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Abstract. Folk music is closely related to the musical culture of a spe-
cific nation or region. Even though folk songs have been passed down
mainly by oral tradition, most musicologists study the relation between
folk songs on the basis of symbolic music descriptions, which are obtained
by transcribing recorded tunes into a score-like representation. Due to
the complexity of audio recordings, once having the transcriptions, the
original recorded tunes are often no longer used in the actual folk song
research even though they still may contain valuable information. In this
paper, we present various techniques for making audio recordings more
easily accessible for music researchers. In particular, we show how one can
use synchronization techniques to automatically segment and annotate
the recorded songs. The processed audio recordings can then be made
accessible along with a symbolic transcript by means of suitable visualiza-
tion, searching, and navigation interfaces to assist folk song researchers
to conduct large scale investigations comprising the audio material.

Keywords. Folk songs, audio, segmentation, music synchronization, an-
notation, performance analysis

1 Introduction

Generally, a folk song is referred to as a song that is sung by the common people
of a region or culture reflecting the people’s attitude and life. Such songs were
typically performed during work and social activities. Originally, folk songs were
spread only by oral tradition without any fixed symbolic notation. Therefore, in
the process of oral transmission, folk songs have been reshaped in many different
ways [1]. During the previous century significant efforts have been carried out to
assemble large collections of folk songs, which are not only part of the nations’
cultural heritage but also allow musicologists to conduct folk song research on
a large scale. Among others, researchers are interested to reconstruct and un-
derstand the genetic relation between variants of folk songs [1]. Furthermore,
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by systematically studying entire collections of folk songs, researchers try to dis-
cover musical connections and distinctions between different national or regional
cultures [2].

Even though folk songs have been passed down mainly by oral tradition,
most of the folk song research is conducted on the basis of notated music mate-
rial, which is obtained by transcribing recorded tunes into symbolic, score-based
music representations. After the transcription, the audio recordings are often no
longer used in the actual folk song research. This seems somewhat surprising,
since one of the most important characteristics of folk songs is that they are
part of oral culture [1]. Therefore, one may conjecture that performance aspects
enclosed in the recorded audio material are likely to bear valuable information,
which is no longer contained in the transcriptions. Furthermore, even though
the notated music material may be more suitable for classifying and identifying
folk songs using automated methods, the user generally wants to listen to the
original recordings rather than to synthesized versions of the transcribed tunes.

In general, audio material is hard to access due to its massive data volume
and complexity [3]. In a specific folk song recording, musically relevant informa-
tion such as the occurring notes (specified by musical onset times, pitches, and
durations), the melody, or the rhythm are not given explicitly, but are somehow
hidden in the waveform of the audio signal. To make things even worse, folk
songs are typically performed by non-professional singers, who deviate signifi-
cantly from the expected pitches and musical note onsets. Therefore, most folk
song researchers manually transcribe the recorded material and restrict their
research to the notated material, which is an idealized description of the actual
performance.

It is the object of this paper to indicate how the original recordings can be
made more easily accessible for folk song researches and listeners, thus bridging
the gap between the symbolic and the audio domain. Because of the aforemen-
tioned deviations and inaccuracies in the audio recordings, it is a hard problem to
derive reliable transcriptions in an automatic fashion. Instead, our idea is to ex-
ploit the availability of manually generated transcriptions for automatically seg-
menting, structuring, and annotating the audio material. Here, we revert to mu-
sic synchronization techniques, which allow for interrelating multiple instances
and various representations available for a specific folk song [3, 4]. The generated
relations and structural information can then be utilized to create novel naviga-
tion and retrieval interfaces [5–7], which assist folk song researcher or listener in
conveniently accessing, comparing, and analyzing the audio recordings. Further-
more, the generated linking structures can also be used to automatically locate
and capture interesting performance aspects that are lost in the notated form of
the song.

