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Abstract. Accurately predicting the endpoints of chemical compounds is a im-
portant step towards drug design and molecular screening in particular.
Here we develop a recursive architecture that is capable of mapping Undirected
Graphs into individual labels, and apply it to the prediction of a number of dif-
ferent properties of small molecules. The results we obtain are generally state-of-
the-art.
The final model is completely general and may be applied not only to prediction
of molecular properties, but to a vast range of problems in which the input is a
graph and the output is either a single property or (with small modifications) a set
of properties of the nodes.

Keywords. Drug design, small molecules, Recursive Neural Networks, Undi-
rected Graphs, Graphical Models

1 Introduction

Cost-free, time-efficient computational screening of a large set of compounds capa-
ble of excluding a sizeable fraction of them before the testing phase would dramati-
cally reduce the cost of drug design and significantly quicken its pace. The Quantitative
Structure-Property/Activity Relationship (QSPR/QSAR) approach dates back as far as
forty years ago [1], and relies on finding an appropriate function that maps a molecular
compound into a property/activity of interest. Machine learning techniques can be used
to tackle this problem, but molecules are inherently structured as graphs and there is
no single conclusive solution to design statistical methods that deal with graphs. An
early solution to this problem has been to “flatten” a molecule into a fixed-size vector
of properties, or features, generally hand-crafted, which are then input to a traditional
machine learning tool such as a Neural Network (NN) or a Support Vector Machine
(SVM). For instance in [2, 3] this approach is followed to predict aqueous solubility
by a Multi-Layer Perceptron (MLP), while in [4] features are incrementally selected to
be input to an SVM. In [5] a large number of 2D and 3D features, capturing physio-
chemical and graph properties of molecules, are input to an NN to predict melting point
after being compressed by Principal Component Analysis (PCA). In [6] atomic con-
tributions containing correction factors for intramolecular interactions are derived by
multivariate regression, yielding accurate predictions of octanol-wated partition coeffi-
cients. Although it is clear that this two-stage approach (encode a molecule as features,
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map the features into the property) may be successful, it has a number of drawbacks:
often, one or more experts need to design the features, thus creating a bottleneck; fea-
tures are often problem-specific; features may not be optimal; however the features are
designed, aspects of the structure/connectivity are bound to be lost, thus potentially
missing vital information about the mechanisms involved.

Structural alert (SA) methods search for patterns within datasets that are indica-
tive of the molecules’ properties. In [7] mutagenicity classification is predicted with
good levels of accuracy using a manual derivation of these substructures. An updated
version is introduced in [8] to automatically mine the substructures. In [9] a vector
of substructure frequencies is input to an SVM, yielding fairly accurate predictions of
cancer toxicity, HIV suppression and potential for anthrax binding. Despite the suc-
cesses of these methods, their generalisation ability is debatable, and their failure to
predict carcinogenicity in a sustained way has been attributed to the evolving nature of
chemical datasets [10], in which new, unknown substructures keep appearing. Similarly
to homology modelling for protein structure prediction, some molecules will need to
be predicted “ab initio” as they contain novel active substructures or neighbourhoods
thereof. More recently, kernel methods that integrate some form of structural process-
ing into their kernel function have shown state-of-the-art performances at many tasks.
Melting point and octanol-water partition coefficient are predicted in [11] by 2D kernels
with minmax similarity and 3D histogram kernels. State-of-the-art results are reported
for a the classification of cancer and HIV suppression in [12], by 2D and 3D weighted
decomposition kernels with the best results reported for a combination of both. In [13]
kernels on molecular fingerprint similarity matching in the 2D case and atomic distances
in the 3D case are state-of-the-art for mutagenicity and human tumor suppression.

In this work we design a novel class of machine learning algorithms for processing
structured data. We tackle “ab initio” predictions of a number of properties of small
molecules (i.e. we do not mine substructures). The algorithms we describe are based
on recursive neural networks and they deal with molecules directly as graphs, in that
no features are manually extracted from the structure, and the networks automatically
identify regions and substructures of the molecules that are relevant for the property
in question. The basic structural processing cell we use is similar to those described
in [14–17], and adopted in essentially the same form in applications including molecule
regression/classification [18–20], image classification [21], natural language processing
[22], face recognition [23]. In the case of molecules, there are numerous disadvantages
in these earlier models: they can only deal with trees, thus molecules (that are more
naturally described as Undirected Graphs (UG)) have to be preprocessed before being
input; the preprocessing is generally task-dependent; special nodes (“super-sources”)
have to be defined for each molecule; application domains are generally limited, thus
the effectiveness of the models is hard to gauge. In this work, although we loosely
build on these previous works, we extend them in two crucial directions: our models
deal directly with UG; no preprocessing is necessary, and no part of the molecule has
to be marked as a “super-source”. We term our model UG-RNN, or Recursive Neural
Networks for Undirected Graphs.

