(VLIW) architectures and dynamic parallelization at superscalar archi-
tectures. Heuristics are being applied to achieve good but, in general,
suboptimal performance.

In parallelizing compilation, parallelism visible at the level of the pro-
gramming language must be exposed. The programmer usually aids the
parallelization process with program annotations or by putting the pro-
gram to be parallelized in a certain syntactic form. The emphasis has
been on static parallelization methods. One can apply either heuristics
or an optimizing algorithm to search for best performance. Resource
limitations can be taken into account during the search, or they can be
imposed in a later step, e.g., through tiling or partitioning the computa-
tion domain.

Summary of the Presentations

Embedded software applications have traditionally tended to use low-
level languages and hand-crafted techniques for optimizing execution
time and memory usage. Given the scope for exploiting parallelism in



9 INSTRUCTION-LEVEL PARALLELISM AND COMPILATION 37

embedded software, especially in multimedia applications, and the emer-
gence of ILP processors, such as VLIW ones, there is a growing body of
work investigating automatic parallelization of high-level programs aimed
at ILP targets. A number of these compiler infrastructure projects were
presented at the workshop.

The Esprit OCEANS project (Eisenbeis) is aimed at embedded VLIW
architectures, with emphasis on understanding and exploiting interac-
tions between high-level optimizations, such as loop unrolling, and low-
level ones, such as software pipelining

The ACROPOLIS project (Omnes) at IMEC considers the impact
of data organization in embedded applications on performance metrics
such as instruction throughput and power consumption. The latter is
fast becoming an important consideration for multimedia applications
running on mobile appliances. The approach in this project is to in-
form the choices in the parallel compilation process of the impact of the
dominant costs of data transfers and complex data manipulations on the
overall performance.

The TriMedia project (Augusteijn) at Philips has developed a compi-
lation environment for embedded programs written almost exclusively in
C/C++, and targeted at the 5-issue TriMedia VLIW processor. It sup-
ports predicated execution and special operations for DSP algorithms,
such as vector instructions on subwords.

Vectorizing techniques for exploiting sub-word parallelism in ILP ar-
chitectures was the subject of two further talks from the University of
Vienna (Krall) and the Indian Institute of Sciences, Bangalore (Govin-
darajan); and the method of predicated execution for exploiting ILP in
the EPIC (Explicitly Parallel Instruction Computing) architecture was
the subject of a paper from University of California, San Diego (Fer-
rante).

The traditional instruction sets of processors have been extended to
exploit efficiently sub-word parallelism, in which a number of short data
elements are packed in a single register and data-parallel operations are
executed on them in parallel. Examples of these so-called multimedia
extensions include, the Visual Instruction Set for the UltraSPARC pro-
cessor, the AltiVec for the PowerPC, the MMX extension for the Pentium
processor, and the MAX-2 instruction set of the PA-RISC processor. At
present, there is little or no compiler support to exploit sub-word paral-
lelism — the user is expected to handcode large parts of their application



9 INSTRUCTION-LEVEL PARALLELISM AND COMPILATION 38

in assembly language.

Krall uses the technique of vectorization by unrolling to automate
this process. Data dependence analysis and dynamic run-time checking
are used to handle unaligned memory accesses. Govindarajan uses stan-
dard vectorization techniques on loops which are tailored for short vector
lengths.

Predicated execution is one of many approaches used to finding in-
structions that can be executed simultaneously in ILP architectures. One
of the drawbacks, however, is that predicated code presents challenges
to traditional compiler optimizations. Ferrante presented an extension
to the well-known Static Single Assignment form, called the Predicated
Static Single Assignment form, which, when used in conjunction with
speculation and control height reduction, enables instructions to be is-
sued at their true data dependence height.

The microarchitecture of future processors has been the subject of
intense debate and was the topic of two talks — from the University of
Wisconsin (Sohi) and the University of Delft (Corporaal). Both speak-
ers recognized common problems — future architectures have to contend
with increasing workloads and longer communication and memory laten-
cies — but they advocated quite different solutions. Microarchitectures
have traditionally been based on certain observable program behaviours,
such as spatial and temporal locality. Sohi advocated the need for in-
formation about program structure the data and control relationship
between instructions, i.e., the relationship which causes the observable
behaviour — to be the basis for the design of future microarchitectures.
Corporaal recognized communication as being of primary importance in
the design of future microarchitectures. In the transport-triggered ar-
chitectures, for instance, the communication between functional units,
and with the register files, are programmed explicitly; the computation
is now a side-effect, triggered by the communication. All communication
inside the microarchitecture is visible to the compiler, which leads to a
number of communication-level optimizations that the compiler can per-
form to increase the performance. Embedded programs can be analyzed
and implemented on a transport-triggered architecture with an optimal
number of functional units and communication pattern.

Embedded systems have requirements such as low cost and low power
consumption, in addition to high performance. In many cases, off-the-
shelf processors cannot meet the performance specification. The design



9 INSTRUCTION-LEVEL PARALLELISM AND COMPILATION 39

of embedded systems tuned to a particular application in a given domain
demands an approach which takes an integrated view of the software
and hardware design of the system. Cadence Design Systems (Martin,
Hoover) presented an approach to performance estimation of software
running on the processor by using a virtual instruction set model, and a
scheduling model for the real-time operating system.

Looking beyond ILP, talks from the University of Minnesota (Yew),
Chalmers University (Stenstrém), and the University of Jena (Unger)
presented ideas on compilers that exploit thread-level and instruction-
level parallelism. Yew discussed the Agassiz compiler which is targeted
at a concurrent multithreaded architecture and supports speculative ex-
ecution at both the thread and instruction level, in addition to run-time
data dependence checking and very fast communication between thread
processing units. High-level program information, such as aliases, and
cross-iteration data dependences, are passed from the thread-level com-
piler to the ILP one. Unlike Yew, Stenstrom does not assume that the
target architecture supports speculative execution. His ideas for thread-
level data speculation are implemented entirely in software. The aim
is to demonstrate that the overhead is acceptably low with reasonable
performance gains through the exposed parallelism. Unger presented the
Simultaneous Speculation Scheduling, which is a combined compiler and
architecture technique for multithreaded processors. The speculation is
controlled entirely by the compiler and is aimed at simultaneous multi-
threaded processors.

A number of talks discussed the dependence analysis of programs and
their optimization for ILP processors. The paper from the University of
Jena (Zehendner) describes a method for memory reference disambigua-
tion on assembly language code for increasing ILP. The method derives
value-based dependences between memory operations and is integrated
in the SALTO system. The presentation from the University of Versailles
(Collard) looked at statically deriving the probability, in the case of ar-
rays, that two references access the same memory location. This is use-
ful in moving a load speculatively above a possibly aliasing store. Mills
Strout from the University of California, San Diego, presented a method
of register tiling which exploits data dependence analysis to reduce stor-
age requirements in superscalar ILP architectures. Jens Knoop from the
University of Dortmund presented an automata-theoretic approach to in-
terprocedural data flow analysis. The structural behavior of the program
is modelled by an appropriate pushdown system; the reaching definitions



9 INSTRUCTION-LEVEL PARALLELISM AND COMPILATION 40

problem boils down to a reachability problem on pushdown systems.

One dominant target of parallelizing compilers is the domain of nested
loop programs. A number of presentations in the seminar came from this
domain.

The computation domain of a loop nest is often modelled by embed-
ding the loop steps on a high-dimensional integer grid. One problem
which arises is how to use the structure of this domain to advantage for
an efficient execution. Griebl from the University of Passau presented an
algorithm to shorten the parallel execution which uses breaks in the de-
pendence structure of a polyhedral computation domain. Quilleré from
IRISA in Rennes presented a method for the execution of domains which
are unions of polyhedra. Rather than testing at run time, whether a
computation point falls into the domain or lies outside — which can lead
to a lot of overhead — he splits the domain into pure polyhedra and
scans these without any run-time tests. Darte from the ENS Lyon uses a
combination of loop shifting and loop compaction to shorten the parallel
execution of a program composed of separate loop nests. Robert from
the same school extends static techniques of partitioning the domain to
the context of limited computational resources with different-speed pro-
Cessors.

At a lower level of abstraction, Coelho restructures mathematical ex-
pressions to evaluate them more efficiently. Gregg addresses the software
pipelining of loops with branches in the loop body. Moore presented
work at the University of Frankfurt on associative architectures for the
support of run-time parallelization.

Conclusions

The seminar exposed the exciting developments taking place in parallel
computer architecture. It also exposed the heavy burdens which are
being placed in compilers by current parallel machines. The efficient use
of performance-increasing hardware such as cache hierarchies, pipelined
functional units and predication calls for highly sophisticated analysis
and code generation techniques. It remains to be seen how the portability
of parallel software can be maintained in this scenario. Portability is
essential. After all, a parallel computer whose main purpose is high
performance becomes obsolete after about five years.



10 HIGH LEVEL PARALLEL PROGRAMMING 41

An issue of the International Journal of Parallel Programming dedi-
cated to this seminar will appear in due course.

10 High Level Parallel Programming: Ap-
plicability, Analysis and Performance

Seminar No. 99171 Report No. 238 Date 25.04.—30.04.1999
Organizers: Murray Cole, Sergei Gorlatch, Jan Prins, David Skillicorn

It is generally acknowledged that programming parallel computers ef-
fectively and correctly is a conceptually challenging task for all but the
simplest of applications. Consequently, there is widespread research in-
terest in models and methodologies which can assist the process. In order
to provide some degree of durability, such approaches must abstract from
the detailed characteristics of specific systems, while remaining efficiently
implementable by those systems.

The previous Dagstuhl Seminar 9708 brought together a spectrum of
researchers with interests related to the “higher order” aspects of this
area, ranging from those with theoretical interests in program develop-
ment to practical systems builders. The present seminar has aimed to fo-
cus more closely on the developments in two of the areas which emerged
at the original workshop as being on the critical path to progress to
include approaches which are more generally “high level” rather than
specifically “higher order”. By “high level” we mean going beyond the
simple extension of sequential languages with communications or shared
data primitives, to models and languages in which the expression of con-
ceptual structure is encouraged and supported.