The remainder of this paper is organized as follows. In Sect. 2, we outline
current directions in folk song research and describe the folk song collection
Onder de groene linde (OGL), which consists of several thousand Dutch folk
song recordings along with song transcriptions as well as a rich set of metadata.
In Sect. 3, we describe how the recorded songs can be segmented and annotated
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by locally comparing and aligning the recordings’ feature representations with
available transcripts of the tunes. Finally, in Sect. 4, we indicate how these
results can be used to create novel user interfaces and sketch possible applications
towards automated performance analysis. Conclusions and prospects on future
work are given in Sect. 5. Further related work is discussed in the respective
sections.

2 Folk Song Research

In the 19th century, an interest in studying folk song traditions emerged in
several European countries. Often the underlying motivation for this research
was a desire to trace supposedly original and pure aspects of the national musical
character. The groundwork for folk song research consisted in collecting and
publishing large amounts of folk song melodies. Here, it turned out that these
collections contain many related tunes as well as a large variability within related
melodies. This variability is caused by the process of oral transmission of these
melodies. The songs were learned not from written notation, but by listening
and reproducing the melodies from memory. Because of the nature of human
memory, changes in the melodies inevitably occurred leading to considerable
differences from the original version after several transmission steps.

Melodic variability was studied in great detail for German folk songs by
Walter Wiora [8]. Wiora distinguishes seven categories of change, which include
changes in melodic contour and rhythm, insertion and deletion of parts, and last
but not least demolition of the entire melody.

An important tool in folk song research is the concept of tune family, which
was defined by Bayard [9] as follows: A group of melodies showing basic interre-

lation by means of constant melodic correspondence, and presumably owing their

mutual likeness to descent from a single air that has assumed multiple forms

through processes of variation, imitation, and assimilation. The corresponding
term used in Dutch folk song research is melody norm (melodienorm). In the
melody norm, the emphasis lies with the presumed common historical origin
of the melodies. An intrinsic difficulty with this concept is that for most cases
there is no documentary evidence to reason from. Therefore, in practice, melody
norm classification is performed by experts on the basis of musical and textual
similarity.

Computational folk song research emerged as early as 1949, when Bertrand
Bronson proposed a method to represent folk songs on punch cards [10]. Several
folk song databases of encoded folk song melodies have been assembled, the
best known of which is the Essen folk song database1, which currently contains
roughly 20000 folk songs from a variety of sources and cultures. This collection
has been widely used in MIR research. Computational folk song research is
surveyed in [1] and in more detail in [11].

1 http://www.esac-data.org/
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2.1 OGL Data Collections

In the Netherlands, folk song ballads have been extensively collected and studied.
A long-term effort to record these songs was started by Will Scheepers in the
early 1950s and continued by Ate Doornbosch until the 1990s [12]. Their field
recordings were usually broadcasted in the radio program Onder de groene linde

(Under the green lime tree). Listeners were encouraged to contact Doornbosch
if they knew more about the songs. Doornbosch would then record their version
and broadcast it. In this manner a collection was created that not only represents
part of the Dutch cultural heritage but also documents the textual and melodic
variation resulting from oral transmission.

The OGL collection is currently hosted at the Meertens Institute in Amster-
dam. The metadata of the songs are available through the Nederlandse Liederen-

bank (Dutch Song Database2). This metadata is very rich including date and
location of recording, information about the singer, and classification by (tex-
tual) topic. OGL contains 7277 recordings, which have been digitized as MP3
files (stereo, 160 kbit/s, 44.1 kHz). Nearly all of recordings are monophonic, and
the vast majority is sung by elderly solo female singers. When the collection
was assembled, melodies were transcribed on paper by experts. Usually only one
strophe is given in music notation, but variants from other strophes are regularly
included. The transcriptions are somewhat idealized: they tend to represent the
presumed intention of the singer rather than the actual performance.

The transcriptions are encoded by hand using a subset of LilyPond3. The
encodings contain phrase divisions of melodies. If known, a melody norm is as-
signed to the melody by the encoder. The encodings are automatically converted
to Humdrum [13]. MIDI is available in two versions, one obtained from LilyPond
and one from Humdrum. The tempo is always set at 120 BPM for the quarter
note. At this date (February 2009) the encoded corpus4 contains approximately
5800 melodies, including 2500 folk songs from OGL, 1400 folk songs from written
sources, and 1900 instrumental melodies from written, historical sources.

