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1 Introduction

The generation of pseudo-random sequences at a high rate is an important issue in modern
communication schemes. The representation of a sequence can be scaled by decimation to
obtain parallelism and more precisely a sub-sequences generator. Sub-sequences generators and
therefore decimation have been extensively used in the past for linear feedback shift registers
(LFSRs). However, the case of automata with a non linear feedback is still in suspend. In
this work, we study how to transform a feedback with carry shift register (FCSR) into a sub-
sequences generator. We examine two solutions for this transformation, one based on the
decimation properties of `-sequences, i.e. FCSR sequences with maximal period, and the other
one based on multiple steps implementation. We show that the solution based on the decimation
properties leads to much more costly results than in the case of LFSRs. For the multiple steps
implementation, we show how the propagation of carries affects the design.

The synthesis of shift registers consists in finding the smallest automaton able to generate a
given sequence. This problem has many applications in cryptography, sequences and electronics.
The synthesis of a single sequence with the smallest linear feedback shift register is achieved by
the Berlekamp-Massey [Mas69] algorithm. There exists also an equivalent of Berlekamp-Massey
in the case of multiple sequences [FT91, SS06]. In the case of FCSRs, we can use algorithms
based on lattice approximation [KG97] or on Euclid’s algorithm [ABN04]. This work addresses
the following issue in the synthesis of shift registers: given an automaton generating a sequence
S, how to find an automaton which generates in parallel the sub-sequences associated to S.
We will refer to this problem as the sub-sequences generator problem. We aim to find the best
solution to transform a 1-bit output pseudo-random generator into a multiple outputs generator.
In particular, we investigate this problem when S is generated by a feedback with carry shift
register (FCSR) with a maximal period, i.e. S is an `-sequence.

The design of sub-sequences generators has been investigated in the case of LFSRs [LE71,
SC88] and two solutions have been proposed. The first solution [Rue86, Fil00] is based on
the classical synthesis of shift registers, i.e. the Berlekamp-Massey algorithm, to define each
sub-sequence. The second solution [LE71] is based on a multiple steps design of the LFSR. We
have applied those two solutions to FCSRs. Our contributions are as follows:

• We explore the decimation properties of `-sequences for the design of a sub-sequences
generator by using an FCSR synthesis algorithm.
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• We show how to implement a multiple steps FCSR in Fibonacci and Galois configuration.

This work was presented at the international conference on SEquences and Their Applica-
tions (SETA) 2008 [LR08].

2 Motivation

The decimation is the main tool to transform a 1-bit output generator into a sub-sequences
generator. An example for a 2–decimation can be found in Figure 1. The decimation allows us to

Figure 1: Model of a sub-sequences generator.

increase the throughput of a pseudo-random sequence generator (PRSG). Let S = (s0, s1, s2, · · · )
be an infinite binary sequence of period T , thus sj ∈ {0, 1} and sj+T = sj for all j ≥ 0. For a
given integer d, a d–decimation of S is the set of sub-sequences defined by:

Sid = (si, si+d, si+2d, · · · , si+jd, · · · )

where i ∈ [0, d − 1] and j = 0, 1, 2, · · · . Hence, a sequence S is completely described by the
sub-sequences:

S0
d = (s0, sd, · · · )
S1
d = (s1, s1+d, · · · )
...

...
...

Sd−1
d = (sd−1, s2d−1, · · · ) .

A single automaton is often used to generate the pseudo-random sequence S. In this case,
it is difficult to achieve parallelism. The decomposition into sub-sequences overcomes this issue
as shown by Lempel and Eastman in [LE71]. Each sub-sequence is associated to an automaton.
Then, the generation of the d sub-sequences of S uses d automata which operate in parallel.
Parallelism has two benefits, it can increase the throughput or reduce the power consumption
of the automaton generating a sequence.