Most interest in parallel programming is motivated by the quest for
dramatically improved performance in processing large applications. To
gain credibility with that community, we must be able to show that our
methods are competitive. The quantification of performance is simplified
by the computational structure inherent in the high level approach. This
applies equally to attempts to predict performance on the basis of static
program analysis and a small number of architecture specific parameters
(more commonly known as “cost-modeling”) and to the benchmarking
and post-hoc analysis of the behaviour of implemented systems.

Similarly, we must be able to demonstrate convincingly that high



10 HIGH LEVEL PARALLEL PROGRAMMING 42

level parallelism enhances the applicability of the underlying technology
by simplifying the expression of real programs for real problems (rather
than the sanitized and simplified examples appropriate to the early stages
of research). Paradoxically, our target audience must also be convinced
that there is no loss of expressiveness when dealing with those parallel
programming sub-tasks in which there is no well behaved structure to
capture.

In summary the following questions and the many subordinate issues
they raise were addressed during the seminar:

e How well can high-level parallel programming methods match the
performance of more machine specific approaches?

e What do (and should) we mean by performance in this context?

e Can such systems be effectively cost-modelled, and if so, would this
be an attractive feature to practitioners?

e Can we support such models with other conceptual tools in ways
which enhance their attractiveness?

e Can the tension between the use of abstraction and the requirement
for detailed ad-hoc control in certain problems be satisfactorily re-
solved?

In order to ensure that contributions remain focused on cost and ap-
plicability, and to provide some common ground on which debate can be
conducted, we circulated the participants well in advance with two real-
istic problems to act as case studies: (1) the Frequent Sets Problem in
data mining, and (2) the Barnes-Hut algorithm for the N-Body problem.
Both problems are important in practice but have not been treated well
to date because of methodological limitations. Lively and deep discus-
sions on both problems, in particular about such evaluation criteria as
succinctness, correctness and clarity, as well as performance, contributed
a lot to the success of the seminar:

e The Frequent Sets Problem is one of the basic building blocks of
many data mining algorithms. Suppose that an organization has
recorded the set of objects purchased by each customer on each
visit. The goal of the frequent set problem is to find those (smaller)
subsets of objects that appear in more than a given fraction of the



10 HIGH LEVEL PARALLEL PROGRAMMING 43

sets. This information can be used to, for example, place objects
that are often purchased together near each other on the shelf.
The algorithm is also applicable in scientific domains, for example
to find the “interesting” parts of complex simulations.

Given a set M (all of the possible objects that can be sold) and a
bag N of subsets of M (each element of the bag records the subset
of objects purchased by one customer in one visit), find all subsets
of M that appear in more than a fraction x of the elements of N.

The problem is trivial in the sense that there is an obvious algo-
rithm. However, the size of the data concerned is so large that it
becomes critical to do as little work as possible. Clever algorithms
are necessary.

There have been two main approaches. The first depends on the
observation that a set can only be frequent if all of its subsets are
frequent. This reduces the number of sets whose frequencies need
to be checked. A summary of this approach can be found at
http://www.cs.helsinki.fi/“htoivone/pubs/toivonen.ps.gz
in Toivonen’s thesis. The other tries to use the vast mathematical
literature on lattices to improve the search. An example is the work
of Zaki at Rochester:
http://www.cs.rochester.edu/trs/system-trs.html

The frequent set problem fits well with calculational approaches in
the sense that it is straightforward to write down a solution, but
harder to transform it to an efficient solution.

This problem was presented to Dagstuhl participants in advance of
the workshop. During the workshop, two attacks on the problem
were made. Zhenjiang Hu was able to derive a much-improved ver-
sion of a functional implementation. Its performance was compared
to a direct implementation by Christoph Herrmann. On some small
synthetic datasets, performance improvements of an order of mag-
nitude were demonstrated. Second, Charles Leiserson pointed out
that an approximate algorithm due to P. Gibbons and J. Matias
for computing distributions in datasets might be applicable to the
problem. Discussion along this line took place during the meeting,
although no substantial progress was achieved (the approach has
since been extended and shown to work well, however).

e The N-Body Problem: given a self-gravitating system consisting



10 HIGH LEVEL PARALLEL PROGRAMMING 44

of n distinct particles characterized by their mass, initial position,
and velocity, the problem is to compute the force on each particle
that is induced by the other particles.

A direct force calculation would require the computation of O(n?)
interactions, a large amount of work for particle systems encoun-
tered in practice. There exist a variety of methods that compute
approximations to the exact solution with reasonable accuracy and
with an improved asymptotic complexity.

The Barnes-Hut hierarchical force-calculation algorithm exploits
the fact that, at a distance, the combined potential of a group of
particles can be approximated by the potential of the center of
mass of that group. The algorithm makes use of a hierarchical
quad-tree (or oct-tree in 3D) decomposition of the space contain-
ing the particles, and associates with each region its center of mass.
After the tree is built, the force calculation traverses the tree top
down for each particle to accumulate the total force on the particle.
Subregions are explored only if the region’s center of mass is not
sufficiently far away from the particle to be used as an approxima-
tion.

The treeForce computation for each particle is independent and can
be computed in parallel. Moreover, the recursive force-computa-
tions in the tree traversal are independent and can be computed in
parallel. The parallelism specified in treeForce is dynamic since the
available parallelism increases with the depth of the recursion. It is
irregular because the degree of parallelism specified and the locality
of the interactions depend on the distribution of the particles.

This problem has been suggested for consideration in Dagstuhl be-
cause the algorithm can be succinctly expressed in a high-level no-
tation, yet an efficient implementation is challenging. Furthermore,
some comparative performance data are available for low-level im-
plementations.

In order to encourage critical comment on our ideas, we invited a
small number of open-minded participants who are prominent in the use
of currently dominant parallel programming technologies (such as MPI,
HPF and multi-threading). Their pragmatic perspective on our proposals
was illuminating.



11 MOBILE MULTIMEDIA COMMUNICATION 45

11 Mobile Multimedia Communication — Sys-
tems and Networks

Seminar No. 99061 Report No. 239 Date 04.05.—06.05.1999
Organizers: Andrew Campbell, Ernst Rolf, Stephen Pink, Martina Zit-
terbart,

Wireless and mobile communication are becoming increasingly im-
portant for various application areas going far beyond pure telephony.
Just to name a few trends: body area networks, sensor-based networks
and multihop ad hoc networks are of great interest leading to new infras-
tructures and propelling new applications in the context of ubiquitous
computing. Furthermore, it is obvious that multimedia data need also to
be transported through wireless networks or through a wireless access.
Moreover, multimedia data will be exchanged during mobility and, thus,
require proper networking support, for example, regarding continuous
delivery and the like.

Mobile communication asks for both, proper network solutions includ-
ing protocols and mechanisms as well as good systems including issues
related to power management and hardware/software co-design. This
Dagstuhl seminar on mobile multimedia communication has brought to-
gether researchers from both groups (systems and networks) to stimulate
interdisciplinary discussions.

The report gives an overview of the presentations given during the
seminar and reflects the current research in both systems and networks
for mobile multimedia communication. Although the majority of top-
ics was related to networking issues (e.g., active networking, Quality of
Service, protocol header compression), issues considering systems were
also discussed, for example timing analysis of mobile communication sys-
tems.

12 Geometric Modelling

Seminar No. 99201 Report No. 240 Date 16.05.—21.05.1999
Organizers: Hanspeter Bieri, Guido Brunnett, Gerald Fagin



12 GEOMETRIC MODELLING 46

The field of Geometric Modeling emerged from the need for efficient
tools for geometry handling in CAD/CAM applications. Initially, it was
mainly concerned with the development of modeling techniques for con-
tinuous free-form geometry as Bezier and B-spline surfaces. Since effi-
cient geometry processing is important for a variety of applications apart
from CAD/CAM modeling tools have been demanded that correspond to
the special requirements of theses applications. In this way applications
served as the driving force for the development of the field. Today, Ge-
ometric Modeling addresses modeling problems that involve continuous

as well as discrete geometry and arise in application areas as Scientific
Visualization, Robotics, Optimal Control, Biomedicine and CAD/CAM.

Out of the diversity of topics discussed on the workshop we would
like to highlight the following issues.

1. Reverse Engineering

is concerned with the automatic generation of a CAD model from
a point set that has been digitized from an existing 3D object. The
reverse engineering process can be divided into four main phases:
data preprocessing, segmentation, surface fitting and CAD model
creation. During the preprocessing step the data is organized such
that it is possible to estimate local properties of the surface to be
reconstructed. This information may then be used to group the
points into segments appropriate for the surface fitting step.

On the workshop a new algorithm has been presented for comput-
ing a triangulation of the data set as an intermediate step of the
reconstruction. The method approximates the Delaunay tesselation
of the object’s surface. Thus, it intends to generalize the common
Delaunay triangulation to arbitrary 2D manifolds in Euclidean 3
space. In contrast to previous algorithms it combines generality
with computational efficiency. In a different talk a new approach
towards automatic segmentation has been presented. Here, the
computation of a triangulation is completely avoided. Instead a
hashing strategy is used to compute a neighborhood graph that
serves as the basic structure of the point set. This methods is ex-
tremely fast. It allows the automatic segmentation of large data
sets (several 100 000 points) in the range of seconds.

2. Geometric Modeling for Scientific Visualization and Sim-
ulation



12 GEOMETRIC MODELLING A7

An important issue of Scientific Visualization is the realistic model-
ing of fluid flow. In its most general setting fluid flow is governed by
a system of non-linear partial differential equations known as the
Navier-Stokes equations. However, in several important settings,
these equations degenerate into simpler systems of linear partial
differential equations. On the workshop it has been shown that
flows corresponding to these equations can be modeled using sub-
division schemes for vector fields. With this approach realistic flows
can be modeled and manipulated in real time.

In a different talk new results have been reported in the develop-
ment, of parametric descriptions of biological objects of complex
shape, e.g. the human heart. The method described is based on
partial differential equations as modeling elements and allows a re-
alistic analysis of the functioning of the models.

3. Error Propagation in Geometric Constructions

Surprisingly little is known on the propagation of input errors on
the result of geometric constructions. On this workshop a theoreti-
cal analysis for the most simple type of geometric construction, i.e.
affine combination, has been given and the consequences for spline
curves which are created by repeated affine combination of control
points have been discussed.

