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Abstract. In one dimension, there is essentially just one binomially
distributed statistic, bias or correlation, for testing correctness of a key
bit in Matsui’s Algorithm 1. In multiple dimensions, different statistical
approaches for finding the correct key candidate are available. The pur-
pose of this work is to investigate the efficiency of such test in theory
and practice, and propose a new key class ranking statistic using distribu-
tions based on multidimensional linear approximation and generalisation
of the ranking statistic presented by Selçuk.

1 Introduction

In 1993, Matsui introduced linear cryptanalysis in [1]. He presented two
key recovery attacks, Algorithm 1 (Alg. 1) and Algorithm 2 (Alg. 2),
against the block cipher DES. Using Alg. 1 one bit of information about
the secret key of the cipher can be extracted. The goal of Alg. 2 is to
recover a part of the last round key. Later Robshaw and Kaliski [2] and
Biryukov, et al., [3] proposed the use of several linear approximations that
were assumed to be statistically independent. While the goal of Robshaw
and Kaliski was to reduce the data complexity using more than one ap-
proximation of one key bit, Biryukov, et al., presented a generalisation
of Alg. 1 for finding several key bits simultaneously. They used a spe-
cial purpose statistical test for finding the right key parity bits. In 2004,
Baignères, et al., studied a truly multidimensional linear distinguisher [4]
and its data complexity.

Algorithms for computing large probability distributions related to
multidimensional linear distinguishers were studied for example in [5].
However, this approach is not feasible for block-size over 32 bits. In [6]
it was shown how a multidimensional linear approximation can be con-
structed in practice from one-dimensional approximations, and how it
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could be used in a multidimensional version of Alg. 1 for finding more
than one bit of information of the key. The multidimensional attack was
compared to the experimental results of [7] of the method of Biryukov,
et al., and shown to perform better at least in the case of four-round
Serpent.

In one dimension, there is only one statistic (the bias or equivalently,
the correlation) that is used for testing the statistical hypotheses in Alg.
1. However, in multiple dimensions there are different ways of realising
the attack. The purpose of this work is to investigate the efficiency of
a few statistical key recovery methods and suggest a ranking of the key
candidates by adopting the ranking statistic and the concept of advantage
proposed by Selçuk [8] to the case of Alg. 1 and multidimensional linear
approximation.

The structure of this paper is as follows: The basic statistical notions
are given in Sect. 2. In Sect. 3 we present the multidimensional general-
isation of Alg. 1 and the key recovery problem. In Sect. 4 we study the
different ranking methods in theory. Practical experiments were done on
reduced round Serpent and are presented in Sect. 5. Finally, Sect. 6 draws
conclusions.

2 Mathematical Tools

We denote by Vn the linear space of n-bit vectors, for n = 1, 2, . . .. Let
f : Vn → V1 be a Boolean function. The correlation between f and zero
(aka. the correlation of f) is

c(f) = c(f, 0) = 2−n (#{ξ ∈ Vn | f(ξ) = 0} − #{ξ ∈ Vn | f(ξ) = 1}) .

If random variable (r.v.) Y is distributed according to probability distri-
bution (p.d.) p we denote Y ∼ p. Let X ∼ θ, the uniform distribution and
f : Vn → Vm be a vector Boolean function. We call p = (p0, . . . , p2m−1)
the probability distribution (p.d.) of f if the r.v. f(X) ∼ p. For m = 1,
we have p = (1

2 (1 + c(f)), 1
2(1 − c(f))).

2.1 Kullback-Leibler Distance and Log-Likelihood Ratio

We recall the following definitions from [4] and [6]:

Definition 1. Let p = (p0, . . . , pM ) and q = (q0, . . . , qM ) be two p.d.’s.
Their relative entropy or Kullback-Leibler distance is

D(p||q) =

M
∑

η=0

pη log
pη

qη
, (1)
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where we use the convention 0 log 0/b = 0, b 6= 0 and b log b/0 = ∞.

Definition 2. The capacity between two p.d.’s p and q is defined by

C(p, q) =
M
∑

η=0

(pη − qη)
2

qη

. (2)

If q = θ, then C(p, θ) will be denoted by C(p) and is called the capacity
of p.