A subcorpus of OGL was annotated with similarity judgments done by ex-
perts for a number of dimensions. This annotated corpus consists of 360 melodies
from 26 melody norms, where each melody norms consists of 9 to 27 members.
When assigning melody norms, experts selected a prototypical melody and com-
pared candidate members to this prototype. In this comparison, the experts used
six musical dimensions, namely rhythm, contour, motifs, mode, text and form.
They expressed their judgment on each of these in a similarity score. The options
were 0 (not similar in this dimension), 1 (somewhat similar), or 2 (obviously sim-
ilar). For rhythm, scores were given at the phrase level, for contour both at the
phrase and strophe level. A detailed description is provided in [14]. The scores
can for example be used to select a subcorpus of melodies that display similarity
based on contour or motif.

2 www.liederenbank.nl
3 www.lilypond.org
4 All the materials are available for research purposes. For information and conditions

please contact Frans Wiering.
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An important next step in unlocking these collections of orally transmitted
folk songs is the creation of content-based search engines, which allow users to
browse and navigate within these collections on the basis of the different musical
dimensions. The creations of such search engines is an important goal of the
WITCHCRAFT project5. The engine should enable a user to search for encoded
data using advanced melodic similarity methods. Furthermore, it should also be
possible to not only visually present the retrieved items, but also to supply
the corresponding audio recordings for acoustic playback. One way of solving
this problem is to create robust alignments between retrieved encodings (for
example in MIDI format) and the audio recordings using music synchronization
techniques [3].

3 Folk Song Segmentation

In this section, we present a procedure for automatically segmenting a folk song
recording that consists of several repetitions of the same tune into its individual
stanzas. Here, we assume that we are given a transcription of a reference tune
in the form of a MIDI file. Recall from Sect. 2.1 that this is exactly the situation
we have with the songs of the OGL collection. In the first step, we transform
the MIDI reference as well as the audio recording into a common mid-level
representation. Here, we use the well-known chroma representation, which is
summarized in Sect. 3.1. On the basis of this feature representation, the idea is
to locally compare the reference with the audio recording by means of a suitable
distance function (Sect. 3.2). Using a simple iterative greedy strategy, we derive
the segmentation from local minima of the distance function (Sect. 3.3). This
approach works well as long as the singer roughly follows the reference tune
and sticks to the pitch scale. However, this is an unrealistic assumption. In
particular, most singers have significant problems with the intonation. Their
voice often fluctuates even by several semitones downwards or upwards across the
various stanzas of the same recording. In Sect. 3.4, we show how the segmentation
procedure can be improved to account for such fluctuations.

3.1 Chroma Features

In order to compare the MIDI reference with the audio recordings, we revert to
chroma-based music features, which have turned out to be a powerful mid-level
representation for relating harmony-based music, see [3, 15, 16]. Here, the chroma
refer to the 12 traditional pitch classes of the equal-tempered scale encoded by
the attributes C, C♯, D, . . .,B. Representing the short-time energy content of the
signal in each of the 12 pitch classes, chroma features do not only account for
the close octave relationship in both melody and harmony as it is prominent in
Western music, but also introduce a high degree of robustness to variations in
timbre and articulation [15]. Furthermore, normalizing the features makes them
invariant to dynamic variations.

5 http://www.cs.uu.nl/research/projects/witchcraft/
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Fig. 1. First stanza of the folk song OGL27517. (a) Score representation. (b) Chro-
magram of MIDI representation. (c) Smoothed chromagram (CENS).

It is straightforward to transform a MIDI representation into a chroma repre-
sentation or chromagram. Using the explicit MIDI pitch and timing information
one basically identifies pitches that belong to the same chroma class within a
sliding window of a fixed size, see [16]. Fig. 1 shows a score and the result-
ing MIDI reference chromagram. For transforming an audio recording into a
chromagram, one has to revert to signal processing techniques. Here, various
techniques have been proposed either based on short-time Fourier transforms
in combination with binning strategies [15] or based on suitable multirate fil-
ter banks [3]. Fig. 2 (a) shows a chromagram of an audio recording consisting
of several stanzas. For technical details, we refer to the cited literature. In our
implementation, we use a quantized and smoothed version of chroma features,
referred to as CENS features [3] with a feature resolution of 10 Hz (10 features
per second), see Fig. 1 (c).

