
Software Testing with Active Learning in a
Graph

Nicolas Baskiotis, Michèle Sebag, and Marie-Claude Gaudel

LRI − CNRS − INRIA
Université Paris-Sud, F-91405 Orsay Cedex, France

Abstract. Motivated by Structural Statistical Software Testing (SSST),
this paper is interested in sampling the feasible execution paths in the
control flow graph of the program being tested. For some complex pro-
grams, the fraction of feasible paths becomes tiny, ranging in [10−10, 10−5].
When relying on the uniform sampling of the program paths, SSST is
thus hindered by the non-Markovian nature of the “feasible path” con-
cept, due to the long-range dependencies between the program nodes.
A divide and generate approach relying on an extended Parikh Map
representation is proposed to address this limitation; experimental vali-
dation on real-world and artificial problems demonstrates gains of orders
of magnitude compared to the state of the art.

1 Introduction

The increasing complexity of computer science systems has brought on new
demands for systems able to configure, adapt and repair themselves, leading to
the emergence of the Autonomic Computing field. As autonomic systems should
be “self-aware” (endowed with a behavioural model of themselves), Autonomic
Computing is becoming a source of challenging applications in Machine Learning
(see e.g., [1, 2]). Similar demands are brought on in the software industry, and
ML approaches have been used for software assessment [3], debugging [4] or
testing [5].

This paper is interested in structural statistical software testing [6]; the cen-
tral question is to bridge the gap between the syntax of the program (the control
flow graph) and its semantics (the paths in the graph which actually correspond
to execution paths, referred to as feasible paths). When feasible paths are a
tiny fraction (10−15, 10−10) of the paths, the application goal is to construct a
path sampling mechanism biased toward feasible new paths. The difficulty is
that by construction very few feasible paths are initially available due to their
cost, on the one hand; and on the other hand, the target concept of “feasible
path” is non-Markovian (the program semantics involves long-range dependen-
cies among the nodes in the control flow graph). The contribution of the paper
concerns active learning in the control flow graph. The failure of baseline proba-
bilistic approaches is observed and explained; a divide and sample mechanism is
presented, providing gains of orders of magnitude compared to the state of the
art on real-world and artificial problems.

Dagstuhl Seminar Proceedings 08351 
Evolutionary Test Generation 
http://drops.dagstuhl.de/opus/volltexte/2009/2014

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62914251?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Section 2 introduces the application domain and the position of the problem.
Section 3 describes the proposed approach. Section 4 reports on the experimental
validation and discusses the approach with respect to related work. The paper
concludes with some perspectives for further research.

2 Position of the problem

Software testing comes in two main flavors, the algebraic and the statistical
one. The algebraic approach is interested in model checking, and proving that
the program satisfies the desired properties (derived from its specifications or
provided by the expert). The statistical approach is interested in constructing a
set of test cases; on every test case (values of the input variables of the program),
one compares the actual output of the program with the desired output. The
latter approach allows one to bound the probability of errors in the program
along the PAC framework, based on an appropriate distribution of the test cases.

The most natural idea for constructing test cases is to sample uniformly the
domain of the input variables. However, it is easy to see that uniform sampling
will but miss the exception branches (e.g. calling the division routine with de-
nominator = 0), the measure of which is null. More generally, uniformly sampling
the input domain does not result in a good coverage of the execution paths of
the program (80% of the input domain exert less than 20% of the feasible paths).

v
f

INIT
v

a0

t1 e1

i2 i3

t4 e4

i5 i22

i21 s6

b6 b23

i7 i24

t8 e8 t25 e25

t9 e9

t11

i12

e11

e13

i18

t26 e26

e28

i29 i30

i33

i34

I5

I7

I27

i0

I0

C1

C4

I22

B23B6

s23

I24

C25

C26

C8

i20

C9

C11

i10

C13 C28

i27 i32

t13 t28

i19i14

C15

t15 e15 i31

i17i16

Fig. 1. Control flow graph
of Program FCT4 (36
nodes, 46 edges).