Property 1. We say that p.d p is close to p.d. q if |pη − qη| � qη, for
all η = 0, 1, . . . ,M .

If p is close to q, we can approximate their Kullback-Leibler distance
using the Taylor series [4] such that D(p||q) = 1

2C(p, q) + O(ε3), where
ε = maxη∈Vm |pη − qη|.

The normed normal distribution with mean 0 and variance 1 is de-
noted by N (0, 1). Its probability density function (p.d.f.) is denoted by
φ and the cumulative distribution function (c.d.f.) by Φ. The normal dis-
tribution with mean µ and variance σ2 is denoted by N (µ, σ2).

Let us assume we are given N words of independently and identically
distributed (i.i.d.) data, ẑ1, . . . , ẑN drawn either from p.d. p or q 6= p. Let
the word-size of the data be m. The empirical p.d. q̂ = (q̂0, . . . , q̂2m−1)
corresponding to the data has components q̂η = #{i = 1, . . . ,N | ẑi = η}.
The hypothesis testing problem with null hypothesis H0 stating the data
is drawn from p and alternative hypothesis H1 stating it is drawn from q
can be solved using the log-likelihood ratio (LLR) calculated from data
as follows:

LLR(q̂, p, q) =

2m−1
∑

η=0

Nq̂η log
pη

qη
. (3)

We accept (reject) the null hypothesis if LLR(q̂, p, q) ≥ γ (≤ γ), where γ
is the threshold of the test. The Neyman-Pearson lemma states that this
statistic is the optimal distinguisher for these two hypotheses [9]. The
proof for the following theorem can be found in [4].

Theorem 1. The statistic LLR(q̂, p, q) defined by (3) is asymptotically
normal with mean and variance Nµ0 (respectively Nµ1) and Nσ2

0 (re-
spectively Nσ2

1), if the data is drawn i.i.d. from p (respectively q). The
means and variances are given by

µ0 = D(p||q) and µ1 = −D(q||p)

σ2
0 =

M
∑

η=0

pη log2 pη

qη
− µ2

0 and σ2
1 =

M
∑

η=0

qη log2 pη

qη
− µ2

1.
(4)
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Moreover, if p is close to q, we have µ0 ≈ −µ1 ≈ 1
2C(p, q)and σ2

0 ≈ σ2
1 ≈

C(p, q).

3 Multidimensional Linear Approximation

Let us study a block cipher with encryption function f and with block
size n. Let x be the plaintext, K the expanded inner key, that is, a vector
consisting of all (fixed) round key bits and y = f(x,K) the ciphertext.
Then an m-dimensional linear approximation of the block cipher can be
considered as a vector Boolean function

Vn × Vn → Vm, (x, y) 7→ Ux + Wy + V K, (5)

where U and W are m × n binary matrices. The matrix V has also m
rows and it divides the expanded keys, and therefore also the keys, to 2m

equivalence classes g = V K, g ∈ Vm. Our problem is now to find the right
inner key class, denoted by g0.

The most complex task in linear cryptanalysis is determining the prob-
ability distribution of the Boolean function (5). A generalised concept of
correlation for vector Boolean functions is given in [10] and used in de-
riving some theoretical results about Boolean functions [11]. However, in
practical applications we use another approach.

If correlations for each of the 2m−1 one-dimensional nonzero linear ap-
proximations related to (5) are known then p can be calculated as shown in
[6]. That is, p is determined based on one-dimensional projections, which
is a well-known statistical method due to Cramér and Wold (1936) [12].
In practice, only estimates of the correlations are available. Hence only
an approximation p of the true distribution can be achieved. Neverthe-
less, the problem of finding p reduces to that of finding several (say, m)
strong one-dimensional, linearly independent approximations and then
determining correlations for the remaining 2m − m − 1 approximations
and selecting the ones with non-negligible correlations as described in [6].

4 Finding the Right Inner Key Class

We start by drawing N plaintext-ciphertext pairs (x̂i, ŷi), i = 1, . . . ,N
from the cipher. The empirical data is then ẑi = Ux̂i + Wŷi, i = 1, . . . ,N
with observed empirical p.d. q̂. For m = 1, we denote by c (ĉ) the theo-
retical (empirical) correlation of u · x + w · y.