4. Solid Modeling

is concerned with the processing of volumetric objects for design
purposes. The representation schemes used for solid modeling de-
liver complete information on the object that has been designed.
This allows to perform a consistency check on the model. On the
workshop several talks were devoted to this subject. A new type
of solid has been presented that allows dimension independent ge-
ometric modeling. For a specific type of orthogonal polyhedra a
new extremely concise data structure has been described. It has
been shown that volumetric properties of solids can be efficiently
computed using low-discrepancy sequences. Finally, methods have
been investigated for constrained based modeling in a mixed envi-
ronment of free form curves, surfaces and solids. Especially, it has
been demonstrated how the curve-surface incident relation can be
maintained while the curve is edited.



13 GRAPH DECOMPOSITIONS 48

13 Graph Decompositions and Algorithmic
Applications

Seminar No. 99231 Report No. 241 Date 06.06.—11.06.1999
Organizers: Andreas Brandstiadt, Stephan Olariu, Jerry P. Spinrad

There are many notions of graph decomposition which arise in the
literature. Some decompositions involve decomposing a graph using sep-
arators of special types (balanced or polynomially bounded, star cut-
sets, clique cutsets), others involve identification of special sets (sub-
stitution or splits), while others involve tree decomposition (treewidth,
cliquewidth, branchwidth) or tree composition (Cartesian product, lexi-
cographic product).

These decompositions are of fundamental importance for solving op-
timization and recognition problems on classes of graphs. For example,
substitution decomposition is closely related to such problems as solving
problems expressible in monadic second order logic quantifying over ver-
tices and/or edges and comparability graph recognition and optimization.
Treewidth and its generalizations are of special importance due to the
Robertson-Seymour results on tree decomposition and existential proof
of existence of algorithms. Clique cutsets and star cutsets are funda-
mental tools used in the study of chordal and perfect graphs. Particular
tools for working with these decompositions, such as partition refinement
and lexicographic breadth first search, have recently been improved and
generalized in this context.

This seminar was designed to bring together researchers working on
a variety of aspects of graph decomposition. Talks were given studying
special classes of graphs, new decomposition techniques and optimiza-
tion algorithms, and data structures which allow faster decomposition
algorithms.

We had 37 participants from Austria, Brazil, Canada, France, Ger-
many, Hungary, Italy, The Netherlands, Norway, Republic of China,
Switzerland and USA. During the seminar 25 lectures were given. More-
over, two evening sessions presented open problems.

Jens Gustedt, editor of the electronic journal DMTCS

(http://dmtcs.loria.fr/) proposed to the organizers to edit a special
volume of this journal devoted to our Dagstuhl seminar.



14 REQUIREMENTS CAPTURE 49

14 Requirements Capture, Documentation,
and Validation

Seminar No. 99241 Report No. 242 Date 13.06.—18.06.1999
Organizers: Egon Borger, Barbel Horger, David Parnas, Dieter Rombach

The goal of the workshop, namely to bring together software engi-
neering researchers from academia and software engineers from industry
to compare the state of industrial practice and academic research for
capturing, documenting and validating software requirements, has been
reached.

After two days of short introductory presentations, with ample time
for critical discussion, we had two days of intensive discussion in working
groups.

The three themes

e Integrating Process, Tools and Formal Methods (moderator Connie
Heitmeyer),

e Requirement Engineering Process, Evolution of Requirements and
Traceability (moderator Barbara Paech),

e The Light Control Case Study (moderator E. Borger)

were selected by the participants on Tuesday evening, the results obtained
were presented to all participants during the closing session on Friday
morning. Reports by the moderators of the working groups can be found
in the report.

The focus of the presentations and discussion was on the industrial
strength of the used methods and on their relevance for the production
of large software.

To make sure that the discussion was suitably concrete, the workshop
made extensive use of a case study that could be discussed in detail. The
example, taken from the area of building automation, was a light control
system.



15 COMPETITIVE ALGORITHMS 50

15 Competitive Algorithms

Seminar No. 99251 Report No. 243 Date 20.06.—25.06.1999
Organizers: Amos Fiat, Anna Karlin, Gerhard Woeginger

Decision making can be considered in two different contexts: mak-
ing decisions with complete information, and making decisions based on
partial information. A major reason for the study of algorithms is to try
to answer the question: ‘Which is the better algorithm?’ The study of
the computational complexity of algorithms is useful for distinguishing
the quality of algorithms based on the computational resources used and
the quality of the solution they compute. However, the computational
complexity of algorithms may be irrelevant or a secondary issue when
dealing with algorithms that operate in a state of uncertainty. ‘Com-
petitive’ analysis of algorithms has been developed in the study of such
algorithms.

Competitive analysis is useful in the analysis of systems that have
some notion of a time progression, that have an environment, that re-
spond in some way to changes in the environment, and that have a mem-
ory state. Competitive analysis is used for so-called ‘on-line algorithms’
that have to respond to events over time. Competitive analysis is used
whenever the nature of the problem is such that decisions have to be
made with incomplete information.

16 Foundations for Information Integration

Seminar No. 99261 Report No. 244 Date 27.06—02.07.99
Organizers: Serge Abiteboul, Dana Florescu, Alon Levy, Guido Mo-
erkotte

We are currently witnessing an explosion in the amount of informa-
tion that is available on-line (e.g., sources on the Internet, company-wide
intranets, etc). Providing easy and efficient access to this information
known as the problem of data integration — raises an important challenge
to several fields of Computer Science including Database Systems, Artifi-
cial Intelligence, Operating Systems, Networking and Human Computer
Interaction.



17 AGENT APPROACHES IN DISTRIBUTED MODELING 51

The challenge is to develop techniques for providing uniform access to
the wealth of available information. Usually, data integration is achieved
by providing the user a mediated schema that hides the details of each
of the data sources, and lets the user focus on specifying what he wants,
rather than specifying how or where to find the information. The data
integration problem is complicated by the fact that the data sources are
autonomous, employ different data models and are heterogeneous both
semantically and syntactically. Furthermore, the data sources are often
only semistructured (e.g., they do not have explicit schemas, the schemas
are unknown, or the sources contain extraneous information such as ad-
vertisements or other information meant for human consumption). The
techniques that need to be developed include modeling of the contents
of information sources, high-level query facilities, flexible approaches to
selecting relevant sources, novel methods for query optimization and flex-
ible query execution models.

17 Agent Oriented Approaches in Distributed
Modeling and Simulation: Challenges and
Methodologies

Seminar No. 99271 Report No. 245 Date 04.07.—-09.07.1999
Organizers: Paul Fishwick, Adelinde Uhrmacher, Bernard Zeigler

Metaphor plays a key role in Computer Science and Engineering. New
ideas and methods are infused into existing areas, creating fresh material
and methodologies. An “agent” carries out our purpose in performing an
act on our behalf. The achievement of this purpose may involve differing
degrees of autonomy. If we take the everyday meaning of “agent” and
marry this concept with software development, we derive the “software
agent”.

Software agents address the demand for programs that inter-operate
to solve problems in an open and dynamic environment. As the number
and complexity of agent-oriented programs increases, so does the need
for software engineering tools and simulation systems that support their
design and evaluation. New research questions whether agent-oriented
techniques hold part of the answer to some urgent problems in engineer-
ing simulation systems, such as how to facilitate reuse and exchange of



17 AGENT APPROACHES IN DISTRIBUTED MODELING 52

models and services between simulation systems.

Simulation of Multi-Agent Systems

Agent-based systems are often safety critical, and like other software
systems, must be tested and evaluated before being deployed. Agents
are embedded systems, and their dynamic behavior determines their ef-
ficiency and effectiveness. Therefore, simulation is an intrinsic part both
during development and for testing purposes, to learn more about their
behavior or investigate the implications of alternative architectures and
coordination strategies.

However, work to date has largely ignored recent work in simulation
methodology and systems and has instead tended to employ various ad-
hoc approaches to simulation. The model of the environment the agent
shall be tested in and the simulation mechanisms are typically developed
and implemented from scratch. In setting up the test environment, mod-
eling and the execution of the model are not distinguished. This ham-
pers a reuse of test scenarios, reproducing the results of experiments, and
comparison of results achieved through experimentation.

The requirements of a simulation system which has a chance to be
applied by working groups that design agents have to meet a variety of
requirements. Its model design should ideally support:

e a compositional, hierarchical model design

e an integration of diverse agents and agent architectures

a comfortable interface to plug in agents’ modules

a dynamic adaptation of the model’s composition and coupling
structure

a combination of continuous and discrete models

Model execution should be clearly separated from model design. Sim-
ulation techniques are required which combine a flexible model design
(see above) with an efficient execution. The computational requirements
of simulations of agent-based systems exceed the capabilities of single
platforms. Each agent requires typically considerable computational re-
sources, and many agents may be required to investigate the behavior



17 AGENT APPROACHES IN DISTRIBUTED MODELING 53

of the system as a whole. Distributed, concurrent simulation techniques
have to take into account that:

e to determine a lookahead in the domain of deliberative multi-agent
systems is very difficult since during test runs the time needed for
deliberation often varies drastically.

e rollbacks are even more storage expensive due to the flexible struc-
tures which require not only the storage of states but of entire
models

e a distributed execution necessitates dynamic load balancing

Simulation systems for multi-agent systems should also be able to
interact with other simulation systems. This leads us to the second fo-
cus of the discussions, i.e. employing agents to execute models and to
implement flexible, state of the art simulation systems.

Software Agents for Distributed Modeling and Sim-
ulation

Distributed modeling and simulation imply a geographically distributed
set of models and their components, as well as concurrent execution of
model-derived code. In distributing model components, we must design
model and component repositories over the web. It should be possi-
ble to search these repositories for reusable objects. Although exist-
ing mechanisms do not yet exist for distributed model repositories, cer-
tain technologies such as object oriented databases and XML (Extensible
Markup Language) will help in creating appropriate vehicles for model
and component representations. Distributing the simulation (i.e., model
execution) is another matter and has been more widely studied in the
distributed simulation research community. For both model design and
execution, agent-oriented approaches create a natural fit with the prob-
lems of distributed modeling and execution.

Simulation Systems Executed by a Community of Agents

The execution of a model can be realized by a community of distributed,
concurrently interacting, and moving entities. Their interaction, compo-
sition and location structure adapts itself to improve the efficiency of the



17 AGENT APPROACHES IN DISTRIBUTED MODELING 54

simulation run. Different parts of the model can be executed by different
agents specialized in different formalisms, e.g. continuous and discrete
models. To balance the work load processes migrate from one site to
another during simulation. The flexibility of these approaches promise
a scalability, which is necessary to deal with heterogeneous, large-scale
applications.