To address the above limitation, the statistical structural
software testing approach [6] proceeds by uniformly sam-
pling the execution paths of the program being tested af-
ter its control flow graph (Fig. 1). The control flow graph
is a Finite State Automaton described from some alpha-
betΣ (conditions and instructions nodes of the program)
and the set of transitions between nodes. For every node
v, Suc(v) denotes the set of its successor nodes. Since
programs being tested generally include loops (while or
for instructions), the path length is not bounded a pri-
ori. However for practical reasons, a maximal path length
is set, chosen by the test expert. Classical results from la-
belled combinatorial structures [7] are then used to uni-
formly sample the set of paths with length T . Finally,
each program path is converted into a constraint satis-
faction problem (CSP), expressing the constraints which
the input variables should satisfy in order to follow this
path; if this CSP is satisfiable (equivalently the path is
said to be feasible), its solution gives the test case exert-
ing the path (Fig. 2).

While structural statistical software testing ensures the uniform sampling of
the program behaviors, the drawback is that the fraction of feasible paths might

2



Program
1 read (x, y);
2 if (x < 0)
3 then x := −x; y := 1/y;
4 p := 1;
5 while (x > 0)
6 do p := p ∗ y;x := x− 1;
7 print p;

Path
s = 1.2.4.5.7

Path → Constraint Satisfaction
Problem

x ≥ 0 AND x ≤ 0

CSP → Test case
x = 0

Fig. 2. From program paths to test cases

be tiny for programs involving nested loops and complex variable dependencies;
in such cases, the test expert can but manually modify the program to render
the uniform sampling approach efficient. The low percentage of feasible paths
reflects the huge gap between the syntactic description and the semantics of the
program. Specifically, a major cause for path unfeasibility, referred to as XOR
patterns, is to violate the dependencies between different parts of the program.
For instance, if the program involves two if nodes based on some (unchanged)
expression, the successor nodes of these if nodes will be correlated in every
feasible path: if the successor of the first if node is the then (respectively, else)
node, then the successor of the second if node must be the then (resp. else)
node.

3 Overview

After describing the path representation used in the rest of the paper, this section
analyzes the failure of baseline probabilistic generative learning for the problem
domain. A divide and sample algorithm addressing these limitations is finally
presented.

3.1 Extended Parikh Maps

A first phase of the study has been concerned with supervised learning from
the training set E = {(si, yi), si ∈ ΣT , yi ∈ {−1,+1}, i = 1 . . . , n} made of the
few feasible paths ((si, yi) with yi = 1) and many unfeasible paths ((si, yi) with
yi = −1) collected by uniform sampling and labelled by the oracle (constraint
solver, CS). The goal was to approximate the semantics of the program (more
precisely to estimate the “feasible region”) to filter out most unfeasible paths,
thereby saving many useless calls to the CS routine (a few seconds per call). As
could have been expected, standard ML approaches pertaining to Grammatical
Inference or Hidden Markov Models failed to learn the “feasible region” concept;
indeed the long-range dependencies in this concept make it non Markovian. More
sophisticated approaches, e.g. [8], were hindered due to the insufficient amount
of feasible paths.

3



A frugal representation inspired from Parikh Maps [9] was chosen to accom-
modate the sparsity of the available examples. Parikh maps use the Ngrams
built from alphabet Σ as features; every string is described as an integer vector
reporting the number of occurrences of every Ngram in the string. Despite their
simplicity, Parikh maps finely capture the grammar generating the strings. As
shown by [10], the probability from two grammars to be different can be upper
bounded from the distance between their N-grams distributions in a string sam-
ple (depending on the length N of Ngrams, the sample size and the distance).
As shown by [11], mildly context sensitive grammars can be characterized from
equations in the Parikh map representation. However, due to the number of
available examples (a few dozens) relatively to the complexity of the grammar
(a few dozen symbols in the alphabet, a few hundred nodes in every path), stan-
dard Parikh maps cannot not be used directly: 1-grams do not provide enough
information to enable discriminant learning while 2-grams result in a too sparse
representation.