We apply UG-RNN to the prediction of aqueous solubility, melting point and oc-
tanol water partition coefficient (all regression tasks) and to the classification of muta-
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genicity. Our results are encouraging, outperforming or matching state-of-the-art ker-
nels on the same regression datasets. We alter the models slightly for mutagenicity pre-
diction in order to test whether our approach incorporates useful contextual information
In this case we show that UG-RNN outperform a state-of-the-art SA method and only
perform less accurately than a method based on SVM’s fed with a task-specific feature
which is not available to our model [24].

UG-RNN are open-ended in that they can be used to learn on any molecular dataset,
and are portable to other molecular biology problems that require graph processing
such as phylogenetic graph/tree analysis, protein classification when the protein is rep-
resented as a graph of contacts, etc.

2 Methods

A molecule is naturally described as a UG, possibly with cycles, where atoms represent
vertices and bonds represent edges. Here we factorise the UG representing a molecule
into N Directed Acyclic Graphs, where: N is the total number of atoms/nodes in the
molecule; the kth DAG is obtained from the UG describing the molecule by directing
all its edges along the shortest path to its kth atom vk. The order of the atoms in the
molecule is unimportant, as the result of processing is independent on it. Figure 1 shows
how the undirected graph of nitrobenzene can be represented as 9 DAG’s.

Let ch1
[v,k], . . . , ch

n
[v,k] be the children of atom/node v in the kth DAG, then we

assume that there is a hidden vector Gv,k ∈ Rm describing the contextual information
upstream of node v as:

Gv,k = M(G)
(
iv, Gch1

[v,k]
, . . . , Gchn

[v,k]

)
(1)

where iv ∈ Rl is the label associated with node v (i.e. essentially, all the information
to input about the atom v). When a node has no children, or fewer children than the
maximum allowed (n) then the empty arguments inM(G)() are set to vectors of zeroes
(boundary conditions). The maximum number of children n is set to the maximum out-
degree of all the vertices in the structures, and is normally n = 4 for molecules. We
realise the function M(G), or state transition function, by a two layered perceptron. In
the most basic model we assume stationarity , that is the same function (thus network)
is used to process all vertices in all DAG’s. This may be regarded as a form of weight
sharing, and helps keep the number of free parameters in the model low.

Given there are as many DAG’s as there are nodes in the UG describing the molecule,
and given each node vk is a root in a graph, there will be N vectors associated with root
nodes: Gvk,k. Each of these vectors provides a description of the molecule “as seen”
from vk. To map the complex of these vectors into a single property, we first add them
up:

Gstructure =
N∑

k=1

Gvk,k (2)

Notice how: each atom in the molecule is within one transition function (i.e. one Two-
Layered Perceptron) from the vector representing the whole molecule, thus minimising
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Fig. 1. The undirected graph of nitrobenzene and the 9 DAG’s derived from the molecule.
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the well know vanishing gradient problem, which affects recursive neural networks
and deep networks in general [25]; given that all atoms compete to be represented in
Gstructure, if this vector is selected with the purpose of predicting a given property,
then it effectively represents a task-dependent encoding (compression) of the molecule.

We map Gstructure into the property of interest as:

o = M(O)(Gstructure) (3)

We implement M(O) by a Two-Layered Perceptron with a linear output when we
predict real-valued properties, and softmax units in case of classification. The error
function we minimise is, respectively, a sum of squared differences between target and
network output, and the relative entropy between target and output. The whole network
(all DAG’s, sum of hidden vectors of root nodes, and output function) is trained by
gradient descent. The gradient of the error is computed, exactly, by the backpropaga-
tion algorithm, which we can apply here given that the overall network including the
molecule has no cycles.

Figure 2 shows how the 5 DAG’s of acetic acid are composed to build a UG-RNN.
Each DAG produces a distinct contextual vector at each root. These vectors are then
added and mapped into the final output representing the desired property.

Fig. 2. An example of the model used on acetic acid. All the variables are explained in the text.