Simulation Systems as a Community of Heterogeneous Agents

Simulation systems can be developed as a community of heterogeneous
agents. These approaches can be rooted back to research of the late
80ties where knowledge based systems and simulation systems were com-
bined, e.g. to select test data, evaluate and display simulation results. A
multi-agent design emphasizes modularity, flexibility, and concurrency in
constructing intelligent simulation systems where modules, e.g. so called
intelligent “front-ends” or “back-ends” work as autonomous agents. De-
pending on the functionality, e.g. if searching for specific data on the
web, a module’s performance might even benefit from the mobility of an
agent.

Simulation Systems as Agents

Due to the diversity and multitude of simulation systems and existing
simulation models, the need for standardization and an improved inter-
operability have been recognized as pressing problems in this area. To
facilitate the exchange and reuse of models, and services between sim-
ulation systems, recent research suggests exploration of agent-oriented
techniques, including knowledge interchange languages and protocols for
interaction and negotiating.

The entire simulation system becomes an agent. If different simu-
lation systems shall interoperate, as the DoD initiative HLA requires,
ensuring that simulation systems “understand” each other becomes cru-
cial. Having the same semantics refers to the objects, i.e. variables, which
are exchanged between simulations, but also to the temporal horizon of
the simulation systems.



18 PARALLEL AND DISTRIBUTED ALGORITHMS 25

Conclusion

The agent metaphor very nicely supports the development of state of the
art simulation systems, since it complements the main stream of current
simulation research. However, agents do not solve problems by them-
selves. Interfaces, semantic frames, and collaboration strategies have to
be defined and negotiated. Distributed model design and model execu-
tion techniques are found to be not only supportive, but also necessary
for the systematic design and testing of multi-agent systems.

18 Parallel and Distributed Algorithms

Seminar No. 99291 Report No. 246 Date 18.07.—23.07.1999
Organizers: Bruce Maggs, Ernst W. Mayr, Friedhelm Meyer auf der
Heide

The presented talks covered a wide range of topics, like routing, load
balancing, accessing global variables, graph partitioning, and many more.
Furthermore, during an additional evening session, several open problems
have been discussed.

19 Computer Science in Astronomy

Seminar No. 99321 Report No. 247 Date 09.08.—12.08.1999
Organizers: Walter Oberschelp, Wilhelm Seggewiss, Reinhard Wilhelm

After reliable astronomical software had proved that a total solar
eclipse would take place on August 11, 1999, the participants of the
Dagstuhl Seminar on Computer Science in Astronomy who happened to
gather in Dagstuhl during the corresponding week decided to visit an ex-
posed place near Saarlouis to watch the eclipse. The wheather was rather
unsupportive. However, from 20 seconds before until 20 seconds after the
totality the sky was open and displayed the eclipse in all nuances. (The
photographs were taken by Arnold Oberschelp.)



20 LINEAR LOGIC AND APPLICATIONS 56

20 Linear Logic and Applications

Seminar No. 99341 Report No. 248 Date 22.08.—27.08.1999
Organizers: Richard Crouch, Josef van Genabith, Valeria de Paiva, Eike
Ritter

Introduction

Linear Logic was introduced by J.-Y. Girard in 1987, and has attracted
much attention from computer scientists as a logical way of coping with
resources and resource control. The basic idea of Linear Logic is to
consider formulae in a derivation as resources, which can be consumed or
produced. To realize this basic idea we consider a logical system where
the duplication and/or erasing of formulae must be explicitly marked
using a unary operator, called an exponential or a modality. Rather
than an alternative to Classical Logic, Linear Logic is a refinement of
it: using Girard’s well-known translation we can investigate the usage
of resources in proofs of the traditional theorems. Linear Logic shares
with Intuitionistic Logic a well-developed proof-theory and shares with
Classical Logic the involutive behavior of negation, which makes its model
theory particularly pleasant.

More importantly, because resource control is a central issue for Com-
puter Science, Linear Logic has been applied to several areas within it,
including functional programming, logic programming, general theories
of concurrency, syntactic and semantic theories of natural language, arti-
ficial intelligence and planning. Several sessions in prestigious conferences



20 LINEAR LOGIC AND APPLICATIONS 57

like LiCS (Logic in Computer Science) as well as whole conferences (Cor-
nell 1993, Cambridge 1995, Tokyo 1996, Luminy-Marseille 1998) have
been devoted to Linear Logic, a measure of the penetration of these
ideas in the community.

Report

The Dagstuhl seminar Linear Logic and Applications contained talks
concerning a number of different application areas of linear logic, as well
as talks on more foundational issues.

(a)

There was a large representation of linguistic applications. A re-
peated theme was a need for proof search methods that could effi-
ciently uncover all distinct proofs of a given formula from a set of
premises; distinct proofs either corresponding to distinct parses of
a sentence, or distinct semantic interpretations of a parse. Many
of the linguistic applications employed some version of categorial
grammar, which through the Lambek calculus bear close connec-
tions to linear logic. However, the applications were not limited
to this one style of linguistic theory: there were presentations on
how linear logic could account for the resource sensitive nature
of minimalism, how it could be used for rewrite rules in machine
translation, and how categorial semantics could be combined with
other grammatical theories. There was additionally discussion of
how proof nets could account for observed processing costs in dif-
ferent types of linguistic construction. There was also discussion of
how Linear Logic could be used to encode pragmatic distinctions
(in natural language meanings), e.g. between assertions of fact,
obligations.

Applications to verification and specification. There were two pre-
sentations on using linear logic for formal specification and verifica-
tion. Both stated that linear logic appeared to provide a compact
and intuitive representation for a variety of problems, as compared
to many other logical specification languages. However, the need
for a combined linear and temporal logic was clearly felt.

There were also presentations on the application of linear logic
to functional programming. There has been a longstanding hope
that the resource/usage counting aspects of linear logic could be



20 LINEAR LOGIC AND APPLICATIONS 58

used to allow efficient memory management / garbage collection in
functional languages. Presentations showed how this goal could be
met in a number of useful special cases, but higher-order functions
continue to raise problems for the more general goal.

(d) Semantics of linear logic. The seminar included talks on game
semantics for Linear Logic as well as semantic spaces useful for
linguistic representations.

(e) Proof theory, search, complexity and syntax. Talks on proof search
and checking included a discussion of potentially incremental con-
nection methods, and the presentation of a linear time algorithm
for multiplicative linear logic. There was also a talk on the com-
plexity of proofs, using their graph-theoretical properties and also
presentations on the treatment of quantifiers as infinite tensors and
pars, as well as the significance for various translations / embed-
dings between logics.

(f) The semantics of resources and bunched implications. The sem-
inar also contained three presentations that, collectively, argued
that linear logic should not be viewed as “the” logic of resources.
Thus while Linear Logic may serve well as a process logic, and as
providing a better understanding of proof and the nature of some
familiar connectives, it was argued that it fell short in its account of
resources. It was argued instead that a logic of bunched implication
grew more naturally out of considering the nature of resources.

It is probably fair to say that the (negative) claims about the re-
source sensitivity of linear logic provoked the most controversy in the
meeting. While there was perhaps a fairly general consensus that lin-
ear logic should not be seen as the only logic of resources, there was no
similarly general agreement that it was not a resource logic at all, nor
that it was thereby devoid of interest, e.g. in shedding light on proof
theory / cut-elimination. Also, to many of the participants working at
the applied end, much of the dispute had the air of an internal argument,
where it was unclear whether or not the results would have far-reaching
consequences for many of the more practical applications.

At a more informal level, the meeting succeeded admirably in bringing
together people from a variety of different backgrounds, and with different
expectations of linear logic, and provoking lively, friendly and productive
discussion.



21 MULTIMEDIA DATABASE FOR DIGITAL LIBRARIES 59

21 Multimedia Database Support for Digital
Libraries

Seminar No. 99351 Report No. 249 Date 29.08.—03.09.1999
Organizers: Elisa Bertino, Andreas Heuer, Tamer Ozsu, Gunter Saake

Digital libraries are a key technology of the coming years allowing
the effective use of the Internet for research and personal information.
National initiatives for digital libraries have been started in several coun-
tries, including the DLI initiative in USA http://www-sal.cs.uiuc.edu/
“sharad/cs491/dli.html, Global Info http://www.global-info.org/index.
html.en in Germany, and comparable activities in Japan and other Eu-
ropean countries.

A digital library allows the access to huge amounts of documents,
where documents themselves have a considerably large size. This requires
the use of advanced database technology for building a digital library. Be-
sides text documents, a digital library contains multimedia documents
of several kinds, for example audio documents, video sequences, digital
maps and animations. All these document classes may have specific re-
trieval methods, storage requirements and Quality of Service parameters
for using them in a digital library.

The topic of the seminar is the support of such multimedia digital
libraries by database technology. This support includes object database
technology for managing document structure, imprecise query technolo-
gies for example based on fuzzy logic, integration of information retrieval
in database management, object-relational databases with multimedia
extensions, meta data management, and distributed storage. The sem-
inar is intended to bring together researchers from different areas like
object and multimedia databases, information retrieval, distributed sys-
tems, and digital libraries. It is the intention of this seminar to clarify
differences in terminology between these areas, to analyze the state of
the art, discuss requirements of digital libraries for multimedia databases
and to identify future trends in research and development. The seminar
should therefore focus on two major questions:

e Which functions of digital libraries need database support?

e What can database techniques offer to support these digital library
functions?



21 MULTIMEDIA DATABASE FOR DIGITAL LIBRARIES 60

These major questions can be detailed to specific topics, which list the
technological areas relevant for this seminar (this list is of course not
exhaustive):

e How to support digital libraries?

— Document Servers

— Supporting Different Types of Documents in Database Sys-
tems

— Document Acquisition and Interchange

— Extending Object-Relational and Object-Oriented Database
Technology for Digital Libraries

— Storing, Indexing, and Querying Large Sets of Documents
— Integration of Heterogeneous Meta data and Documents

— Combining Querying on Structured Meta data and Content-
based Retrieval

— Integrating Vague and Fuzzy Queries
— Distribution of Queries
— Different User Views on Large Sets of Documents

— Visual Interfaces to Digital Libraries
e Which features of digital libraries need database support?