An extended Parikh map representation is thus proposed. Additional at-
tributes specify for each pair (v, i) ∈ Σ × IN the successor node of the i-th
occurrence of the v symbol in the path. Formally, the extended Parikh map rep-
resentation involves |Σ|×I attributes, where I is an upper bound on the number
of occurrences of every symbol in any path s:

v ∈ Σ | · |v : Σ∗ 7→ IN |s|v = #v in s
(v, i) ∈ Σ × IN | · |v,i : Σ∗ 7→ Σ |s|v,i = successor of i-th occurrence of v

Standard supervised learning approaches (SVM, decision trees) using the
extended Parikh map representation still failed to learn the “feasible path re-
gion”; this failure was blamed on the insufficient number of feasible paths in the
training set. At this point it became clear that not only would the acquisition
of additional feasible paths enable supervised learning; also, it would directly
address the limitations of structural statistical software learning problem.

3.2 The Failure of Probabilistic Active Learning

The second phase of the study thus focuses on the construction of additional new
feasible paths. Taking inspiration from [8], let the current path s be initialized to
the starting node vs. At step t, the point is to select the successor of the current
symbol s[t] in order to maximize the probability of arriving at a new feasible
path:

s[t+ 1] = argmaxw∈Suc(s[t])Pr(s′ feasible and new | Prefix(s′) = sw) (1)

Since there is no feasible path s′ in the training set with prefix sw after the
very first steps (t ≥ 5), a generalized formulation is considered. Let v be the last
symbol in s (s[t] = v) and assume that s currently involves i occurrences of v
(|s|v = i). Then condition Prefix(s′) = sw is generalized into: the successor of
the i-th occurrence of v is w and s′ includes strictly more occurrences of symbol

4



w than s. Accordingly the selection criterion becomes:

s[t+1] = argmaxw∈Suc(s[t])Pr(s′ feasible and new | (|s′|v,i = w)∧(|s′|w > |s|w))
(2)

Although it improves on uniform path sampling, the above generative heuris-
tics is still found to be poorly efficient. This failure is blamed on the highly
disjunctive structure of the underlying target concept. Specifically, the feasible
path region h∗ involves the conjunction of many XOR concepts (section 2); h∗ is
thus expressed as the disjunction of many conjunctive concepts Ci in the Parikh
representation. In eq. (2), all feasible paths s′ are considered, mixing the con-
tributions from different Cis and thereby misleading the selection criterion1, as
illustrated on the toy problem in Fig. 3. Let h∗ be defined as: the first and third
occurrences of symbol v have same successor symbol.

| · |v,1 | · |v,2 | · |v,1 y

s1 w w′ w 1
s2 w′ w w′ 1
s3 w w w′ −1

Fig. 3. Training set E

The training set includes one feasible path in
each conjunctive concept of h∗ and the unfea-
sible path s3. Let the current string be s =
vw′vwv; eq. (2) leads to select w′ as next symbol
since

Pr(s′ feasible| |s′|v,3 = w′ ∧ |s′|w′ > 2) = 1/2
Pr(s′ feasible| |s′|v,3 = w ∧ |s′|w > 1) = 1

In the considered context, probabilistic active learning thus raises the follow-
ing dilemma: If conditional probabilities are based on too specific conditions they
are useless; if they are based on too general conditions, they are misleading as
the contributions from different conjunctive subconcepts are mixed. A two-step
process is proposed to address this limitation, firstly identifying the conjunctive
subconcepts represented in the training set (section 3.3) and thereafter stochas-
tically generating new paths to generalize these subconcepts (section 3.4).

3.3 Divide to conquer

In the rest of the paper, “feasible paths” and “positive examples” are used
interchangeably.

Definition: R(s, s′)
For a given representation language L, let the target concept be expressed as
the disjunction of conjunctive concepts Ci, i = 1 . . .K. Let s and s′ be two posi-
tive examples; define R(s, s′) to be true iff there exists Cj covering both s and s′.

Proposition: Approximating R(s, s′)
Let s′′1 , . . . , s

′′
M be M paths uniformly and independently sampled in the least

1 Similar difficulties are encountered when learning XOR concepts with decision trees.

5



general generalization2 of s and s′. Let R̂(s, s′) be set to false iff at least one
among the s′′j is negative (unfeasible), and true otherwise. Then:

Pr(R̂(s, s′) false | R(s, s′) true) = 0 (3)

q = Pr(R̂(s, s′) true | R(s, s′) false) goes to 0 exponentially fast with M (4)

Proof.
(3) follows from the logical structure on L. If R(s, s′) holds then by definition
lgg(s, s′) is generalized by some Cj , which implies that every example in lgg(s, s′)
is positive.
(4) follows from q = pM where p = Pr(s′′ positive | s′′ ∈ lgg(s, s′),R(s, s′) false).