6 I. Walsh, A. Vullo, G. Pollastri

2.1 Relaxing stationarity

We also implement a system in which we relax the stationarity hypothesis. In this case
we search for common bonding patterns for an atom (or common neghbourhoods for
a node), and we implement dedicated transition functions for the most frequent ones.
For example the same transition network/function will represent every carbon atom
with a single nitrogen and double bonded oxygen. A neighbourhood token is created by
investigating each atom in the training set and storing the atom symbol and its immedi-
ate neighbours in lexicographical order. Neighbourhood tokens that contain all carbon
symbols are removed because they are considered non-informative. Note that neghbour-
hoods may be defined by visiting nodes more than one edge apart from a node. For the
following experiments we only consider neghbourhoods of size 1. The T most frequent
tokens yield special transition functions, while all the other patterns are handled by a
general function:

G1
v,k = M(1)

(
iv, G

u(1)

ch1
[v,k]

, . . . , G
u(n)
chn

[v,k]

)
. . .

GT
v,k = M(T )

(
iv, G

u(1)

ch1
[v,k]

, . . . , G
u(n)
chn

[v,k]

)
Ggeneral

v,k = M(general)

(
iv, G

u(1)

ch1
[v,k]

, . . . , G
u(n)
chn

[v,k]

)
(4)

where u(c) ∈ {1, . . . , T, general} is the index of the transition function applied to
chc

[v,k] based on its identity and neighbours.
Table 1 shows the top 9 patterns found for the logPow problem (see below).

token CO CCN CCCN CCO CCCO CN CCl CCOO CCNO

frequency 1908 1661 1193 1014 964 668 435 373 345

Table 1. The most frequent neighbourhood patterns in the training folds for the logPow problem.

2.2 Atomic label

We keep the label iv attached to an atom v as simple as possible in order to make the
architecture portable. It should be noted, though, that any feature of an atom or of its
neighbourhood can be included into iv . Each atom is labelled as follows:

– The element type.
– The atom charge.
– Using openbabel version 2.1.1 [26] we calculate the Smallest Set of Smallest Rings

(SSSR), hybridization and aromaticity of an atom.
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2.3 Training procedure

When training for regression all target endpoints are normalised between [0,1] by find-
ing the maximum and minimum target values in the training set of each fold and nor-
malising all targets in the training and testing fold to target−max

max−min . We use a sigmoid ac-
tivation function for the final output neuron and perform gradient descent on a squared
error. For classification softmax activation function is used at the output neurons with
relative cross entropy as the cost function. All inner neurons have a tanh() activation
function irrespective of regression or classification.

Weights are randomly initialised. We update the weights once per epoch (batch
learning). A gradient component dw is applied directly when its absolute value is in
the [0.1,1] range, but set to sign(dw) when greater than 1 and to 0.1×sign(dw) when
smaller than 0.1. We train 5 distinct models with different random initial weights and
number of units and ensemble them to produce the final output. Each model is trained
for 2000 epochs. We can learn on a set of 3000-4000 molecules in one day on one core
of a modern PC. The final systems can predict millions of molecules per day on a small
cluster of machines, making them particularly suitable for high throughput screening.
Classification models estimate the probability of the endpoint given the inputs. This is
also advantageous for screening since strict criteria can be imposed on the probability
in order to increase the confidence of a prediction.

3 Results

For all the regression problems we only report the results on the models where sta-
tionarity is relaxed. In the mutagencity classification results we show that this type of
model significantly outperforms the stationary model without the dedicated process-
ing units. We also test other slight variations to the model architecture when predicting
mutagenicity (see below).

3.1 Regression

For all the regression tasks described below three measures are reported. The squared
correlation coefficient (r2, or squared Pearson correlation coefficient) where the corre-
lation coefficient is:

r =
∑N

i=1 tipi −Nt̂p̂

(N − 1)stsp
(5)

where t̂ and p̂ are the mean of the targets and predicted values respectively, N is the total
number of examples and st and sp are the standard deviations of the target and predic-
tion respectively. We also report the root mean squared error (RMSE) and the average