Let p be the p.d. of (5). For each g ∈ Vm, the data ẑi, i = 1, . . . ,N
is drawn from p.d. pg, a fixed permutation of p determined by g. Then
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all p.d. pg, g ∈ Vm, are each other’s permutations, and in particular,
pg

η⊕k = pg⊕k
η , for all g, η, k ∈ Vm.

The decision in Alg. 1 in one dimension is based on the following test:
The key class bit g is chosen to be 0 if cĉ > 0. Otherwise, g = 1. In other
words, the statistical decision problem is to determine which of the two
distributions (1

2(1 ± c), 1
2(1 ∓ c)) gives the best fit with the data.

We have studied three different ways to generalise the one-dimensional
Alg. 1 to multiple dimensions. Since the data is drawn i.i.d. from the p.d.
pg0 and not from any other p.d pg, g 6= g0, we can interpret the problem
of finding g0 as a generalisation of the goodness-of-fit test where one
determines whether given data is drawn from p.d. pg or not. The inner key
class g ∈ Vm which is most strongly indicated by this test to fit the data
is chosen to be the right key class. The classical goodness-of-fit tests are
the χ2-test and the G-test based on the Kullback-Leibler distance. In this
paper we investigate generalisations of these tests into the case of multiple
distributions, i.e., finding one distribution from a set of distributions. The
χ2-method based on the χ2-test and the log-likelihood method based on
the G-test are studied in Sections 4.1 and 4.2, respectively.

In [13] the problem of distinguishing one known p.d. from a set of other
p.d.’s was studied. It was then possible to use the optimal distinguisher,
the LLR-statistic, in solving the problem. However, since g0 is unknown,
we cannot apply the results of [13] in our work directly. Rather, we will
use the following heuristic. Since the data ẑi, i = 1, . . . ,N is drawn from
the unknown p.d. pg0 6= θ, it should be easiest to distinguish the right p.d.
pg0 rather than any other p.d. pg, g 6= g0 from the uniform distribution
using the LLR-statistic. Hence, the inner key class g ∈ Vm that gives the
strongest distinguisher between the corresponding p.d pg and θ is chosen
to be the right key. The log-likelihood ratio or LLR-method is studied in
Sect. 4.3.

In all our analysis, it is assumed that pg and pg′ , for g 6= g′, are close
to each other and all these distributions pg are close to θ in the sense of
Property 1. Then the following results apply:

D(p||θ) = D(pg||θ) and C(p) = C(pg), for all g ∈ Vm, (6)

and

min
g,g 6=h

D(pg||ph) = min
g 6=0

D(pg||p) and min
g,g 6=h

C(pg, ph) = min
g 6=0

C(pg, p), for all h ∈ Vm,

(7)
where the minimum Kullback-Leibler distance and capacity will be de-
noted by Dmin(p) and Cmin(p), respectively. The assumption about close-
ness must be verified with practical experiments. Moreover, if Dmin(p) =
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0, we need to join the corresponding key classes to one class such that
we may assume Dmin(p) 6= 0 and Cmin(p) 6= 0. The number 2m − 1 will
henceforth be denoted by M .

4.1 χ
2-method

The χ2-statistic for each key g ∈ Vm is defined as follows:

S(g) = N

M
∑

η=0

(q̂η − pg
η)2

pg
η

, (8)

with M degrees of freedom, where N is the amount of data used in the
attack. The empirical distribution q̂ should be near to the correct p.d. pg0

while being further away from all the other p.d.’s pg, g 6= g0. Hence, the
key corresponding to the smallest S(g) is chosen to be the right key class.

By [14], one may approximate the distribution of S(g) by χ2
M (NC(pg, pg0)) ,

the non-central χ2-distribution with mean µg = M+NC(pg, pg0) and vari-
ance σ2

g = 2(M + 2NC(pg, pg0)). We can approximate S(g) ∼ N (µg, σ
2
g),

provided that µg > 30 [15].