— Alerting Services

Intelligent User Agents, Personal Digital Libraries
— High Performance Document Servers

— Efficient Retrieval Functionality

— Document Delivery and Data Dissemination

— Security and User Access Models

— Trusted Document Servers



22 SOCIAL THINKING — SOFTWARE PRACTICE 61

22 Social Thinking — Software Practice

Seminar No. 99361 Report No. 250 Date 05.09.—10.09.1999
Organizers: Yvonne Dittrich, Christiane Floyd, Nimal Jayaratna, Finn
Kensing, Ralf Klischewski

Approaches Relating Software Development, Work, and Orga-
nizational Change

Scope of the Seminar

During the last decade, the embedding of software into work practice
has stimulated interdisciplinary cooperation between social scientists and
computer scientists in areas such as computer supported cooperative
work (CSCW) or human computer interaction (HCI). The discussion
is largely driven by experiences gained in development projects. Key
questions include: How can the perspectives and conceptualizations of
different users and other stakeholders be taken into account? What is
the relation between, on one side, reflective and analytic abstractions of
the social sciences and, on the other side, generative abstractions devel-
oped by the designers in order to be implemented in and with a computer
application? A coherent understanding of these and related questions is
needed in order to provide suitable methods for software development.

Background: Social Thinking ...

Approaches developed in the social sciences for understanding human
learning and communication, individual and cooperative work, and the
interrelation of technology with organizations, provide a starting point
for dealing with the problems at stake here. Although these approaches
have been developed with no specific concern for computing, several of
them have been tailored to the needs of software development and use:

e Activity theory and developmental work research focus on the ac-
tivities of individuals, portraying these activities as mediated by
tools and taking place in a social context. For understanding and
changing activities they rely on representations of complex activity
networks.



22 SOCIAL THINKING — SOFTWARE PRACTICE 62

e Fthnographic workplace studies are concerned with how individual
or collaborative work is actually being performed, in particular,
they show the use of artifacts in work practice. Through partic-
ipant observation, open interviews and other techniques they aim
to understand work practice from the participants point of view.

e Discursive approaches start out from the different perspectives of
the actors involved, including their interests, and power relations.
By facilitating communication, they aim to provide equal opportu-
nities for participation.

e Systemic approaches emphasize the interconnections between ac-
tors in organizations and between organizations and technology.
They focus on different levels of reality construction inherent in
human learning and communication, individual and cooperative
work.

These approaches emerge from different, to some extent controversial,
discourses in the social sciences. So far, their applicability to software
development and use has largely been discussed in separate arenas.

. and Software Practice

While the discipline of software engineering is mainly concerned with
the formal principles, the technical basis and the methodological support
for software development, the reflection of software practice as a human
activity needs to go beyond an engineering framework. Several aspects
come into focus:

e Software development is a continuous process based on human learn-
ing and communication, in which all activities contribute to insights
into the desired functionality and use of the software to be con-
structed.

e Methods and their underlying concepts are social vehicles for tech-
nical work. They embody a perspective on software development,
concerning, for example, who is to be involved, which activities
need to be supported and how, and what aims should be achieved.

e Key activities of software development, such as requirements anal-
ysis, modeling and design, relate the technical domain of software



22 SOCIAL THINKING — SOFTWARE PRACTICE 63

functions and modes of human-computer-interaction to the social
world of work and organizational change.

e Software development incorporates organizational concepts. The
use of software products constrains collaborative work and organi-
zational development. Thus, reifications in software systems have
an impact on the potentials of organizational change.

In order to take these aspects into account, social science approaches are
needed as guidance for software development in social contexts.

Seminar Aim

The seminar was arranged so as to promote a conversation about so-
cial science approaches in their relevance to software development. On
one hand, approaches from the activity theoretic, ethnomethodological,
discursive, and systemic schools were presented in their applicability to
software development. On the other hand, mutual understanding was
facilitated by identifying complementary views and methods as well as
incompatibilities.

Seminar Program and Contribution of Participants

Participants had been invited to the seminar by Christiane Floyd, Nimal
Jayaratna, Finn Kensing, and Lucy Suchman. Since it was intended to
foster the interaction between different “schools of thought” a group of
researchers from different backgrounds were entrusted with the prepara-
tion of the seminar. The members of this group were Yvonne Dittrich
(Ronneby), Ralf Klischewski (Hamburg), Olav Berthelsen (Arhus), Vic-
tor Kaptelinin (Umea), Helena Karasti (Oulu), Jakob Narbjerg (Copen-
hagen), Jesper Simonsen (Roskilde), Chris Westrup (Manchester), and
Volker Wulf (Bonn).

After the opening on Sunday evening the course of the seminar fol-
lowed the suggested ‘themes of the day’: “Making software”, “Social
thinking”, “Software as Social Change”, and “Industrializing Software
Development”. During the conference all participants played an active
role, e.g. leading a working group, giving an introductory lecture or tak-
ing a part in discussion. Debate was enabled in plenary sessions as well
as in small working groups from which the results of the discussions were



23 DECLARATIVE DATA ACCESS ON THE WEB 64

presented orally and/or on wall paper. Friday morning was reserved for
summing up and discussing further projects of co-operation.

All participants were expected to submit a position paper related
to the seminar’s theme. Prior to the seminar, these papers had been
presented on a web site accessible only by participants. Authors had the
chance to submit a revised version of their position paper to be included
in the report. Following the seminar a book will be published, and all
participants have been invited to submit a chapter based on their position

paper.

23 Declarative Data Access on the Web

Seminar No. 99371 Report No. 251 Date 12.09.—17.09.1999
Organizers: Nicolas Spyratos, K. Vidyasankar, Gottfried Vossen

Today, information is spreading to all sectors of society in ever in-
creasing volumes. This information comes in multimedia digital form
and is transmitted over world-wide networks. In particular, the World-
Wide Web (WWW) renders it possible to obtain information that is
distributed over the entire Internet. Since the Web (and the number of
its users) continues to grow at a high speed, adequate tools are needed for
finding, storing, and structuring the vast amount of information offered;
for locating, retrieving, and presenting the information to the final user;
for aiding the end-user in customizing the information obtained for per-
sonal usage. Although technology is advancing fast (e.g., Web browsers
built into cellular phones), a lot remains to be done concerning the effi-
cient retrieval of information from large digital collections (often called
digital libraries), and its intelligible presentation to the end user.

From a database perspective, the information provided by the Web
can be perceived as a huge, heterogeneous database which is distributed
world-wide, and which is accessed by multiple users. From this point
of view, it appears reasonable to try to adopt concepts and techniques
from database technology and in particular from the area of information
retrieval (IR) to the context of the Web. It makes sense to investigate
to what extent they are applicable to a large-scale database such as the
Web, or what kind of generalizations, extensions, or completely novel
developments become necessary. Motivation to do so is obtained from
a look at the present situation. Indeed, when accessing data sources on



23 DECLARATIVE DATA ACCESS ON THE WEB 65

the Web with current browser and search-engine technology, a number
of issues arise which deserve further study; these include:

1. Locating the source: Today’s search engines are “primitive” devices
for performing searches simply because they rarely do content-
based retrieval; this in particular applies to search engines such
as AltaVista, Fireball, Lycos, Yahoo!, and others. Instead,
they mostly rely on searching indexes or directories, where distinct
strategies in handling index information are exploited.

Generally, users of the Web feel the need to develop advanced tools
for locating information, for example based on graph navigation
techniques, on content-based retrieval as known in IR, or on clas-
sification techniques used in present-day data mining. Moreover, a
specification of desired results in a declarative way, preferably in an
SQL-related language as done in various research prototypes, could
aid in locating sources that are appropriate for a given query.

When retrieving information from a “digital library” such as the
Web, the precision problem and the recall problem arise. Due to
the uncertainty associated to information retrieval, the answer to a
query usually contains non-relevant data (this is the precision prob-
lem), while relevant data may be ranked low or neglected altogether
(this is the recall problem).

In other words, an automated device may retrieve imprecise data,
or may not be certain whether or not to include some data found in
the answer set. Once again, techniques based on content-oriented
retrieval could help.

2. Retrieving relevant information: Once a desired data source has
been located, the issue of retrieving relevant data arises. Two fac-
tors are important in this respect: the structure of the data, i.e.,
data can be anywhere between highly structured and totally un-
structured, and the multimedia nature of data.

Both factors are vastly orthogonal, and require different forms of
exploration, treatment, and presentation going way beyond what
today’s browsers like Netscape, Internet Explorer, or HotJava
have to offer. Again, information retrieval (and possibly data min-
ing) techniques could help, for example for searching a video data-
base found at some Web server for all scenes in which Humphrey



23 DECLARATIVE DATA ACCESS ON THE WEB 66

Bogart kisses Lauren Becall. For specification of such search goals,
we still envision an extension of SQL that allows to give possibly
incomplete path and class descriptions.

Another important problem is providing multi-modal retrieval, i.e.,
allowing a single request to contain retrieval conditions expressed
in different modes (visual, text, etc), and permit the user to select
the most appropriate mode.

3. Organizing retrieved data for personal usage: Once data has been
retrieved, it most likely needs to be reorganized for easy use in the
applications the end-user has in mind. Often, data obtained from
the Web is kept in a customized database for personal usage.

The organization and maintenance of personal databases follows
naturally as a topic from the other two. However, to the end we
can imagine PC or workstation tools that help taking care of this
so that these issues do not need fundamental research.

Even in the restricted and simple case that a user accesses a single data
source through the Web, all these issues described above may arise. When
multiple sources are accessed, the additional problem of combining and
integrating information from these different sites comes up. As the infor-
mation available through the Web becomes more and more complex and
voluminous, the importance of providing adequate, application-oriented
interfaces becomes a decisive factor. Indeed, users of cellular phones,
office computers, or GPS-based navigation systems in cars, to name just
a few, have vastly different requirements to their Web interfaces, rang-
ing from simple textual to multimedia output. Considering the various
environments from which information can be accessed (including mobile
ones), the need to adapt interfaces to these environments arises. For ex-
ample, an SQL query can hardly be expressed on the interface of a pager
that provides one line of text only; on the other hand, a multimedia of-
fice computer can easily accommodate more sophisticated query facilities

than SQL.