absolute error (AAE) which are 1
N

√∑N
i=1(ti − pi)(ti − pi) and | 1

N

∑N
i=1(ti − pi)|

respectively.
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Aqueous Solubility The biological activity of potential drugs is influenced by their
aqueous solubility - in order for a drug to pass through cell membranes, a drug must
be soluble in water. Hence computational methods to evaluate solubility of compounds
are important, and many approaches to tackle this task have being described. A review
of computational methods for the early phase of drug development can be found in
[27]. In [28] the octanol-water partition coefficient (which can be predicted somewhat
accurately from the molecular structure, see section 3.1) and 51 2D descriptors are input
to a multiple linear regression model, yielding a squared correlation coefficient of 0.74
and an average absolute error of 0.68 on a dataset of 2688 training compounds and
640 test compounds. Delaney [2] uses the water partition coefficient and three other
parameters (molecular weight, number of rotatable bonds and the aromatic proportion
in aromatic rings) as inputs to a simple linear model. Although the model is simple it
outperforms the General Solubility Equation [29] which is based on the melting point
and octanol-water partition coefficient. In [11] various kernels are designed showing
state of the art results on the ”Small” Delaney dataset for the 2D kernel based on path
lengths of two.

Table 2 shows our results obtained in 10 fold cross validation on the Delaney
”Small” dataset. Comparisons are made with the kernel method in [11], Delaney’s
own method [2] and the GSE equation [29]. The dataset contains 1144 compounds
of ranging types with solubility values (measured as a log S) ranging from -11.6 to 1.58
Mol/litre.

r2 RMSE AAE

UG-RNN 0.914 0.613 0.437

Delaney [2] - - 0.75

GSE [29] - - 0.47

2D kernel (param d=2) [11] 0.91 0.61 0.44

Table 2. Prediction performance for Aqueous Solubility in 10 fold cross validation on the 1144
compounds in the Delaney ”Small” dataset.

Our results on this dataset are state of the art with a r2 of 0.91, 0.61 RMSE and
an AAE of 0.44 which are identical to the best kernel from the work in [11]. The only
number available for comparison with Delaney’s work and the GSE equation is an AAE
of 0.75 and 0.47 on this ”Small” dataset.

Another common dataset is the one in Huuskonen [3], consisting of 1297 com-
pounds of ranging log S values from -11.62 to 1.58 Mol/Litre. Huuskonen’s method
relies on Molecular connectivity, shape, and atom-type electrotopological indices, in-
put to a multi layer neural network, yielding a r2 of 0.92 and standard deviation of
0.6. However no cross validation is performed in order to assess the true generalisation
ability of the method. In [4] a support vector machine is used to learn from derived
descriptors and the final model achieves a r2 value of 0.90 in 8-fold cross validation on
the same set. Again the kernel methods of [11] produce state of the art performances.
However the best results are now on a different (3D) kernel. Our method remains the
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same, indicating general applicability. Although the Huuskonen dataset consists of 1297
compounds, Azencott et al. report results on 1026 compounds without mention of re-
dundancy reduction. Table 3 shows a comparison of the methods on the Huuskonen
dataset. On this set we achieve a r2 of 0.92, slightly above the squared correlation for

r2 RMSE AAE

UG-RNN 0.92 0.35 0.43

Frohlich [4] 0.90 - -

3D kernel [11] 0.91 0.15 0.11

Table 3. Prediction performance for Aqueous Solubility in 10 fold cross validation on the 1297
compounds in the Huuskonen dataset.

the kernel method in Azencott et al. and the method in Frohlich et. al., and a somewhat
worse, if still nearly perfect, AAE (0.43 on a range of 12 log Mol/Litre units).

In figures 3 and 4 we show the correlation graphs, respectively, for the Delaney
dataset and the Huuskonen set.

Melting point Melting point can be used for the rapid determination of the purity of
a substance and it is often a core property in QSAR/QSPR analysis for determining
solubility and boiling point [29, 30]. The General solubility equation [29] is log S =
0.5− log Pow − 0.01(tm − 25) where log Pow is the octanol water partition coefficient
and tm is the melting point. log Pow can be predicted with high accuracy (see next
section) while the automatic prediction of melting points still remains difficult. The
above equation generally works well (RMSE 0.7-0.8 log units) so long as the melting
point can be determined accurately.

We test our method on a melting point dataset extracted from the literature [5],
containing 4173 compounds from the Molecular Diversity Preservation International
database (MDPI) [31]. The melting points range between 14◦C to 392.5◦C.

r2 RMSE AAE

UG-RNN 0.57 42.5◦C 32.6◦C

Karthikeyan [5] 0.42 52.0◦C 41.3◦C

2D kernel (param d=10) [11] 0.56 42.71◦C 32.58◦C

Table 4. Prediction performance for Melting point in 10 fold cross validation on the 4173 com-
pounds in the Karthikeyan dataset. Other methods based on the same dataset.