The conjunctive subconcepts represented in the training set are identified
from the cliques defined by relation R̂, using the Divide algorithm (Fig. 4).

Algorithm Divide
Input: feasible path s

Initialize Ĉs = {s}
Define Hs = {s′ 6∈ Ĉs / ∀ s′′ ∈ Ĉs, R̂(s′, s′′)}
Define Degree(s′) = |{s′′ ∈ Hs / R̂(s′, s′′)}|
While Hs 6= ∅

Select s′ ∈ argmaxs′′∈Hs{Degree(s
′′)}

Ĉs := Ĉs

⋃
{s′}

Hs := Hs \ {s′}
Return Ĉs

Fig. 4. Algorithm Divide

For every feasible path s, let Ĉs be initialized to {s}. Let Hs be defined as the
set of all examples s′ that do not belong to Ĉs and are linked to every example
in Ĉs:

Hs = {s′ 6∈ Ĉs / ∀ s′′ ∈ Ĉs, R̂(s′, s′′)}

Let degree(s′) be defined as the number of elements s′′ in Hs such that R̂(s′, s′′).
While Hs is not empty, iteratively select s′ with maximal degree in Hs, add it
to Ĉs and update Hs accordingly.

Proposition: Identifying conjunctive subconcepts represented in the
training set.
Let s be a positive example, belonging to a single conjunctive concept C and
assume that C has m > 1 representatives in the training set. Let Ĉs be con-
structed by the Divide algorithm.
Let PErr,i denote the probability of selecting at step i > 1 an example which

2 The least general generalization of two examples is defined as the (unique) most
specific conjunction covering both examples in the representation language.

6



does not belong to C, conditionally to the fact that all previously selected exam-
ples belong to C. Then E[PErr,i] decreases exponentially with m− i and linearly
with qi, where q = Pr(R̂(s, s′) true | R(s, s′) false).

Proof.
At the first step, Hs includes all m representatives of C except s itself. With
probability qr, Hs also includes r examples not belonging to C, referred to as
spurious examples.
The degree of a spurious example depends on i) its number of links to the
representatives of C, which follows the Bernoulli law B(m− 1, q); ii) its number
of links to the other spurious examples, upper bounded by r− 1. Symmetrically,
the degree of a non-spurious element is lower-bounded by m−1. The probability
for a spurious example in Hs to be selected in step 2 of the Divide algorithm is
thus upper bounded as:

A(r) = Pr(B(m− 1, q) > m− r) = Pr(B(m− 1, 1− q) < r − 1)
≤ exp

(
− 2
m−1 ((m− 1)(1− q)− (r − 1))2

)
Summing over all r spurious examples and taking the expectation over r = 1

to n−m, it comes:

E[PErr,1] =
∑n−m
r=1 r qr A(r)

≤ B
∑n−m
r=1 r × (C)r−1 ×D(r−1)2

with B = exp
(
−2(m− 1)(1− q)2

)
q; C = q exp(4(1− q)); D = exp(− 2

m−1 )
It comes
E[PErr,1] < B 1

(1−qC)2
1

(1−D)2 = O(F−(m−1) × q)

Therefore E[PErr,1] decreases exponentially with m−1 and linearly with q. The
same analysis shows that the expectation of selecting a first spurious element
at the i-th step of the Divide algorithm decreases exponentially with m− i and
linearly with qi.

The above result3 shows that, provided that a conjunctive subconcept C
has at least one representative in the training set E , one can identify with high
probability the subset Ĉ = C ∩ E . The next step is to identify C from Ĉ.

3.4 Generalizing subconcepts

Every Ĉ constructed by the Divide algorithm is considered independently. The
identification of the underlying conjunctive concept C is done iteratively by
generating paths which are close to Ĉ, do not belong to the lgg of Ĉ, and are
feasible. Several approaches have been investigated.