Throughput — The throughput T of a PRSG is defined by: T = n×f , with n is the number
of bits produced every cycle and f is the clock frequency of the PRSG. Usually, we have n = 1,
which is often the case with LFSRs. The decimation achieves a very interesting tradeoff for
the throughput: Td = d× γf with 0 < γ ≤ 1 the degradation factor of the original automaton
frequency. The decimation provides an improvement of the throughput if and only if γd > 1.
It is then highly critical to find good automata for the generation of the sub-sequences. In an
ideal case, we would have γ = 1 and then a d-decimation would imply a multiplication of the
throughput by d.

Power consumption — The power consumption of a CMOS device can be estimated by
the following equation: P = C × V 2

dd × f , with C the capacity of the device and Vdd the
supply voltage. The sequence decimation can be used to reduce the frequency of the device
by interleaving the sub-sequences. The sub-sequences generator will be clocked at frequency
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γf
d and the outputs will be combined with a d-input multiplexer clocked at frequency γf . The

original power consumption can then be reduced by the factor γ
d , where γ must be close to 1 to

guarantee that the final representation of S is generated at frequency f .
The study of the γ parameter is out of the scope of this work since it is highly related to

the physical characteristics of the technology used for the implementation. In the following, we
consider m-sequences and `-sequences which are produced respectively by LFSRs and FCSRs.

3 Previous Results

The decimation of LFSR sequences has been used in cryptography in the design of new stream
ciphers [MR84]. There exist two approaches to use decimation theory to define the automata
associated to the sub-sequences.

Construction using LFSR synthesis. This first solution associates an LFSR to each sub-
sequence. This construction is based on well-known results on the decimation of LFSR se-
quences. It can be applied to both Fibonacci and Galois representation without any distinction.

Theorem 3.1 ([Zie59, Rue86]). Let S be a sequence produced by an LFSR whose characteristic
polynomial Q(X) is irreducible in F2 of degree n. Let α be a root of Q(X) and let T be the
period of Q(X). Let Sid be a sub-sequence resulting from the d-decimation of S. Then, Sid can
be generated by an LFSR with the following properties:

• The minimum polynomial of αd in F2n is the characteristic polynomial Q?(X) of the
resulting LFSR.

• The period T ? of Q?(X) is equal to T
gcd(d,T ) .

• The degree n? of Q?(X) is equal to the multiplicative order of Q(X) in Z(T ?) .

In practice, the characteristic polynomial Q?(X) can be determined using the Berlekamp-
Massey algorithm [Mas69]. The sub-sequences are generated using d LFSRs defined by the
characteristic polynomial Q?(X) but initialized with different values. In the case of LFSRs, the
degree n∗ must always be smaller or equal to n.

Construction using a multiple steps LFSR. This method was first proposed by Lempel
and Eastman [LE71]. It consists in clocking the LFSR d times in one clock cycle by changing
the connections between the memory cells and by some duplications of the feedback function.
We obtain a network of linearly interconnected shift registers. Let the original LFSR of size n
be build of the cells (ai) for 0 ≤ i ≤ n. All the cells (ai), such that i mod d = k, are gathered to
form a sub-shift register, where 0 ≤ k ≤ d− 1. This is the basic operation to transform a LFSR
into a sub-sequences generator with a multiple steps solution. In the case of the Fibonacci
setup, let At denote the whole state of the LFSR. Then, we apply the update function F at
the states At, At+1, . . . , At+d−1 to obtain the new feedback functions. In the case of the Galois
setup, we have to define a new feedback function at each feedback position.

Comparison. In the following Table, we have summarized the two methods used to synthesize
the sub-sequences generator. By wt(Q(X)), we mean the Hamming weight of the characteristic
polynomial Q, i.e. the number of non-zero monomials. The method based on LFSR synthesis
proves that there exists a solution for the synthesis of the sub-sequences generator. With this
solution, both memory cost and gate number depends on the decimation factor d. The method
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proposed by Lempel and Eastman [LE71] uses a constant number of memory cells for the
synthesis of the sub-sequences generator.