With similar calculations and approximations that were done in Sect.
4 in [4] or in the proof of Thm. 2 in [6] we get that the upper bound for
the data complexity for finding g0 is proportional to

Nχ2 =
4m − 4γS + 2

√

2M(m − γS)

Cmin(p)
, (9)

where γS = ln(
√

2π ln P−1
S ). Note the exponential dependence of Nχ2 on

m as M = 2m − 1.

4.2 The Log-Likelihood Method

Another popular goodness-of-fit test is the log-likelihood test, also known
as G-test. The experiments on Alg. 1 done in [6] used this test. It is
based on the Kullback-Leibler -distance G(g) = D(q̂||pg) between the
empirical p.d. q̂ and the theoretical p.d. pg. In [14] it is shown that for
each key g ∈ Vm the statistic can be approximated to be distributed

as G(g) ∼ χ2
M(δg) + ξg, where δg = N

∑M
η=0 pg

η log2 p
g
η

p
g0
η

− ND(pg||pg0)2

and ξg = 2ND(pg||pg0) − δg. Since pg are near to pg0, the parameters
δg ≈ NC(pg, pg0) and ξg ≈ 0 and the G-test is the same as the χ2-test
[14].
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4.3 Log-Likelihood Ratio Method

The log-likelihood ratio is the optimal statistic for distinguishing two
distributions [9]. It is also asymptotically normal as stated in Theorem 1.
Hence, we would like to use it as a key ranking statistic. The method was
shortly described in [16]. The idea is that the empirical distribution can
be used for distinguishing the p.d. pg0 related to the correct key class from
the uniform p.d. with large LLR value, while any wrong p.d. pg, g 6= g0 is
less distinguishable from θ. For each g ∈ Vm we compute

l(g) = LLR(q̂, pg, θ). (10)

We choose the key class g with largest l(g) to be the right key class.
Key ranking has classically been used only in Alg. 2, as there are

several, say, n-bit key candidates k ∈ Vn among which the right key
candidate has to be found, whereas in Alg. 1, the key parity bit g ∈
V1 can only have two values. In multiple dimensions there are several
key candidates g ∈ Vm that are ranked, that is, sorted, according to a
statistic T (g) in decreasing (or increasing) order of magnitude. Writing
the ordered r.v.’s as T1 ≥ T2 ≥ · · · ≥ T2m , we call Tr the rth order
statistic. The higher the right key is on the list, the better the ranking
statistic T is. Biryukov, et al., used a special purpose quantity called
“gain” to measure the strength of their ranking statistic [3]. However, a
more generally applicable measure is the advantage, defined by Selçuk in
[8] as follows:

Definition 3. We say that a key recovery attack for an m-bit key achieves
an advantage of a bits over exhaustive search, if the correct key is ranked
among the top r = 2m−a out of all 2m key candidates.

In this paper, we attempt to transfer the idea to Alg. 1. We wish to find a
relationship between the data complexity N and the advantage a for the
ranking statistic l(g) defined in (10). Let us define the success probability
PS of ranking g0 among the r highest ranking keys to be

PS = Pr(l(g0) > lr), (11)

where lr is the rth (wrong key) order statistic. The problem is now to
solve N as a function of a and vice versa from (11). We cannot apply [13]
here as the result would be too optimistic. The task is to distinguish an
unknown pg0 from a set of p.d.’s {pg | g ∈ Vm}. In [13] one distinguishes
only pg0 from pg′0, g′0 6= g0, the p.d. closest to pg0 in Kullback-Leibler
distance. We need to consider all the other key candidates as well, which
increases the data complexity. We will have the following result:
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Theorem 2. Assume that the r.v.’s l(g) are s.i. If the p.d.’s pg, g ∈ Vm

and θ are close to each other, the advantage of the LLR-method using
statistic (3) can be approximated by

a ≈
(

1

2

√

NC(p) − Φ−1(PS)

)2

, (12)

where PS(≥ 0.5) is the probability of success, N is the amount of data
used in the attack and C(p) and m are the capacity and the dimension of
the linear approximation (5), respectively.