3 The sampling of lgg(s, s′) used to define R̂(s, s′) is done using eq. (2). The limitations
described in section 3.2 are avoided since lgg(s, s′) is conjunctive by construction.

7



The first approach is based on a multi-armed bandit formalization [12]; every
successor node is viewed as a bandit arm; the associated reward probability is the
probability of ultimately getting a feasible path. More precisely, the construction
of the current path, involving a sequence of node selections, is formalized as a
tree-structured multi-armed bandit and tackled using the UCT algorithm [13].
However UCT encounters two difficulties. On one hand, structural statistical
software testing defines a dynamic multi-armed bandit, in the sense that the
reward associated to a feasible path becomes null after this path has been found
(the goal is to find new feasible paths). On the other hand, in the considered
problem range UCT fails to construct feasible paths in reasonable time. Its failure
is blamed on the very low reward probability relatively to the number of options:
the problem boils down to finding the proverbial needle (a feasible path) in the
haystack (a sequence of a few hundred choices). The Exploration vs Exploitation
policy in UCT requires one to explore the many options which have never been
tried, with little hope of finding feasible paths when doing so.

Similar difficulties were reported when adapting UCT in order to build the
computer-Go program MoGo [14]. Taking inspiration from MoGo, an ε-greedy
strategy is used; the probability of selecting an arm which has never been selected
before is ε instead of 1. While the ε-greedy strategy improves on the baseline
UCT in the considered context, the bias toward exploration is still too high, no
matter what the value of ε is. In most cases, selecting a successor node which
had never been selected before engages the path in a new region of the search
space and one never gets back to exploitation.

A third approach, called Stochastic Combinatorial Sampling (SCS) and in-
spired from [15], uses two stochastic combinatorial operators to construct new
paths from existing paths. Operator µ is a unary operator; µ(s) is obtained by
deleting or inserting in s an admissible fragment, i.e. a subsequence s[i . . . j] such
that s[i−1] = s[j]. In case of insertion, the fragment is added after a (uniformly
selected) occurrence of symbol s[i− 1]. Operator χ is a binary operator; χ(s, s′)
is defined by concatenation of the head of s and the tail of s′. More precisely,
χ(s, s′) = s[1 . . . i].s′[j . . . |s′|] where indices i and j are such that s[i] = s′[j− 1].
In both cases, the resulting path s′′ is rejected if i) its length is greater than the
maximal path length T ; ii) s′′ belongs to the lgg of Ĉ; iii) lgg(Ĉ

⋃
s′′) generalizes

a negative example (unfeasible path). Every new path s′′ is assessed as follows.
To every constraint [attribute = value] in the lgg of Ĉ is associated a weight
initially set to 1. The score of s′′ is the sum over all conditions in the lgg of Ĉ
that are violated by s′′, of the condition weight.
In every time step, the SCS module generates L paths, and sends the path s
with minimal score to the oracle to be labelled; if s is feasible, Ĉ is updated.
Otherwise: i) if s violates a single constraint in lgg(Ĉ), the associated weight is
set to a maximal value (the constraint is a discriminant one); ii) otherwise, the
weight of every violated condition is increased.

8



4 Experimental Validation

This section reports on the experimental validation of the presented approach.

4.1 Experimental Setting

Due to the fact that the oracle (constraint solver, section 2) is a proprietary
tool, only four real-world programs taken from [6] could be considered. Three
out of four programs could be handled simply using the extended Parikh Map
representation (i.e. the semantic constraints were made straightforward to ex-
press in this representation). The fourth program (the Fct4 program, involved
in the safety of a nuclear plant, Fig. 1), includes 36 nodes and 46 edges; the ratio
of feasible paths is circa 10−5 for a maximum path length T = 250.