The goal of this seminar has been to study the problems of locating,
retrieving, and presenting information on the Web. To this end, the sem-
inar brought together researchers from the areas of database systems and
data warehouses, information retrieval, multimedia presentations and in-
terface design, as well as information integration, in order to discuss



24 COMPUTATIONAL CARTOGRAPHY 67

demanding questions and open problems in detail; the issues discussed
specifically included:

e query languages for locating and retrieving Web data;
e appropriate user interfaces;

e techniques for query processing;

e information retrieval approaches;

e resource management and information organization;

e webfarming and data mining, for example as applied in areas such
as electronic commerce;

e techniques for analyzing the information found in Web servers;

e integration of information found on the Web for the purpose of
creating personalized databases;

e cmerging Web standards, in particular XML and its proposals for
query languages.

24 Computational Cartography — Cartogra-
phy meets Computational Geometry

Seminar No. 99381 Report No. 252 Date 19.09.—24.09.1999
Organizers: Martien Molenaar, Marc van Kreveld, Frank Wagner, Robert
Weibel

Cartography has a history of several thousand years. With some right
it can be claimed to be one of the earliest branches of science. All the
way through its history, cartography has also had an intimate relation-
ship with geometry. In fact, the term “geometry” (which includes the
Greek root “geos” for “Earth”) reveals that the origins of geometry and
cartography (which to a large part was and is devoted to the depiction
of the Earth on maps) are in fact the same. Map making required the
mastery of geometric principles in order to tackle cartographic problems
such as map projection, positioning, and measurement.



24 COMPUTATIONAL CARTOGRAPHY 68

Computational geometry is a relatively new branch of science. Yet,
with the move from manual geometric construction to geometric compu-
tation several fields of science and engineering have an urgent need for
efficient and robust geometric algorithms and data structures. Cartog-
raphy is among these disciplines in need of sound algorithmic solutions
to its geometric problems. Some problems that were highly cumber-
some and complex to solve in manual cartography such as projection
transformations or the construction of 3D or panoramic maps are easy
to solve today by means of geometric algorithms. On the other hand,
some problems which are the “bread and butter” of manual cartography,
such as map generalization or the placement of symbols and labels on
maps, are still largely withstanding an automated solution. And it is for
these problems that interdisciplinary collaboration is necessary in order
to advance the research frontier, with cartographers and specialists of
geographic information systems (GIS) typically providing cartographic
expertise, problem definitions, and a first cut at technical solutions, and
with specialists of computational geometry providing the experience of
algorithm crafting, thus leading to improved algorithms.

This Dagstuhl seminar was the second one on computational issues
of digital cartography, and like the first one, it brought together a range
of specialists from cartography, GIS, computational geometry, spatial
databases, and spatial analysis, with a common interest in the applica-
tion of computational geometry to problems of modern cartography and
GIS. Two topics, map generalization and map label placement, showed a
certain concentration of talks. In these areas, it was interesting to note
that a number of speakers presented methodologies that integrate geo-
metric algorithms with optimization techniques and evaluation or cost
functions. Other topics included the analysis and visualization of digi-
tal terrain models; spatial analysis for exploratory interpretation of spa-
tial phenomena; polygon overlay problems for massive data sets; pat-
tern recognition for geometric and topological structuring of cartographic
data; graph algorithms (graph drawing, network schematization, cross-
country shortest path); and the integration of geometric data models in
spatial DBMS.

As a special feature, eight representatives from R&D divisions of GIS
and mapping software vendors were invited to this seminar. The objec-
tive was to expose academics and industrial representatives alike to each
others’ viewpoints, visions, and needs. The industrial representatives
were also invited to give a demo of their system of thirty minutes and



25 FINITE MODEL THEORY, DATABASES, AND CAV 69

share their viewpoints and perspectives with the academic participants in
an industry panel session. In the opinion of both academic and industrial
seminar participants, the involvement of industry representatives worked
very well.

25 Finite Model Theory, Databases, and
Computer Aided Verification

Seminar No. 99401 Report No. 253 Date 03.10.—08.10.1999
Organizers: Georg Gottlob, Erich Gradel, Moshe Vardi, Victor Vianu

The goal of this workshop was to bring together researchers working
in finite model theory (FMT), in databases (DB) and in computer-aided
verification (CAV). Besides complexity theory, DB and CAV are the two
main application areas of FMT in computer science.

A common concern of FMT, DB and CAV is the design and study
of logical formalisms with the ‘right’ balance between expressiveness and
complexity. In databases, query languages are developed that should be
expressive enough for the relevant queries of a given application area,
but nevertheless lend themselves to efficient strategies for query evalua-
tion. In CAV, specification languages are sought that are able to express
relevant fairness and liveness conditions, but can be efficiently checked
on the important classes of transition systems. In FMT, one studies the
relationship between logical definability and computational complexity
systematically. One of the central open problem of FMT is the quest for
logics that precisely capture the most important complexity classes, in
particular the problem whether there is a logic for PTIME. Hence model
checking problems, in the broad sense of finding algorithms for and study-
ing the complexity of the evaluation of logical formulae (queries, specifi-
cations) in a structure (database, transition system), play a central role
in all three fields.

Also the central logical formalisms in the three fields are of a very
similar nature. Typically, a basic formalism like first-order logic, rela-
tional calculus or modal logic is extended by recursion in one form or
another. In particular, fixed-point logics (formalisms that include least
and/or greatest fixed points as their essential feature) play a central role
in all three fields. In databases, fixed-point and while queries have been



25 FINITE MODEL THEORY, DATABASES, AND CAV 70

studied quite intensively and fixed-point query languages such Datalog
and its extensions are central to the field. In CAV, the mu-calculus is in
some sense the quintessential specification language, since it subsumes
most of the other common formalisms like PDL, CTL, CTL* etc. The
discovery of natural symbolic evaluation of the mu-calculus has lead to
the industrial acceptance of computer-aided verification. In FMT, the
most important logics are the fixed-point logics LFP, IFP, PFP with a
very close relationship to the most important complexity classes. Hence
fixed point logics, their expressive power and the algorithmic problems
connected with them have been a central topic of this workshop.

In all three communities the main focus has for many years been on
finite structures (databases, transition systems). Interestingly all three
communities have recently started to extend their methods to suitable
classes of infinite structures. New applications like spatial (geographical)
databases have lead to the study of infinite database models, notably
constraint databases. In CAV, model checking problems on infinite tran-
sition systems such as context-free systems or push-down system have
been successfully studied and are of increasing interest also for practical
applications. Also the general approach and the techniques of FMT have
been extended to suitable classes of infinite structures (e.g. metafinite
structures or recursive structures), which seems to be one of the most
promising perspectives of finite model theory for the future. In fact this
new perspective has been partially motivated by the new developments

in databases and CAV.

There were 43 participants at the seminar. The program consisted of
five invited survey talks, namely

Martin Otto: Finite Model Theory

Phokion Kolaitis: Database Query Languages

Jan Van den Bussche: Constraint Databases

Colin Stirling: Games in Verification

Pierre Wolper: Infinite Structures in Databases and Verification

and 25 other presentations, mostly of ongoing research. In addition we
had a very lively evening session on “Logic in Computer Science Educa-
tion” (chaired by Wolfgang Thomas) and numerous informal discussions
in smaller groups.

We believe that this workshop has been a success. It has certainly
helped to increase the awareness of the researchers working in one field



26 TEMPORAL LOGICS FOR DISTRIBUTED SYSTEMS 71

of the problems and methods in the others and thus to increase the inter-
action and collaboration of the three fields, and the transfer of method-
ologies from one field to another.

For additional information, see
http://www.dbai.tuwien.ac.at/user/dag99/

26 Temporal Logics for Distributed Systems
— Paradigms and Algorithms

Seminar No. 99411 Report No. 254 Date 10.10.—-15.10.1999
Organizers: Edmund Clarke, Ursula Goltz, Peter Niebert, Wojciech Pen-
czek

Distributed systems, i.e. systems characterised by the concurrent op-
eration and interaction of several components, occur throughout infor-
mation technology; from microprocessors to computer networks. Since
the design and development process of distributed systems is very sen-
sitive to errors, it is an accepted fact in both science and industry that
formal approaches to specification and automatic verification and debug-
ging are needed. An important formal framework in this line is the family
of temporal logics.

Originally, temporal logics were directed to describe a sequentialised
(interleaved) and global view of the behaviour of distributed systems.
Several problems resulting from this approach have been identified. On
the specification level, the global view of the system makes it difficult
or impossible to intuitively specify behavioural aspects of selected parts
of the whole system. On the algorithmic front, this sequentialised se-
mantics leads to the well known state explosion problem, which is often
the reason for automatic verification to fail and makes it neccessary to
develop heuristic workarounds. These problems have led in the past to
the following investigations:

e On the one hand, various semantic models capturing aspects of dis-
tribution and causality of the behaviour of distributed systems have
been developed, in particular partial order models and event struc-
tures. On some of these models, several extensions of standard
temporal logics with differing modes of expressiveness have been



26 TEMPORAL LOGICS FOR DISTRIBUTED SYSTEMS 72

defined. The logics have been investigated under several aspects:
Axiomatisations, theoretic and pragmatic expressiveness, complex-
ity of the satisfiability and satisfaction problems.

e On the other hand, research directed towards efficient model check-
ing has focussed on heuristic improvements of model checking al-
gorithms for interleaving logics, which are based on state space
exploration. Techniques, which have been evolving in this domain
include modular model checking, symbolic model checking (BDDs),
partial order reductions, abstraction, and others. Many of these
approaches heavily exploit the distributed structure of the system:,
but do not explicitly rely on a distributed logical framework.

While a lot of research in both directions has happened separately, the
natural connection between them has not gone unnoticed: some logics
tailored towards distribution allow new verification algorithms, and con-
versely the heuristics discovered in model checking algorithms influence
the design of logics. However, dedicated research is needed in order to
achieve practically useful results here.

The goal of this workshop was to bring people from these areas of
research together. 35 participants from 12 countries accepted the invita-
tion. They presented their current research in the field of interest in 28
presentations. The following main topics were addressed:

Partial order logics for linear time. Several talks presented the re-
cent developments on the theory of these logics. Two talks ad-
dressed the logic LTrL, which is known to have the same expressive
power as the first order logic. Albeit non-elementary complexity,
automata constructions have been shown to be possible (and thus
open a way to do model checking). Moreover, the theory has been
cleaned up and new proofs as well as improved syntax have been
presented. Two other talks addressed causality based logics, one
giving a separation result and proof technique to distinguish some
logics wrt. expressive power, the other introducing an elegant pu-
calculus on traces, which is expressively complete. Finally, the
theoretic foundations for generalizing trace semantics to systems
with state dependent independency of actions were presented.