Before the proof let us investigate the assumption about s.i. of l(g)’s.
Since the same data is used in calculating all of them, they are actually
statistically dependent. However, the derivations become impossible in a
general case with dependent r.v.’s. The experiments presented in Sect. 5
show that the statistical dependence of l(g)’s does not weaken the attack,
hence, making the assumption does not give too optimistic results at least
for Serpent. On the other hand, the assumption does not affect the ac-
tual method, it just makes it possible to calculate an upper bound for
the data complexity and get the “worst-case” trade-off between the data
complexity and advantage. Note that the assumption about statistical in-
dependence of l(g), g ∈ Vm does not mean that the one-dimensional linear
approximations used in deriving p should be statistically independent.

Proof. Let us proceed first by finding the p.d.’s for the r.v.’s l(g), g ∈
Vm. By Theorem 1 and property (6) r.v. l(g0) ∼ N (NµR,Nσ2

R), where
µR ≈ C(p)/2 and σ2

R ≈ C(p). If g 6= g0, we heuristically claim that l(g) ∼
N (µW , σ2

W ), where µW ≤ 0 and σ2
W ≈ C(p). The normal distribution

is based on the law of large numbers [9], the approximation of variance
is commonly used for example in [17] and the approximation of mean is
based on the idea that the empirical data is not closer to any pg, g 6= g0

than θ. In the “worst-case”, with largest data complexity, µW = 0. We
denote the p.d.f. and c.d.f. of l(g), g 6= g0 by fW and FW , respectively.

Calculating the c.d.f. of the order statistic lr of statistically depen-
dent r.v.’s in a general case is not possible. The asymptotic c.d.f. of the
maximum of normal, identically distributed but dependent r.v.’s for large
M (m ≥ 7) is derived in Sect. 9.3. in [18]. However, the r.v.’s l(g0) and
maxg 6=g0 l(g) are still statistically dependent, and calculating the c.d.f. of
their difference is not feasible in a general case. Hence, we assume them
to be s.i. to carry out the calculations.

We may now use Theorem 1 in [8] to obtain that, for g 6= g0, lr ∼
N (µa, σ

2
a), where µa = F−1

W (1 − 2−a) = σW b, b = Φ−1(1 − 2−a) and
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σ2
a ≈ 2−(m+a)

f2
W

(µa)
. Basic approximations such as b2 ≈ a, can be then used in

showing that σ2
a/σ

2
W < 2−m such that σ2

a � σ2
R. Then

PS = Pr(l(g0) > lr)

= Φ

(

µR − µa

σR

)

= Φ

(

NC(p)/2 −
√

NC(p)b
√

NC(p)

)

,

(13)

from which we can solve N as a function of a to be

N =
4(Φ−1(PS) + b)2

C(p)
≈ 4(Φ−1(PS) +

√
a)2

C(p)
, (14)

and by inversion, we get a as a function of N as desired. ut

The experimental advantages for the different methods are studied in the
next section. In the special case a = m the data complexity is predicted
to be

NLLR ≈ 16m

C(p)
. (15)

Hence, the dependence of NLLR on m is linear. In practice C(p) ≈ Cmin(p),
and hence, the LLR-method should be more efficient than the χ2-method.

5 Experiments on 4-Round Serpent

We tested the different methods for multidimensional Alg. 1 described
in this paper on 4-round Serpent by selecting linearly independent one-
dimensional base approximations ui ·x⊕w ·y, i = 1, . . . ,m to construct a
linear approximation of the form (5) with m = 7 and m = 10. The output
mask was w = (0x00007000, 0x03000000, 0x00000000, 0x00000000) for all
the approximations. The input masks ui and the corresponding corre-
lations are given in Table 1. We checked the assumption about close-
ness of the hypothetical distributions pg and θ and saw that it holds

as |pg
η − pg′

η | < 1
150pg

η, for all g, g′ and η ∈ Vm. We also checked that
Cmin(p) 6= 0 and actually, Cmin(p) ≈ C(p). The experiments showed that
the empirical advantage when ranking the key classes was exactly the
same for all methods. Hence, Figures 1 and 2 only depict the LLR-method.
In particular, all methods were equally efficient in determining the correct
key class. Equations (14) and (9) predict that the LLR-method should
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Table 1. Input masks of base approximations and the corresponding correlations