Our results (table 4) on this set compare favourably with two other methods [5,11],
with a correlation coefficient of 0.753 (r2 of 0.57). Karthikeyan [5] uses a large set of
2D and 3D features which are dimensionally reduced using PCA, then input to a feed
forward neural network. The model producing the best results in Azencott et al. [11]
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Fig. 3. Plot of Experimental Log S values against Predicted Log S values for the Delaney Small
dataset. S is measured in Mol/Litre.
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Fig. 4. Plot of Experimental Log S values against Predicted Log S values for the Huuskonen
dataset. S is measured in Mol/Litre.
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is again the 2D kernel using a minmax similarity measure but the path length used to
determine the similarity is now 10.

Octanol water partition coefficient Accurate determination of octanol water partition
coefficient, i.e. the ratio of the concentrations of a compound in a mixture of water and
octanol at equilibrium (normally measured as a logarithm of the ratio, or log Pow), is
central to QSAR/QSPR. The magnitude of log Pow is useful in estimating the distribu-
tion of drugs within the body. It is therefore an important factor of a candidate drug.
Moreover, log Pow and melting point can be used to accurately determine the solubility
of a compound.

Table 5 shows the results for the prediction log Pow on the dataset used in [6] and
in [11]. The results in [6] are nominally accurate but are measured on the training set,
hence meaningless and not reported in the table. The 2D kernel (the best performing
is again different, this time with d = 5) is marginally more accurate. Our method is
unchanged from the previous tests.

r2 RMSE AAE

This work 0.934 0.279 0.394

2D kernel (param d=5) [11] 0.94 0.25 0.38

Table 5. Prediction performance for octanol/water partition coefficient (as logPow) by 10 fold
cross validation on the dataset in [6, 11]. Other methods based on the same dataset.

3.2 Classification

Finally, we apply UG-RNN to the problem of mutagenicity classification. In this case
we also gauge whether contextual information, and relaxing stationarity have an effect
on the results. We also test two different variants of the output network M(O)() (in
Eqn. 2), one in which only the global state of the structure Gstructure is passed as an
argument, and one in which the average of the labels iv over the molecule is also input.
We term the last two models, respectively, Moore, and Mealy UG-RNN.

If TP , FP , TN , and FN are the true positives, false positives, true negatives, and
false negatives respectively, the performance measures we use are precision TP

TP+FP

and recall TP
TP+FN for the classes. Matthews Correlation Coefficient (MCC) is also

computed for the sake of comparison with other works that report recall and MCC and
leave out precision. MCC is defined as (TP.TN)−(FN.FP )√

(TP+FN)(TP+FP )(TN+FN)(TN+FP )
.

Mutagenicity Mutagenicity is the ability of a compound to cause mutations in DNA
with these mutations often causing the onset of cancerous tumors. It has being pre-
viously shown that a positive experimental mutagenicity test (known as the Ames test)
results in carcinogenicity as high as 77% to 90% in rodents [32]. Screening of drug can-
didates for mutagenicity is a regulatory requirement for drug approval since mutagenic
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properties pose risks to humans. At present, a variety of toxicological tests have to be
conducted by a drug manufacturer. Although mutagencity testing has a relatively sim-
ple experimental procedure, these tests are generally low-throughput and hence cannot
be applied to large scale screening. A fast effective method for the prediction of muta-
genicity could therefore serve as an initial estimate of carcinogenicity and greatly aid
in the manufacture of novel drugs.

We use a dataset collected from the literature [7]. The set consists of 4337 diverse
chemical compounds along with information indicating whether they have mutagenicity
in Salmonella Typhimurium strains TA98, TA100, TA1535 and either TA1537 or TA97,
which are the standard Ames test strains required for regulatory evaluation of drug
approval. In this dataset a compound is considered a mutagen if at least one Ames test
result was positive, negative otherwise. This results in 54% of the data to be mutagenic
making it a well balanced set.

In table 6 we compare UG-RNN with the substructure/structural alert method of [8]
and a method based on a novel molecular electrophilicity descriptor input to an SVM
[24]. The dataset used in the substructure mining method is a slightly reduced version
of the dataset used here since mixtures, counter ions, molecules above 500 moleculular
weight and stereoisomers were removed. We have not removed these noisy examples,
which is expected to yield slightly worse results. The automatic substructure mining
method [8] known as the elaborate chemical representation (ECR) is an extension of
a similar manual method in [7], and simply assigns a chemical to a particular class
based on substructures previously identified. The method in [24] constructs a novel
feature vector based on the atomic electrophilicty which is a highly domain specific
vector for mutagenicity prediction. MOLFEA [33] generates molecular fragments by
a mining algorithm then uses three types of machine learning systems: decision trees,
rule learner and support vector machines. The authors prove that the substructure based
approach improves over machine learning with fixed length molecular property vectors,
and obtain the highest predictive accuracy by optimised structures and a linear SVM.