Partial order logics for branching semantics. Three talks intro-
duced logics based on branching partial order semantics. Two talks



26 TEMPORAL LOGICS FOR DISTRIBUTED SYSTEMS 73

addressed an interesting ontology based on intuitions of partial
knowledge in a distributed setting, and addressed questions of de-
cidability and model checking. In the third talk, a Petri net oriented
logic was proposed.

Proof techniques for distributed systems. In seven talks, most of
the spectrum of methods to exploit structural knowledge about sys-
tems for proving properties were addressed: Unfolding based model
checking for reachability and for linear time, partial order reduction
techniques, theorem proving exploiting commutativity of actions,
symbolic model checking with and without BDDs, and composi-
tional model checking. The presentations were a fair mix between
presentations of established results as well as recent developments.

Probabilistic and real time model checking. Three presentations
addressed attempts to apply partial order reductions to timed sys-
tems, but with very different approaches, advantages and problems.
Two presentations introduced model checking of discrete and con-
tinuous stochastic systems. On this line, up to now only symbolic
model checking methods with generalisations of BDDs are known.

Verification of Message Passing Systems. Three talks addressed is-
sues of automatic verification in message passing systems. In par-
ticular, verification and dedicated logics for message sequence charts
were presented.

General aspects of temporal logics. The five presentations in this
section are a mix of complexity considerations in search of both
simple (yet useful) and very powerful temporal logics, which are of
course of importance to the distributed case also.

In addition to the talks, two sessions were used to discuss open prob-
lems and controversial issues. Particularly interesting and lively were
discussions on

e unfolding methods vs. partial order reductions for model checking,
e usability and pragmatics of logics for practical specification.

Summarizing, the seminar was intense and stimulating. Inspite of the
full “official” programme, concentrated work in smaller groups continued
into the evenings, using the excellent facilities and working atmosphere
of Dagstuhl.



27 LANGUAGE PROCESSING WITH HIGH-LEVEL GRAMMAR 74

27 Efficient Language Processing with High-
level Grammar Formalisms

Seminar No. 99421 Report No. 255 Date 17.10.—22.10.1999
Organizers: H. Uszkoreit, J.-1. Tsujii

Motivation text:

The topic of the Dagstuhl-Seminar is human language processing
with sophisticated models of grammar. During the last decade many re-
searchers have abandoned linguistically sophisticated models of grammar
such as HPSG and LFG in favor of shallow processing techniques. The
turn was caused by the sobering insight that even after many years of sys-
tem development the existing methods for deep grammatical processing
with powerful grammar formalisms did still not meet the performance cri-
teria posed by applied research. Neither efficiency nor robustness proved
sufficient for realistic applications.

On the other hand, progress in shallow processing has demonstrated
that many useful applications of language technology could be achieved
without accurate deep processing. Some of the shallow methods also
exhibit a great potential for the automatic acquisition of language mod-
els. Thus large fractions of the discipline arrived at the conclusion that
linguistic grammar models are not suited for the efficient and robust
processing of human language on the computer.

However, not all researchers followed this move. Most of the groups
that continued research on and with declarative grammar formalisms
were driven by linguistic motivations. Others maintained their belief in
the prospects of the grammar formalisms because they expected that de-
velopments in hard and software technology, better performance models
and progress in computational semantics would eventually overcome the
existing problems.

At a small number of centers considerable efforts were invested in
the search for better processing methods. New results from several ar-
eas of computer science were exploited. Methods from constraint-logic
programming, compilation technology, probabilistic language processing
and many other sources were investigated.

Some of the efforts concentrated on the combination of many small
improvements, others focussed on the search for radically different pro-
cessing models.



27 LANGUAGE PROCESSING WITH HIGH-LEVEL GRAMMAR 75

The diversity of investigated approaches and claims of noticeable
progress in efficiency deserve a new assessment of the state of the art.
Some questions need to be asked:

e Have there been any real breakthroughs, can they be expected in
the near future or does all progress in the area consist of a sequence
of numerous small steps?

e Are there any processing systems based on sophisticated grammar
models that already meet the demands of realistic applications?

e Have the various attempts to combine statistic and linguistic meth-
ods started to bear fruit?

e Do we have methods for grammar acquisition that can replace or
complement intellectual grammar engineering?

e Do the employed grammar models pose similar problems for effi-
cient and robust processing or do they differ in interesting ways
with respect to their potential for computational processing?

e [s their worst case complexity directly related to the efficiency prob-
lems encountered in existing systems?

e Do we have a more sophisticated view today on the sources of real
performance problems than we had ten years ago?

e Will both methods for grammatical description and grammatical
processing have to change drastically before deep processing can be
the basis of useful applications?

e If so, which recent approaches and results from computer science,
psycholinguistics or theoretical linguistics can be expected to feed
into this development.

The seminar will bring together experienced researchers from many
parts of the world. Several grammar models and the major approaches
in performance modeling will be represented. The meeting shall serve as
a forum for presenting results, exchanging ideas and opinions, discussing
new approaches, sharing experiences and assessing the state of the art.
In the selection of presentations, priority will be given to reports of new
results that are supported by performance measurements. Facilities for



28 SCHEDULING IN COMPUTER AND MANUFACTURING 76

demonstrating systems will be provided. In addition there will be a small
number of topical talks summarizing relevant developments in broader
research areas.

28 Scheduling in Computer and Manufac-
turing Systems

Seminar No. 99431 Report No. 256 Date 24.10.—29.10.1999
Organizers: Jacek Blazewicz, Ed Coffman, Klaus Ecker, Gerd Finke

The objective of the seminar was to provide a forum for the discussion
of current and ongoing research in scheduling. The seminar promoted
an exchange of ideas covering the entire spectrum from case studies of
real applications to recent advances in mathematical foundations. These
various aspects of the scheduling area have been covered by 38 lectures
which addressed classical application areas such as distributed process-
ing, operating systems, dependable systems, flexible manufacturing, and
others. It is worth pointing out that many lectures have been motivated
by practical considerations, as for example machine break downs, batch
scheduling, synchronous production, robotic cell scheduling, real-time
scheduling, resource investment problem and others. But also exciting
new areas have emerged such as those in modern communications, ex-
amples being wireless networks, multimedia networks, and the internet.

The seminar proceeded along three broad fronts:

e Applications, which include empirical studies of existing systems as
well as numerical studies of the analysis and simulation of system
models. Most of the studied applications came from the area of pro-
duction scheduling and planning, such as just in time scheduling,
due date assignment and project control, including special problems
dealing with machine breakdowns, robotic cells, assembly schedul-
ing, load balancing, minimizing the number of workers (human re-
sources). Other presentations considered special problems from
chemistry and oceanography, the design of schedulers e.g. for web
applications, and planning examination sessions.

e Algorithms for various problems such as batch scheduling, resource
scheduling, tardiness problems, shop problems, deadline and due



29 COMPLEXITY OF BOOLEAN FUNCTIONS 77

date scheduling, real-time scheduling, on-line scheduling, single
machine problems, time lags, scheduling with communication de-
lays, and/or scheduling. The main concern in these presentations
was the design and analysis of algorithms ranging from simple
and tractable on-line and greedy rules to methods based on semi-
enumerative approaches, branch and bound, local neighborhood
search, and LP formulations.

e Theory, which includes recent results in the analysis of new and
classical problems under novel (or multiple) criteria, dealing with
particular assumptions on machines, tasks (e.g., release dates, prece-
dence constraints, communication delays, multiprocessor tasks, bi-
processor tasks), and other problems such as assembly scheduling
problems and on-line scheduling. Typical questions discussed were
the structure of problems and their relation to graph theory, com-
plexity of problems including polynomial solvability, the design of
algorithms and performance analysis, and the approximability of
optimal solutions.

29 Complexity of Boolean Functions

Seminar No. 99441 Report No. 257 Date 31.10.-05.11.1999
Organizers: David Mix Barrington, Riidiger Reischuk, Ingo Wegener

The complexity of Boolean functions is one of the central and classi-
cal topics in the theory of computation. Despite of some breakthrough
results (e. g., exponential lower bounds on the monotone circuit complex-
ity, bounded depth unbounded fan-in circuits, and linear depth branching
programs, or the classification of bounded-width polynomial-size branch-
ing programs by NC') there still seems to be a long way to go before
successfully establishing large lower bounds in the case of unrestricted
circuits over complete bases. Besides the classical lower bound and clas-
sification problems people active in this area are working on related top-
ics like communication complexity, neural nets, quantum computing, and
learning.

The organizers are happy that 37 researchers followed their invitation
to Dagstuhl, they came from Germany (17 including guests from Poland



30 RIGOROUS ANALYSIS AND DESIGN FOR SOFTWARE 78

and Lithuania), USA (5), Canada (4), Japan (4), Austria (2), Czech
Republic (2), England, Netherlands, and Russia.

The 27 talks captured many of the aspects of Boolean function com-
plexity. There were several talks on branching programs (also for vari-
ants with applications in CAD and verification), circuits, communication
complexity, and learning. Further talks focussed on algebraic methods.
Aspects like randomization and nondeterminism were considered as well
as quantum computing and cryptography. Besides some classical au-
tomata problems also related topics on algorithms and data structures
were discussed. The schedule contained an open problem session and an
evening discussion on new models motivated from biocomputing.

30 Rigorous Analysis and Design for Soft-
ware Intensive Systems

Seminar No. 99451 Report No. 258 Date 07.11-12.11.1999
Organizers: Stephan Jiahnichen, Michel Lemoine, Tom Maibaum, Martin
Wirsing

The seminar was concerned with a challenging problem in current
software technology: the use of non-sequential components in heteroge-
neous systems. Both topics are related and raise many interesting issues,
such as concurrency, distribution, reliability, etc. They challenge existing
formalisms and methods and were addressed at the workshop by various
speakers. Heterogeneity of systems (e.g., hardware vs. software, contin-
uous vs. discrete, etc.) is asking for the assumption that software can
be considered in isolation. The methods used for sequential component
development are being extended in an attempt to cope with these new re-
quirements. At present, it is not clear whether these methods are in fact
extendable. New methods and formalisms are being invented to address
the challenges of building such systems.