mask = (MSB, . . . , LSB) ci

u0 (0x70000000, 0x00000000, 0x00000000, 0x07000900) −2−11

u1 (0x70000000, 0x00000000, 0x00000000, 0x07000B00) 2−11

u2 (0x70000000, 0x00000000, 0x00000000, 0x0B000900) 2−11

u3 (0xB0000000, 0x00000000, 0x00000000, 0x07000900) 2−11

u4 (0x70000000, 0x00000000, 0x00000000, 0x07000500) 2−12

u5 (0x70000000, 0x00000000, 0x00000000, 0x07000600) 2−12

u6 (0x70000000, 0x00000000, 0x00000000, 0x07000C00) −2−12

u7 (0x70000000, 0x00000000, 0x00000000, 0x01000900) −2−12

u8 (0x70000000, 0x00000000, 0x00000000, 0x0A000900) 2−12

u9 (0xB0000000, 0x00000000, 0x00000000, 0x03000B00) −2−12

be the most efficient: when m increases, the data requirement of χ2-
based tests increase exponentially with m whereas the increase is linear
for the LLR-method. It is possible that the variance of the χ2-method
is not as large as the theory predicts, or the statistical dependence of
r.v.’s S(g) strengthens the χ2-method more than expected. In [16] the
χ2-based method was proven to be weaker than the LLR-based method
when used for multidimensional Alg. 2 attack. The statistical model of
the relationship between the advantage a and data complexity N derived
in this paper was tested in experiments. The results are given in Fig. 1
and 2 for m = 7 and m = 10, respectively. The empirical advantage us-
ing the LLR-method is depicted and it is compared with the theoretical
advantage given by (14) with three different values of PS . Possibly the
statistical dependence of r.v.’s l(g) explains why the experimental curves
start higher than the theoretical curves. In both cases, we also show how
much better the m-dimensional LLR-method is compared to the bino-
mial method where the same set of m one-dimensional approximations
and Matsui’s Alg. 1 is used to determine each key class bit separately
and independently. The m-bit key classes are then ranked according to
the product of |ĉi|. This approach is similar than the method described
in [3] where the key classes g ∈ Vm are ranked using the sum of squares
of the differences (−1)gici − ĉi, and shown previously in [6] to be weaker
than the multidimensional method.

We also observed that as m increases the data requirement decreases
as long as the ratio Cmax(p)/m increases. This gives an upper bound for
m to be used in practice. In case of 4-round Serpent, the practical upper
bound is around m = 12.

10



2^14 2^16 2^18 2^20 2^22 2^24 2^26
0

1

2

3

4

5

6

7

8

9

10

m=7

number of texts

A
dv

an
ta

ge

 

 

Theoretical LLR (Ps=0.5)
Theoretical LLR (Ps=0.7)
Theoretical LLR (Ps=0.9)
Empirical LLR
Empirical Binomial

Fig. 1. The theoretical and empirical advantage as a function of data complexity using
LLR-method with m = 7 for 4-round Serpent
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Fig. 2. The theoretical and empirical advantage as a function of data complexity using
LLR-method with m = 10 for 4-round Serpent
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6 Conclusions

In this paper three statistical methods for key recovery using multidimen-
sional linear cryptanalysis were investigated. The problem of finding the
right key among several key candidates can be interpreted as a goodness-
of-fit problem or a multiple hypothesis testing problem. The goodness-
of-fit based ranking statistics χ2- and log-likelihood were shown to be
equivalent and lead to the same χ2-test. We solved the multiple hypothe-
sis testing problem, i.e., distinguished one unknown p.d. from a given set
of p.d.’s, using the LLR-statistic and observed the same correct key class
as with the χ2-method.

The methods were compared by using the advantage, modified to be
used in multidimensional Alg. 1 from the original theory by Selçuk. The
statistical model of the LLR and χ2-method were tested in experiments
on four-round Serpent. While the theory predicted a greater advantage
for LLR than χ2, they seemed to work equally well in the case of Serpent.
For LLR, the empirical results were somewhat better than those predicted
by the model, but still around the same range. It remains for future work
to test the model on different ciphers, which also may show separation
between the LLR-method and the χ2-method. It is also an open question
whether one can remove or better justify the assumption about statistical
independence used in Theorem 2.
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