3.2 Distance Function

We now introduce a distance function that expresses the distance of the MIDI
reference chromagram with suitable subsegments of the audio chromagram. More
precisely, let X = (X(1), X(2), . . . , X(K)) be the sequence of chroma features
obtained from the MIDI reference and let Y = (Y (1), Y (2), . . . , Y (L)) be the one
obtained from the audio recording. In our case, the features X(k), k ∈ [1 : K],
and Y (ℓ), ℓ ∈ [1 : L], are normalized 12-dimensional vectors. We define the
distance function ∆ : [1 : L] → R∪{∞} with respect to X and Y using a variant
of dynamic time warping (DTW):

∆(ℓ) :=
1

K
min

a∈[1:ℓ]

(

DTW
(

X , Y (a : ℓ)
)

)

, (1)

where Y (a : ℓ) denotes the subsequence of Y starting at index a and ending at
index ℓ ∈ [1 : L]. Furthermore, DTW(X, Y (a : ℓ)) denotes the DTW distance
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Fig. 2. (a) Chromagram of the audio recording of the folk song OGL27517 consisting
of five stanzas. (b) Transposed chromagram (cyclically shifted by one pitch downwards
to match the key of the MIDI reference). (c) Distance function ∆ with respect to the
MIDI reference chromagram shown in Fig. 1 (c). (d) Final segmentation.

between X and Y (a : ℓ) with respect to a suitable local cost measure (in our
case, the cosine distance). The distance function ∆ can be computed efficiently
using dynamic programming. For details on DTW and the distance function,
we refer to [3]. The interpretation of ∆ is as follows: a small value ∆(ℓ) for
some ℓ ∈ [1 : L] indicates that the subsequence of Y starting at index aℓ (with
aℓ ∈ [1 : ℓ] denoting the minimizing index in (1)) and ending at index ℓ is similar
to X . Here, the index aℓ can be recovered by a simple back tracking algorithm
within the DTW computation procedure. The distance function ∆ for the song
OGL27517 is shown in Fig. 2 (c). The five pronounced minima of ∆ indicate the
endings of the five stanzas of the audio recording.

3.3 Audio Segmentation

Recall that the structure of a folk song audio recording is relatively simple, where
we assume that it basically consists of a number of repeating stanzas. Exploiting
the existence of a MIDI reference and the simple structure of the recording, we
can compute the segmentation by the following simple greedy strategy. Using
the distance function ∆, we look for the index ℓ ∈ [1 : L] minimizing ∆ and
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Stanza Start [sec] End [sec] Rank Cost

1 0.3 20.3 2 0.178
2 20.9 40.8 3 0.185
3 41.3 61.6 5 0.189
4 62.0 81.8 1 0.166
5 82.7 101.9 4 0.186

Table 1. Segmentation result for the audio recording of OGL27517, see also Fig. 2 (d).

compute the starting index aℓ. Then, the interval S1 := [aℓ : ℓ] constitutes
the first segment. The value ∆(ℓ) is referred to as the cost of the segment. To
avoid large overlaps between the various segments to be computed, we exclude a
neighborhood [Lℓ : Rℓ] ⊂ [1 : L] around the index ℓ from further consideration.
In our strategy, we set Lℓ := max(1, ℓ − 2

3K) and Rℓ := min(L, ℓ + 2
3K), thus

excluding a range of two thirds of the reference length to the left as well as to the
right of ℓ. To achieve the exclusion, we modify ∆ simply by setting ∆(m) := ∞
for m ∈ [Lℓ : Rℓ]. To determine the next segment S2, the same procedure
is repeated using the modified distance function, and so on. This results in a
sequence of segments S1, S2, S3, . . .. The procedure is repeated until all values
of the modified ∆ lie above a suitably chosen distance threshold. Let N denote
the number of resulting segments. The number n ∈ [1 : N ] is referred to as the
rank of segment Sn. Fig. 2 (d) and Table 1 show the resulting segmentation of
our running example obtained from the distance function shown in Fig. 2 (c).

