
Co-testability Transformation

Phil McMinn
Department of Computer Science, University of Sheffield

211 Portobello, Sheffield, S1 4DP, UK

Abstract
This paper introduces the notion of ‘co-testability

transformation’. As opposed to traditional testability trans-
formations, which replace the original program in testing,
co-testability transformations are designed to be used in
conjunction with the original program (and any additional
co-transformations as well). Until now, testability transfor-
mations have only been used to improve test data genera-
tion. However, co-testability transformations can function
as partial oracles. This paper demonstrates practical usage
of a co-testability transformation for automatically detect-
ing floating-point errors in program code.

1 Introduction
The original purpose of atestability transformationwas

to change a program so that test data could be generated
more easily [2, 3, 4, 8, 9]. Traditionally, the transformed
program replaced the original program in the test data gen-
eration process, typically removing some feature in the code
that presents an obstacle for the test data generator.

This paper introduces the notion of aco-testability trans-
formation, which is designed to be used inconjunctionwith
the original program. The idea opens up the possibility of
using multiple transformations at once in order to leverage
different ‘tactics’ to coerce testability, or as a vehicle for
supplying the test data generation process with additional
information about test goals.

This paper, however, introduces the novel use of trans-
formation as a means of providing apartial oracle. The pa-
per demonstrates this idea through the automatic detection
of errors in code with floating-point calculations. The co-
transformation uses floating-point representations and op-
erators of a higher precision. Search-based testing [7] is
used to maximize the difference in output between the co-
transformation and the original program, thus alerting the
tester to errors that may be lurking in the original program.

2 Co-testability transformation oracles for
code with floating-point calculations

Floating-point calculations are a common source of error
in computer programs that can go easily undetected. Not

all numbers can be represented with complete accuracy on
a computer and some floating-point operations cannot be
faithfully computed in all circumstances. Subtle rounding-
errors can also be introduced which can accumulate into se-
rious discrepancies during the course of the program. The
IEEE standard for floating-point numbers, used by C and
Java, introduces additional problems [1]. It is incapable, for
example, of representing certain numbers of finite decimal
representation (e.g.0.1) and uses error valuesINF (infin-
ity) andNaN (‘not a number’) in arithmetic operators which
can be free to silently propagate through a program.

Figure 1a serves to demonstrate some of these prob-
lems. The quadratic equation1x

2 + 2x + 3 = 0 has
no real roots because the discriminantb

2
− 4ac is neg-

ative. However, the operationMath.sqrt(d) returns
NaN, which is then used by subsequent statements in the
program. Also, for the equation2x

2+0.1x−3, the function
reports1.200000023841858and−1.2500000238418578as
roots, which should be1.2 and−1.25 precisely.

The single co-transformation used for the problem (Fig-
ure 1b) involves taking the original Java method and chang-
ing variables ofdouble or float type to that of type
java.math.BigDecimal [10], which is capable of ac-
curately representing floating-point numbers of finite deci-
mal representation with arbitrary precision. Operations in-
volving floating-point variables in the original program are
translated to the corresponding operators forBigDecimal
(the Root.square operation was specially imported
from a third-party library). The transformed version is ca-
pable of producing results of higher accuracy than the origi-
nal, and will throw exceptions when faced with illegal oper-
ations rather than using IEEE error values. Such exceptions
will crash the program if unchecked and thus will not go
unnoticed.

Whilst having the obvious benefits of producing more
accurate results, the transformed version of the program is
more verbose than the original and is likely to be more inef-
ficient in terms of computing resources. Such factors could
be long-term concerns for maintenance and live operation
of the system, which is why the original version of the pro-
gram may not have been written this way. However, such
factors are of little concern for a comparatively short-term

Dagstuhl Seminar Proceedings 08351 
Evolutionary Test Generation 
http://drops.dagstuhl.de/opus/volltexte/2009/2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62914249?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


testing process, after which the transformed version of the
program can be discarded (as is the case with all types of
testability transformation).

The two versions of the program can be checked against
one another for behavioural differences using search-based
testing. The fitness function used simply seeks to maximize
differences in output between the original and transformed
versions of the program when executing using the same in-
puts. The search is therefore able to trigger exceptions and
highlight the point of greatest inaccuracy in floating point
computation. A certain degree of numerical inaccuracy may
be tolerable for the application concerned, and so the tester
is required to weigh up where the results discovered by the
search process constitute a serious problem.

3 Initial Experiments and Results

Experiments were performed using the quadratic solver
example of Figure 1 and the tax calculation (‘calcTax’)
example of Figure 2 (adapted from [10]). Random, hill
climbing and evolutionary searches (configured as de-
scribed in [5]) were repeated 30 times, and the maximum
absolute error difference found between the two versions of
the program over the searches was averaged.