A stochastic program generator was thus designed to enable extensive vali-
dation (available from the authors). This generator involves a program syntax
generator module, using a probabilistic BNF grammar to generate a control flow
graph4, and a program semantics generator module. The latter module defines
the target concept h∗, determining whether a given path in the above graph
is feasible. After section 2, h∗ is a conjunction of XOR concepts. In order to
generate satisfiable target concepts h∗, a set P of paths uniformly generated
from the control flow graph is first constructed; iteratively, i) one selects a XOR
concept covering a strict subset of P; ii) paths not covered by the XOR concept
are removed from P. Finally, the target concept h∗ is made of the conjunction of
the selected XOR concepts and the lgg of the paths in P. Ten artificial problems
are considered with an alphabet size ranging in [20, 40]. For a path length in
[120, 250] the ratio of infeasible paths ranges in [10−15, 10−3]. For each problem,
ten independent runs are launched, considering a training set with 50 feasible
and 50 infeasible paths5.

For each conjunctive concept C in h∗ which is represented in the training
set, an independent set of 100, 000 paths uniformly generated in C is built. It is
used to measure the algorithm performance w.r.t. C, by comparing the fraction
i(C) of paths in C that belong to the training set, and the fraction f(C) of paths
in C constructed after running 200 times the ε-greedy or the SCS modules. For
the sake of readability, the agregated performance f(x) is computed using a
Gaussian convolution over all C represented in the training set (with parameter

4 Three non-terminal nodes were considered (the generic structure B, the if and the
while structures), together with two terminal nodes (the Instruction and the Condi-
tion nodes). The probabilities on the production rules control the length and depth
of the control flow graph. Eventually, the instructions are pruned in such a way that
each instruction has at least two successor instructions; finally, each instruction and
condition is associated a distinct label.

5 Increasing the number of infeasible training paths does not make any difference, as
only infeasible paths “close” to the feasible ones are relevant, e.g. to define relation
R̂.

9



κ = 10−2):

f(x) =

∑
C s.t. i(C)6=0 f(C)exp(− (x−i(C))2

κ∑
C s.t. i(C)6=0 exp(−

(x−i(C))2

κ

4.2 Experimental results

Fig. 5.(a) displays the performance of the ε-greedy and SCS generative ap-
proaches on artificial problems. Fig. 5.(b) reports the performances on the real-
world fct4 problem comparatively to the state of the art with same experimental
setting (3,000 paths generated per run, average results on 10 runs) [5].

Detailed results are reported in Table 1; when the initial coverage of the
conjunct is tiny to small (below 10%), the gain ranges from 8 to 2 orders of
magnitude. A factor gain of 3 is observed when the initial coverage is between
10% and 30%. For concepts which are already well represented in the initial
training set, the gain can only be moderate.

These results improve by a few orders of magnitude on the state of the art [6,
5]. The improvement is mostly interpreted as the result of the Divide algorithm,
virtually splitting the underlying target concept into simpler, conjunctive, sub-
concepts. This interpretation is backed by lesion studies (results omitted due to
lack of space) considering ε-greedy and SCS generation without the Divide step.
The importance of the Divide step should not be underestimated; in essence it
turns a non-Markovian decision problem (the choice of a successor node at some
point depends on the choices made much earlier) into a set of Markovian ones
(at every choice point, the local information can reliably guide the decision).

In terms of computational effort, the runtime of the Divide algorithm ranges
between 5 and 15 minutes on PC-Pentium IV; the ε-greedy or SCS generative
modules require less than 5 minutes per conjunctive concept.

(a) Artificial Problems (b) FCT4 real world problem

Fig. 5. Final vs Initial coverage of the conjunctive subconcepts with ε-greedy and SCS
generative approaches (averaged on 10 runs, with standard deviation).

10



[0, 10−4] [10−4, 10−3] [10−3, 10−2] [10−2, 10−1] [.1, .3] [.3, .6] [.6, 1]

ε− greedy log(f/i) 5.7± 1.2 5.3± 1.2 3.7± .86 2± .72
f/i 3± .1 1.6± .3 1.1± .1

SCS log(f/i) 8.2± 0.7 7.0± 1.4 5.0± .8 2.6± .6
f/i 4.1± 1.4 1.8± .3 1.1± .1

Table 1. Gain obtained with ε-greedy generalization for various ranges of the initial
coverage of the conjunct.