3.4 Pitch Shift Correction

Recall that the comparison of the MIDI reference and the audio recording is
performed on the basis of chroma representations. Therefore, the segmentation
algorithm only works well in the case that the MIDI reference and the audio
recording are in the same musical key. Furthermore, the singer has to stick
roughly to the pitches of the well-tempered scale. Both assumptions are violated
for most of the songs. To make things even worse, the singers often fluctuate
with their voice by several semitones within a single recording. This may lead
to poor or even completely useless distance functions as illustrated Fig. 3.

To account for a global difference in key between the MIDI reference and
the audio recording, we revert to the observation by Goto [17] that the twelve
cyclic shifts of a 12-dimensional chroma vector naturally correspond to the twelve
possible transpositions. Therefore, it suffices to determine the shift index that
minimizes the chroma distance of the audio recording and MIDI reference and
then to cyclically shift the audio chromagram according to this index. Note that
instead of shifting the audio chromagram, one can also shift the MIDI chroma-
gram in the inverse direction. The minimizing shift index can be determined
either by using averaged chroma vectors as suggested in [18] or by computing
twelve different distance functions for the twelve shifts, which are then mini-
mized to obtain a single transposition invariant distance functions. We detail on
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Fig. 3. Distance function ∆ (light gray), ∆
trans (dark gray), and ∆

fluc (black) for the
song OGL25010 and the resulting segmentations.

Stanza 1 2 3 4 5 6 7 8 9 10

shift index (semitone) 5 5 5 4 4 4 4 3 3 3
shift index (half semitone) 5.0 5.0 4.5 4.5 4.0 4.0 3.5 3.5 3.0 3.0

Table 2. Transposition of the various stanzas of the audio recording of OGL25010
relative to the MIDI reference. The shift indices are measured in semitones (obtained
by ∆

trans) and in half semitones (obtained by ∆
fluc).

the latter strategy, since it also solves part of the problem having a fluctuating
voice within the audio recording. A similar strategy was used in [19] to achieve
transposition invariance for music structure analysis tasks.

To obtain a transposition invariant distance function, we simulate the various
pitch shifts by considering all twelve possible cyclic shifts of the MIDI reference
chromagram. We then compute a separate distance function for each of the
shifted reference chromagrams and the original audio chromagram. Finally, we
minimize the twelve resulting distance functions, say ∆0, . . . , ∆11, to obtain a
single distance function ∆trans : [1 : L] → R ∪ {∞}:

∆trans(ℓ) := mini∈[0:11]

(

∆i(ℓ)
)

. (2)

Fig. 3 shows the resulting function ∆trans for a folk song recording with strong
fluctuations. In contrast to the original distance function ∆, the transposition

invariant distance function ∆trans exhibits a number of significant local minima
that correctly indicate the segmentation boundaries of the stanzas.

So far, we have accounted for transpositions that refer to the pitch scale of
the equal-tempered scale. However, the singers show a rather poor intonation
and often miss the correct pitch. Furthermore, the above mentioned voice fluc-
tuation are fluent in frequency and do not stick to a strict pitch grid. We now
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explain how one can deal with such blurred and small-scale pitch deviations.
First, in computing the audio chromagrams, we use the multirate filter bank
as described in [3]. The employed pitch filters possess a relatively wide pass-
band, while still properly separating adjacent notes thanks to sharp cutoffs in
the transition bands. Actually, the pitch filters are robust to deviations of up
to ±25 cents6 from the respective note’s center frequency. To cope with devia-
tions between 25 and 50 cents, we employ a second filter bank, in the following
referred to as half-shifted filter bank, where all pitch filters a shifted by a half
semitone (50 cents) upwards. Using the half-shifted filter bank, one can compute
a second chromagram, referred to as half-shifted chromagram. A similar strategy
is suggested in [20], where generalized chroma representations with 24 or 36 bins
(instead of the usual 12 bins) are derived from a short-time Fourier transform.
Now, using the original chromagram as well as the half-shifted chromagram in
combination with the respective 12 cyclic shifts, one obtains 24 different dis-
tance functions in the same way as described above. Minimization over the 24
functions yields a single function ∆fluc referred to as fluctuation invariant dis-

tance function. The improvements achieved by this novel distance function are
illustrated by Fig. 3. Here, in regions with a bad intonation, the local minima of
∆fluc are much more significant than those of ∆trans. Table 2 shows the optimal
shift indices found for the transposition and fluctuation invariant segmentation
strategies. The decreasing indices indicate that the singer’s voice constantly rises
across the various stanzas of the song.