We test four distinct models:
– Multi Layer Perceptron (MLP) The input is defined as:

I =
1
N

N∑
v∈{V }

iv (6)

where N is the number of atoms, iv is the input label at atom v and {V } is the set
of all vertices.

– Stationary UG-RNN A UG-RNN with only one transition function and therefore
only one transition network to encode the molecule.

– Moore UG-RNN A UG-RNN with specialised transition functions for the most
frequent patterns, and output obtained as o = M(O)(Gstructure).

– Mealy UG-RNN A UG-RNN with specialised transition functions for the most fre-
quent patterns, but output obtained as o = M(O)(I,Gstructure), where I is the
average label over the molecule, as in Eqn.6.

Table 6 shows the 10-fold cross validation results of all the models we tested, com-
pared with those of the other methods described above (which are all also tested in
10-fold cross validation, although MOLFEA is tested on a different set).
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Q all mutagen

(R)

non-

mutagen

(R)

mutagen

(P)

non-

mutagen

(P)

mcc

MLP 77.8% 79.8% 75.2% 80.0% 75.0% 55.0%

Stationary UG-RNN 78.8% 75.9% 81.1% 76.5% 80.6% 57.1%

Moore UG-RNN 81.7% 84.7% 77.9% 82.5% 80.5% 62.7%

Mealy UG-RNN 82.4% 86.0% 78.0% 82.8% 81.8% 64.3%

SVM+electrophilicity [24] 90.1% 87.7% 92.1% − − 80.0%

Substructure mining [8] 80.6% 83.0% 74.5% 80.8% 77.2% 57.4%

MOLFEA [33]* 78.5% 77.5% 79.4% − − 56.9%

Table 6. Performance of the different mutagenicity models in a 10-fold cross validation. (P) is
precision and (R) is recall. (*) different dataset of 684 compounds used for training and evaluation

It is clear from the table that the SVM+electrophilicity method [24] performs best,
however: the feature vector is highly task-dependent; there is no evidence of test vs. val-
idation separation in the choice of the feature vector; no precision values are reported.
Our two best methods (Mealy UG-RNN and Moore UG-RNN) perform better than both
Substructure Mining [8] and MOLFEA [33]. Moreover, all UG-RNN’s perform better
than the static MLP, thus contextual information appears to be incorporated effectively.
The non-stationary models perform better than the stationary one, and the Mealy model
(in which both contextual information and average input labels are input to the output
network) is the best performing of all with an overall accuracy of 82.4% and an MCC
of 64.33%.

It should also be noted that the average intra-laboratory reproducibility of a series
of Ames test data from the National Toxicological Program (NTP) was determined to
be 85% [34], hence it is unclear what an accuracy of 90% [24] might mean and our best
result is close to the experimental accuracy of the test.

4 Conclusions

We have developed a general class of machine learning models (UG-RNN) that map
graphs to global labels, and have tested it in four separate problems in QSAR/QSPR.
The models discussed in this work have remained essentially the same throughout all
of these tasks. In all cases we obtained results close or above the state of the art, which
depending on the task is represented by algorithms based on kernels, substructure min-
ing/structural alert and manual or semi-automatic feature extraction, algorithms which
are usually domain- and task-specific. The input features we have used are not domain-
specific, are very simple and may be expanded, and the method is highly portable to
other tasks in QSAR/QSPR, in molecular biology and elsewhere, so long as the input
instances are naturally represented as Undirected Graphs.

In the future we plan to expand our research in a number of directions, including:
testing whether the feature vector automatically generated by UG-RNN (the Gstructure

in Eqn.2), which is effectively a task-dependent encoding of the molecule, could be
used as input to classifiers other than MLP, for instance SVM; whether UG-RNN can
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be expanded to include 3D information, alternatively or alongside 2D, for instance by
representing the interaction between two atoms closer than a certain threshold as an
edge, and introducing the distance as a label on the edges of the model; incorporating
information about stereoisomers in the model - this is currently overlooked and is likely
to have hindered our results in the case of mutagenicity classification, where stereoiso-
mers are present in the set.
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