Method Memory cells Logic Gates
LFSR synthesis [Mas69] d× n? d× wt(Q?)

Multiple steps LFSRs [LE71] n d× wt(Q)

The sub-sequences generators defined with the Berlekamp-Massey algorithm are not suitable
to reduce the power consumption of an LFSR. Indeed, d LFSRs will be clocked at frequency λf

d
to produce the sub-sequences, however, the power consumption of such a sub-sequence generator
is given by:

P = d×
(
Cd × V 2

dd ×
γf

d

)
= λC × V 2

dd × γf

with C and Cd = λC the capacity of LFSRs corresponding, respectively, to S and Sid. We can
achieve a better result with a multiple steps LFSR:

P = λ′C × V 2
dd ×

γf

d

with Cd = λ′C .

4 Sub-Sequences Generators and m-Sequences

FCSRs were introduced by Klapper and Goresky in [KG93]. Instead of addition modulo 2,
FCSRs use additions with carry, which means that they need additional memory to store the
carry. Their non–linear update function makes them particularly interesting for areas where
linearity is an issue, like for instance stream ciphers. As for the LFSRs, there exists a Fibonacci
and a Galois setup [GK02].

The contribution of our work is to apply the two methods used in the previous section on
the case of `-sequences.

Construction using FCSR synthesis. There exist algorithms based on Euclid’s algorithm
[ABN04] or on lattice approximation [GK97], which can determine the smallest FCSR to produce
Sid. These algorithms use the first k bits of Sid to find h? and q? such that h?/q? is the 2-adic
representation of the sub-sequence, −q? < h? ≤ 0 and gcd(q?, h?) = 1. Subsequently, we can
find the feedback positions and the initial state of the FCSR in Galois or Fibonacci architecture.
The value k is in the range of twice the linear 2-adic complexity of the sequence. For our new
sequence Sid, let h? and q? define the values found by one of the algorithms mentioned above.
By T ? and T , we mean the periods of respectively Sid and S .

For the period of the decimated sequences, we can make the following statement, which is
true for all periodic sequences.

Lemma 4.1. Let S = (s0, s1, s2, . . .) be a periodic sequence with period T . For a given d > 1
and 0 ≤ i ≤ d− 1, let Sid be the decimated sequence with period T ?. Then, it must hold:

T ?
∣∣∣∣ T

gcd(T, d)
. (1)

If gcd(T, d) = 1 then T ? = T .
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In the case of gcd(T, d) > 1, the real value of T ? might depend on i, e.g. for S being the
2-adic representation of −1/19 and d = 3 we have T/gcd(T, d) = 6, however, for S0

3 the period
T ? = 2 and for S1

3 the period T ? = 6 .
A critical point in this approach is that the size of the new FCSR can be exponentially

bigger than the original one. In general, we only know that for the new q? it must hold that
q?|2T ? −1 . From the previous paragraph we know that T ? can be as big as T/gcd(T, d) . In the
case of gcd(T, d) = 1, we know from [GK97] that q?|2T/2 + 1. Based on a conjecture in [GK97]
we can even assume that q? is always bigger than q, if gcd(T, d) = 1. This means that the space
complexity of this method is much worse than for the original FCSR which is also an interesting
aspect for decimation attacks on FCSR sequences.

Construction using a multiple steps FCSR. We will apply the same technique than for
the LFSR, however this time we have to take care of the carry path, i.e. we need the value of the
carry at time t to compute the carry at time t+ 1. The computation of these subsequent carry
bits seems to reduce the effectiveness of the decimation. However, it can be done efficiently
by using n-bit ripple carry adders, which are well-known arithmetic circuits. An example of a
multiple steps Galois FCSR can be found in Figure 2.

(a) Galois FCSR for q = 19.
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(b) 2-bit ripple carry adder.

Figure 2: Example for a Galois FCSR with q = 19.
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