4 Applications

Based on the segmentation of the folk song recordings, we now sketch some
applications that support folk song researchers in including audio material in
their investigations. In particular, we show how MIDI-audio synchronization can
be used for annotating the audio recordings (Sect. 4.1). Such annotations not
only facilitate novel ways for browsing and navigation in audio data (Sect. 4.2)
but also yield the basis for performance analysis (Sect. 4.3).

4.1 Audio Annotation

The goal of MIDI-audio synchronization is to associate note events given by the
MIDI file with their physical occurrences in the audio recording, thus creating
musically meaningful cross-links between the two representations [3, 4, 21–24].
The synchronization result can be regarded as an automated annotation of the
audio recording with available MIDI events. Once having segmented the audio
recording into stanzas, each stanza can be aligned with the MIDI reference by
a separate MIDI-audio synchronization process. This can be done in a similar
manner as described in Sect. 3.2, where one now globally aligns the chroma-
grams of the MIDI reference and of a stanza by DTW. From the computed

6 The cent is a logarithmic unit to measure musical intervals. The interval between
two adjacent pitches or semitones of the equal-tempered scale equals 100 cents.
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Fig. 4. Instance of the Audio Switcher plug-in of the SyncPlayer showing the synthe-
sized version of the MIDI reference and the five different stanzas of the audio recording
of OGL27517.

alignment path, one can then derive the temporal correspondences between the
MIDI and the audio representation, see [3] for details. Altogether, one obtains
an annotation of the entire audio recording.

Such annotations facilitate multimodal browsing and retrieval in MIDI and
audio data, thus opening new ways of experiencing and researching music. For
example, most successful algorithms for melody-based retrieval work in the do-
main of symbolic or MIDI music. On the other hand, retrieval results may be
most naturally presented by playing back the original recording of the melody,
while a musical score or a piano-roll representation may be the most appro-
priate form for visually displaying the query results. For a description of such
functionalities, we refer to [3, 5, 25]

4.2 Audio Switcher

Aligning each stanza of the audio recording to the MIDI reference yields a multi-
alignment between all stanzas. Exploiting the availability of such links, one can
implement interfaces that allows a user to seamlessly switch between the various
stanzas of the recording thus facilitating a direct access and comparison of the
audio material [25, 26, 7].
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The Audio Switcher [25] constitutes such a user interface, which allows the
user to open in parallel a synthesized version of the MIDI reference as well as all
stanzas of the folk song recording, see Fig. 4. Each of the stanzas is represented by
a slider bar indicating the current playback position with respect to the stanza’s
particular time scale. The stanza that is currently used for audio playback, in
the following referred to as active stanza, is indicated by a red marker located to
the left of the slider bar. The slider knob of the active stanza moves at constant
speed while the slider knobs of the other stanzas move accordingly to the relative
tempo variations with respect to the active stanza. The active stanza may be
changed at any time simply by clicking on the respective playback symbol located
to the left of each slider bar. The playback of the new active stanza then starts
at the time position that musically corresponds to the last playback position of
the former active stanza. This has the effect of seamlessly crossfading from one
stanza to another while preserving the current playback position in a musical
sense. One can also jump to any position within any of the stanzas by directly
selecting a position of the respective slider. Such functionalities assists the user
in detecting and analyzing the differences between several recorded stanzas of a
single folk song.

The Audio Switcher is realized as plug-in of the SyncPlayer system [5, 25],
which is an an advanced software audio player with a plug-in interface for MIR
applications and provides tools for navigating within audio recordings and brows-
ing in music collections. For further details and functionalities, we refer to the
literature.