5 Discussion and Perspectives

The Software Testing approach presented in this paper differs from the Software
Debugging approach [4] in two main ways. [4] uses an intrusive approach (insert-
ing instructions, e.g. checking memory, in the program); the execution traces are
exploited to identify the most informative inserted instructions (feature selec-
tion), which in turn provide hints into the possible causes of the bugs. Compared
to Software Debugging, Software Testing intervenes later in the lifecycle of the
program; modifying the program is not considered to be appropriate. Further,
software debugging observes diversified program behaviours while software test-
ing precisely aims at emulating such diversified behaviours.

A more related work is [5], which likewise addresses Structural Statistical
Software Testing. The main difference of the presented approach compared to
[5] is the Divide algorithm, which is considered instrumental in the very sig-
nificant performance gains reported (Fig. 5.(b)). A second difference concerns
the use of the SCS generative approach. The latter approach is inspired by [15],
interested in the quasi-uniform sampling of the solutions of a Constraint Satisfac-
tion Problem. Likewise, [15] exploits some CSP solutions provided by Walksat,
and samples the neighborhood of these solutions using a Simulated Annealing
algorithm; however, while [15] considers solutions made of boolean vectors, the
presented approach deals with the sampling of paths in a graph.

Further research will study the distribution of the presented sampling mech-
anisms, and investigate the characterization of conjunctive concepts which are
not represented in the training set. The limitations of active learning when deal-
ing with a very imbalanced concept in a structured search space will be analyzed
and compared to the continuous case [16].

References

1. M. Brodie, I. Rish, and S. Ma. Intelligent probing: A cost-effective approach to
fault diagnosis in computer networks. IBM Systems Journal, 41(3):372–385, 2002.

2. N. Palatin, A. Leizarowitz, A. Schuster, and R. Wolff. Mining for misconfigured
machines in grid systems. In KDD ’06: Proc of the 12th ACM SIGKDD Interna-
tional Confe rence on Knowledge discovery and data mining, pages 687–692. ACM
Press, 2006.

11



3. G. Xiao, F. Southey, R. C. Holte, and D. F. Wilkinson. Software testing by active
learning for commercial games. In AAAI, pages 898–903, 2005.

4. A. X. Zheng, M. I. Jordan, B. Liblit, M. Naik, and A. Aiken. Statistical debugging:
simultaneous identification of multiple bugs. In ICML, pages 1105–1112, 2006.

5. N. Bastiokis, M. Sebag, M.-C. Gaudel, and S.-D. Gouraud. Software testing: A
machine learning approach. In Proc. of the 20th Int. Joint Conf. on Artificial
Intelligence, pages 2274–2279, 2007.

6. A. Denise, M.-C. Gaudel, and S.-D. Gouraud. A generic method for statistical
testing. In ISSRE, pages 25–34, 2004.

7. P. Flajolet, P. Zimmermann, and B. Van Cutsem. A calculus for the random
generation of labelled combinatorial structures. Theor. Comput. Sci., 132(2):1–35,
1994.

8. R. Begleiter, R. El-Yaniv, and G. Yona. On prediction using variable order markov
models. JAIR, 22:385–421, 2004.

9. J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages
and Computation. Addison-Wesley, 1979.

10. E. Fischer, F. Magniez, and M. de Rougemont. Approximate satisfiability and
equivalence. In Proceedings of 21st IEEE Symposium on Logic in Computer Sci-
ence, pages 421–430, 2006.

11. A. Clark, C. C. Florencio, and C. Watkins. Languages as hyperplanes: Grammatical
inference with string kernels. In Proc. Eur. Conf. on Machine Learning, pages 90–
101, 2006.

12. P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed
bandit problem. Machine Learning, 47(2-3):235–256, 2002.

13. L. Kocsis and C. Szepesvári. Bandit based Monte-Carlo planning. In ECML, pages
282–293, 2006.

14. S. Gelly and D. Silver. Combining online and offline knowledge in uct. In ICML,
pages 273–280, 2007.

15. Wei Wei, Jordan Erenrich, and Bart Selman. Towards efficient sampling: Exploiting
random walk strategies. In AAAI, pages 670–676, 2004.

16. S. Dasgupta. Coarse sample complexity bounds for active learning. In NIPS, pages
235–242, 2005.

12