To tackle the task of rigorous analysis of large systems, the methods
will focus on high level specifications. That is, complex heterogeneous
systems and the constituent components are described more abstractly,
say on the level of system architecture rather than on the level of mere
programs. A system architecture reflects interaction and interfaces be-
tween the components without specifying all their complex internal func-



30 RIGOROUS ANALYSIS AND DESIGN FOR SOFTWARE 79

tionality. Analysis of such an architecture is a new challenge for methods
being applied to ordinary software systems so far.

When discussing about systems in the large, we are also faced with
refinement issues. Detailed information about timing or any physical
limitation is not known on the abstract level of specification. For sup-
porting the incremental development new strategies for refinement are
introduced, i.e. how to develop a system design straightforwardly from
a high level specification.

In practice, semi formal methods like UML are accepted by a broad
audience of software engineers in order to describe heterogeneous systems
on a high level. Although UML models are primarily used to communi-
cate only a design, the emerging question is how formal notations and
languages, which are developed for rigorous analysis already, can sup-
port the design phase. A formalization that bridges the gap between
semi formal and formal notations is to be developed and investigated.

In order to make technologies available and useful, adequate tool sup-
port has to be provided for actual usage in real applications. We aim at
environments in which tools and notations are adequately integrated and
which support methodological guidance without constraining the user’s
creativity and individual progress.

In addition to the topics dealt with by the speakers, the workshop
participants formed three working groups to discuss further questions of
interest:

In order to get a comparison in the results of the different formal
approaches, the community should benefit from treating a particular case
study with the different formalisms. A new case study reflecting the needs
of software intensive systems has to be found. In one working group a list
of criteria to be characteristic for a suitable case study was worked out.
According to these criteria the group agreed upon a rapid transportation
management system (including a train control system, data management,
etc.) to be a suitable case study.

In a second working group possible integrations of UML with formal
methods were discussed. Although UML is known as an uprising formal-
ism it lacks a formal foundation as well as tool support through formal
treatment. Several suggestions how to relate the notations of UML with
formal notations were discussed.

A standardization of formal methods based on a formal methods web
repository was discussed in the third working group. The repository to be



31 COMPUTABILITY AND COMPLEXITY IN ANALYSIS 80

set up should collect all current formalisms as well as their corresponding
software environments (if available) and case studies treated so far. This
is to give a survey to industry or other potential users.

As a result of these discussions and the subsequent presentations,
it was decided to apply for another Dagstuhl seminar, with a similar
orientation but calling additionally for the presentation of techniques
and methods in the framework of a common case study to be distributed
with the call for participation. A suggestion for this case study was the
development of a train-control system (the result of one of the working

groups).

31 Computability and Complexity in Anal-
ysis

Seminar No. 99461 Report No. 259 Date 14.11.-19.11.1999
Organizers: Ker-1 Ko, Anil Nerode, Klaus Weihrauch

All over the world numerous computers are used for real number
computation. They evaluate real functions, find zeroes of functions, de-
termine eigenvalues and integrals and solve differential equations, and so
they perform or at least are expected to perform computations on sets
like the set of real numbers, the set of open subsets of real numbers or the
set of differentiable real functions. The increasing demand for reliable as
well as fast software in scientific computation and engineering requires
a sound and broad foundation. Computable analysis is the mathemat-
ical theory of those functions on the real numbers and other sets from
analysis, which can be computed by machines. It connects the two classi-
cal disciplines analysis/numerical analysis and computability /complexity
theory combining in particular the central concepts of limit and approx-
imation on the one hand and of machine models and computation on
the other hand. Computable analysis may serve as an additional frame-
work for numerical analysis and all other disciplines which need an exact
concept of computation for real functions.

Though computable analysis started in the early years of computabil-
ity theory, the field is still in its infancy. It has a great potential for fur-
ther development, since there are numerous challenging open problems,
many basic questions have not yet been studied systematically and only



32 SYMBOLIC-ALGEBRAIC AND VERIFICATION METHODS 81

occasionally its concepts have been applied to advanced problems.

32 Symbolic-Algebraic Methods and Verifi-
cation Methods — Theory and Applications

Seminar No. 99471 Report No. 260 Date 21.11.-26.11.1999
Organizers: Gotz Alefeld, Jiri Rohn, Siegfried M. Rump, Tetsuro Ya-
mamoto

The second Dagstuhl seminar on Symbolic-Algebraic Methods and
Verification Methods - Theory and Applications brought together 39 par-
ticipants from 9 countries, with 10 participants coming from overseas.
The seminar continues a first one held in 1992 in Dagstuhl.

The 35 talks covered a wide range of topics of the three areas Com-
puter Algebra, Verification Methods and Real Number Theory. The aim
of the seminar was to bring together experts of those different areas to
discuss common interests.

All three areas aim on computing correct results on the computer.
Here correct is to be understand in a mathematical sense including all
model, discretization and rounding errors. The methods may also syn-
ergize and use good numerical approximations as a basis for subsequent
computation of error bounds.

In the talks we saw some algorithms with result verification for finite
dimensional as well as infinite dimensional problems, solutions to classi-
cal problems in Computer Algebra and a number of efforts to combine
different methods and areas. Such methods mutually benefit from each
other and are very promising. Moreover, we saw a number of practical
applications.

33 Content-Based Image and Video Retrieval

Seminar No. 99491 Report No. 261 Date 05.12.-10.12.1999
Organizers: Hans Burkhardt, Hans-Peter Kriegel, Remco Veltkamp

Images and video play a crucial role in Visual Information Systems
and Multimedia. There is an extraordinary large number of applications



33 CONTENT-BASED IMAGE AND VIDEO RETRIEVAL 82

of such systems in entertainment, business, art, engineering, and science.
Such applications often involve a client-server architecture, with large
file and compute servers. Searching for images and video in large collec-
tions is becoming an important operation. Because of the size of such
databases, efficiency is crucial.

We strongly believe that image and video retrieval need an integrated
approach from fields such as image processing, shape processing, percep-
tion, data base indexing, visualization, querying, etc. On the other hand,
most ongoing projects only deal with one or two of these aspects. A re-
search emphasis is needed on incorporating multiple models for shape,
color, texture, geometry, and syntax, so that the user does not have to
specify low-level model parameters and combinations. This should lead
to strategies of efficient indexing of visual information, in addition to
techniques for combining visual with more traditional database informa-
tion. Realistic evaluation criteria are needed, including test databases
of realistic size in domains of interest, measures of similarity that allow
variations in perceptual, semantic, and other criteria, and measures of
accuracy and efficiency in assisting the user.

The purpose of this first Dagstuhl Seminar “Content-Based Image
and Video Retrieval” was to bring together people from the various fields
in order to promote information exchange and interaction among re-
searchers who are interested in various aspects of accessing the content
of image and video data, including topics such as:

e Indexing schemes

e Matching algorithms

e Visual data modeling

e Retrieval system architectures
e Image and video databases

e Feature recognition

e Video segmentation

e Picture representation

Query processing



33 CONTENT-BASED IMAGE AND VIDEO RETRIEVAL 83

e Perception issues

e Video and image compression

e Visualizing pictorial information
e Searching the web

e Delivery of visual information

e Benchmarking

e Application areas of image and video retrieval

For this seminar, we have invited internationally known as well as
young researchers from various disciplines with a common interest in
content-based image and video retrieval. We have been together with
a group of 28 researchers for a week, away from the rest of the world,
and certainly good interaction and exchange of ideas took place during
the sessions as well as in the very “gemtliche” wine cellar, enjoying the
cheese platter.

There was a total of 24 presentations, two demonstration sessions, and
two discussion sessions. One discussion session was about the challenges
and problems to be solved, the other session was about the particular
problem of how to assess the quality of retrieval systems and algorithms
for subtasks.



	1Decision Diagrams - Concepts and Applications
	Nonapproximability Results for OBDD -and FBDD-Minimization
	2 Software Engineering Research and Education: Seeking a new Agenda
	Introduction
	The Topics
	Conclusions
	3 Component-Based Programming under Different Paradigms
	Motivation
	Workshop Experience
	Discussion:C++ as aFunctional Language
	Discussion Session
	4 Deduction
	5 Computational Geometry
	6 Systems Integration
	WorkingGroup I: Applications & Processes
	Working Group II: XMLand Canonical Data Models
	Working Group III: Software Architectures & Coordination
	7 Unsupervised Learning
	8 Program Analysis
	Security through program analysis (working group)
	Foundations of program analysis (working group)
	Criteriaf or choosing an analysis framework
	Challenges
	9Instruction-Level Parallelism and Parallelizing Compilation
	Introduction
	Summary of the Presentations
	Conclusions
	10 High Level Parallel Programming: Applicability, Analysis and Performance
	11 Mobile Multimedia Communication - Systems and Networks
	12 Geometric Modelling
	13 Graph Decompositions and Algorithmic Applications
	14 Requirements Capture, Documentation, and Validation
	15 Competitive Algorithms
	16 Foundations for Information Integration
	17 Agent Oriented Approaches in Distributed Modeling and Simulation: Challenges and Methodologies
	Simulation of Multi-Agent Systems
	Software Agents for Distributed Modeling and Simulation
	Conclusion
	18 Parallel and Distributed Algorithms
	19 Computer Science in Astronomy
	20 Linear Logic and Applications
	Introduction
	Report
	21 Multimedia Database Support for Digital Libraries
	22 Social Thinking - Software Practice
	Scope of the Seminar
	Background: Social Thinking.
	... and Software Practice
	Seminar Aim
	Seminar Program and Contribution of Participants
	23 Declarative Data Access on the Web
	24 Computational Cartography - Cartography meets Computational Geometry
	25 Finite Model Theory, Databases, and Computer Aided Verification
	26 Temporal Logics for Distributed Systems - Paradigms and Algorithms
	27 Efficient Language Processing with Highlevel Grammar Formalisms
	28 Scheduling in Computer and Manufacturing Systems
	29 Complexity of Boolean Functions
	30 Rigorous Analysis and Design for Software Intensive Systems
	31 Computability and Complexity in Analysis
	32 Symbolic-Algebraic Methods and Verification Methods - Theory and Applications
	33 Content-Based Image and Video Retrieval