4.3 Performance Analysis

As a final application, we sketch how the segmentation and synchronization
techniques can be used for automatically extracting expressive aspects referring
to tempo, dynamics, and articulation from the audio recording. The automated
analysis of such expressive aspects, often referred to as performance analysis, has
become an active research field [27]. Most algorithms for automated performance
analysis rely on accurate annotations of the audio material by means of suitable
musical parameters. Here, the annotation process is often done manually, which
is prohibitive in view of large audio collections. For the case of the folk songs,
we present a fully automatic approach for computing tempo curves that reveal
the relative tempo difference between two performed stanzas.

As described in Sect. 2.1, the melodies of the OGL songs were manually tran-
scribed based on expert knowledge and then encoded in LilyPond. As a result,
one has neutral and idealized representations that do not contain any expressive
information concerning tempo or dynamics. The MIDI references were obtained
by exporting the LilyPond encodings using a constant tempo of 120 BPM. Now,
by comparing a given stanza of a folk song recording with the corresponding
MIDI reference, one can derive the local tempo deviations of the respective per-
formance. These tempo deviations can be encoded by means of a tempo curve,
which yields for each position of the MIDI reference (given in seconds) the de-
viating factor from the reference tempo at the corresponding position in the
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Fig. 5. Tempo curves for the first four stanzas of the song OGL27517. The horizontal
axis describes the time scale of the MIDI reference (measured in seconds), while the
vertical axis indicates the tempo of the respective stanza relative to the reference (given
as factor).

respective performance. As an example, Fig. 5 shows the tempo curves for the
first four stanzas of the song OGL27517. Here, a value 1 of the tempo curve
indicates that the performance has the same tempo as the MIDI reference (in
our case 120 BPM). Similarly, a value 1/2 indicates half the tempo and a value
2 twice the tempo relative to the reference. As the curves of Fig. 5 indicate, the
singer starts each stanza with some hesitation (slow tempo), then accelerates
before slowing down again towards reference position 5, and so on. Actually, in
this example, the four tempo curves reveal similar overall characteristics thus
indicating a homogeneous performance with respect to tempo of the singer over
the four stanzas.

Similarly, one can extract other important expressive parameters. For exam-
ple, based on a note-level annotation of a recorded stanza, it is possible to extract
the loudness of each sung note within the performance and to derive a dynamic
curve. Another interesting aspect would be to capture the actual deviation in
frequency of the singer’s voice from the expected fundamental frequency given
by the reference. Such information would not only reveal expressive elements
such as vibrato or glissando but also the inaccuracies such as pitch fluctuations
that particularly occur in performances of non-professional singers.

5 Conclusions and Future Work

In this paper, we have introduced various methods from automated music pro-
cessing with the goal to make recorded folk song material more easily accessible
for research and retrieval purposes. In particular, we showed how synchroniza-
tion techniques can be used for segmenting and annotating folk song recordings
performed by elderly non-professional solo singers. Our assumption is that by
looking at the original audio recordings, one may derive new insights that can not
be derived simply by looking at the transcribed melodies. This assumption is fos-
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tered by the fact that folk songs are part of oral culture. Therefore, performance
aspects that are enclosed in the recorded audio material but no longer contained
in the transcriptions should be an important source in folk song research.

In the next step of our research, we need to systematically evaluate our seg-
mentation algorithm on a larger corpus of folk songs. To this end, we need to
establish an evaluation database with manually generated ground truth segmen-
tations. First experiments show that the segmentation procedure can be made
more robust to fluctuations by introducing an additional correction step based on
previously extracted fundamental frequencies [28, 29]. Such information is also
important in view of an automated transcription of the folk song recordings.
For the future, we also plan to extend the segmentation scenario dealing with
the following kind of questions. How can the segmentation be done if no MIDI
reference is available? How can the segmentation be made robust to structural
differences in the stanzas? In which way do the recorded stanzas of a song corre-
late? Where are the consistencies, where are the inconsistencies? Can one extract
from this information musical meaningfully conclusions, for example, regarding
the importance of certain notes within the melodies? These questions show that
the automated processing of recorded folk song material constitutes a new chal-
lenging and interdisciplinary field of research with many practical implications
to folk song research.
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