For calcTax with a domain size of109 each search
was able to reveal a similar discrepancy of0.99 - 1.00 (i.e.
almost a complete unit of currency) in the calculated re-
sult. One would normally expect random search to per-
form poorly compared to hill climbing and evolutionary
search, but this was not the case, with little variation ex-
hibited across the search techniques. This would seem to
indicate that either random search is sufficient to reveal dif-
ferences between the original and transformed version of
the program, or the fitness landscape did not provide suffi-
cient guidance for the heuristic searches to make any mean-
ingful progress.

For quadSolve each search had troublenot testing
with inputs that corresponded to a quadratic equation with
imaginary roots, and thus causing the transformed program
to throw an exception and not return a result. Whilst it
was good that this discrepancy was easily discovered, it was
clear the program needed to be transformed in an alternate
way or the fitness function needed more information to ac-
tually produce an output for comparison purposes, e.g. the
addition of a distance calculation to avoid the square root
operation being called with a negative number. This is an
issue for future work.

4 Future Work

Future work will further develop the co-testability trans-
formation concept. The idea of using multiple transforma-
tions rather than just one in combination with the original
program is appealing and may fit well with competing sub-
population, co-evolutionary or multi-objective approaches

void quadSolve(double a, double b, double c) {
double d = b*b - 4*a*c; /* discriminant */
double sqrtd = Math.sqrt(d);
double x1 = (-b + sqrtd) / (2 * a);
double x2 = (-b - sqrtd) / (2 * a);
System.out.println("The roots are "+x1+" and "+x2);

}

(a) Original Java method (adapted from [6])
void quadSolve(BigDecimal a, BigDecimal b, BigDecimal c) {

BigDecimal d = (b.multiply(b)).subtract(
new BigDecimal(4).multiply(a).multiply(c));

BigDecimal sqrtd = Root.square(d);
BigDecimal x1 = (b.negate().add(sqrtd)).

divide(a.multiply(new BigDecimal(2)));
BigDecimal x2 = (b.negate().subtract(sqrtd)).

divide(a.multiply(new BigDecimal(2)));
System.out.println("The roots are "+x1+" and "+x2);

}

(b) Co-testability transformation oracle

Figure 1. Quadratic equation solver example

double calcTax(double amount, double discountPercentage,
double taxPercentage) {

double discount = amount * discountPercentage;
double total = amount - discount;
double tax = total * taxPercentage;
double taxedTotal = tax + total;
return Math.round(taxedTotal * 100) / 100;

}

Figure 2. calcTax example

for search-based testing. The ‘species per path’ approach
[9] is related in the competing sub-population regard but
only took advantage of a single transformation in creat-
ing the paths and associated and subpopulations. Further
work with using the co-testability transformation approach
to trap floating-point errors will seek to improve the fitness
landscape so that the power of meta-heuristic search can be
properly exploited.

Acknowledgements.The author would like to thank Mark Har-
man and Kiran Lakhotia for useful conversations regarding this
work.

References
[1] D. Goldberg. What every computer scientist should know about floating-point

arithmetic.ACM Computing Surveys, 21(1):5–48, 1991.
[2] M. Harman. Open problems in testability transformation. InProceedings of

the 1st International Workshop on Search-Based Testing. IEEE digital library.
[3] M. Harman, A. Baresel, D. Binkley, R. Hierons, L. Hu, B. Korel, P. McMinn,

and M. Roper. Testability transformation - program transformation to improve
testability. InFormal Methods and Testing, Lecture Notes in Computer Sci-
ence, volume 4949, pages 320–344. Springer-Verlag, 2008.

[4] M. Harman, L. Hu, R. Hierons, J. Wegener, H. Sthamer, A. Baresel, and
M. Roper. Testability transformation.IEEE Transactions on Software En-
gineering, 30(1):3–16, 2004.

[5] M. Harman and P. McMinn. A theoretical & empirical analysis of evolutionary
testing and hill climbing for structural test data generation.ISSTA 2007, pages
73–83, London, UK, 2007. ACM Press.

[6] J. R. Hubbard.Programming with C++. Schaum’s Outlines, 2nd ed., 2000.
[7] P. McMinn. Search-based software test data generation: A survey.Software

Testing, Verification and Reliability, 14(2):105–156, 2004.
[8] P. McMinn, D. Binkley, and M. Harman. Empirical evaluation of a nesting

testability transformation for evolutionary testing.ACM Transactions on Soft-
ware Engineering Methodology, To appear.

[9] P. McMinn, M. Harman, D. Binkley, and P. Tonella. The species per path ap-
proach to search-based test data generation.ISSTA 2006, pages 13–24, Port-
land, Maine, USA, 2006. ACM.

[10] J. Zukowski. The need for BigDecimal,
http://blogs.sun.com/CoreJavaTechTips/entry/theneedfor bigdecimal




