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Abstract. We present an internal collision attack against the new hash
function Maraca which has been submitted to the SHA-3 competition.
This attack requires 2237 calls to the round function and its complexity is
lower than the complexity of the generic collision attack when the length
of the message digest is greater than or equal to 512. It is shown that
this cryptanalysis mainly exploits some particular differential properties
of the inner permutation, which are in some sense in contradiction with
the usual security criterion which guarantees the resistance to differential
attacks.
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1 Introduction

Maraca is a new keyed hash function which has been submitted to the SHA-
3 competition [1]. It consists in applying a round permutation to the 1024-bit
internal state, but one of its main features is that each message block is inserted
four times, separated by 46 rounds. Then, a usual differential attack requires
the study of the difference propagation on at least 46 rounds of the function.
Here, we present a new type of collision attack, which leads to colliding internal
states for Maraca. Our attack requires 2237 calls to the round function, i.e. at
least 224 times less than the generic collision attack for 512-bit message digest.
The time complexity is also lower than the complexity of the generic collision
attack. Breaking Maraca-512 does not have an important impact on the SHA-3
competition since Maraca has not advanced to the first round on the competition.
However, our attack exhibits a new differential property of the inner permutation
which may introduce some unexpected weaknesses. Most notably, we here point
out that the resistance to our attack is in contradiction with the resistance
to the usual differential attacks, and that finding a good inner permutation for
Maraca raises some interesting open issues related to the construction of vectorial
Boolean functions with good cryptographic properties.

After a brief description of Maraca, our attack is presented in Section 3 in a
general setting, i.e. independently from the choice of the inner permutation. The
attack has several variants: the basic general attack and a refinement based a a
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sieving procedure, which has a lower time complexity but only applies when the
inner permutation has a particular algebraic structure. Section 4 then shows that
this variant with sieving applies in the case of the inner permutation Perm used
in Maraca. Finally, Section 5 investigates the properties of the inner permutation
which guarantee that the hash function resists our attack. The interesting point
is that this new security criterion is related to the differential properties of the
permutation, and that there is a trade-off between this new criterion and the
security criterion for classical differential attacks. For instance, we point out that
some natural choices for the inner permutation, like a function based on the AES
Sbox, increase the vulnerability to our attack.

2 Brief description of Maraca

As a keyed hash algorithm, Maraca takes as inputs a message and a key, and
it produces a hash value of size h. The original message is padded as follows:
the 1024-bit key is first appended to the message as a prefix, and the resulting
message is then padded with a value depending on the key and on the message
length, in order to get a padded message whose length is a multiple of 1024 bits.
Note that our collision attack is considering messages of the same length and
with the same key.

The internal state in Maraca has 1024 bits and the message blocks which are
inserted at each round are of the same size as the internal state. Each message
block Mi is inserted four times, at rounds i, (i+21−6(i mod 4)), (i+41−6((i+
2) mod 4)) and (i + 46). More precisely, the original value of Mi is inserted at
Round i, while rotated versions of Mi are inserted at the other three rounds,
with rotations of 128 bits, 3× 128 bits and 6× 128 bits respectively. From now
on, these rotated versions of Mi are denoted by M ′

i , M ′′
i and M ′′′

i . It is worth
noticing that the last round which uses the message block Mi is Round i + 46.

The round function at Round i can be decomposed as follows:

– the new message block Mi is inserted for the first time by xoring it with the
current internal state;

– a 1024-bit inner permutation Perm is applied to the internal state;
– (M ′

i−3−6((i+2) mod 4)⊕M ′′
i−23−6(i mod 4)⊕M ′′′

i−46) is xored to the internal state;
– two iterations of Perm are applied to the internal state.

l+ Perm- - l+- Perm- - Perm -
??

S

Mi
M ′

i−3−6((i+2) mod 4) ⊕M ′′
i−23−6(i mod 4) ⊕M ′′′

i−46

S′

Fig. 1. Round i in Maraca
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Then, we are ready to start the next round and to introduce the message block
Mi+1, if any. If no message block has to be inserted anymore, the all-zero block
is used. The message insertion phase ends up when all message blocks have been
used four times, implying that, for an `-block message, the message insertion
phase consists of (` + 46) rounds. The h-bit hash value is finally extracted from
the internal state after applying 30 more iterations of Perm.

Since the internal state in Maraca has n = 1024 bits, the generic attack for
finding an internal collision requires to hash around 2

n
2 messages, i.e. at least

46×2512 calls to the round permutation. Actually, because of the padding and of
the fact that each message block is inserted at four different rounds, we cannot
search for colliding internal states which correspond to different rounds.

The generic collision attack for h-bit message digests requires to hash around
2

h
2 messages, and requires at least 46 × 2

h
2 calls to the round permutation. Its

time complexity basically corresponds to the cost of 2
h
2 hashing.

3 General principle of the internal collision attack

Our attack against Maraca consists in finding two padded messages of the same
length which lead to the same 1024-bit internal state. The attack exploits the
fact that the message block inserted at each round has the same size as the
whole internal state. This property may enable the attacker to control the whole
internal state. This section first describes the general principle of the attack
and exhibits the underlying property of the inner permutation. However, we
will show in Section 3.3 that the time or memory complexity of the attack
might be higher than for the generic collision attack in some cases. This might
be overcome by exploiting some algebraic structure of the inner permutation.
The first case, described in Section 3.4, is when the set of input differences D
which is considered contains a large linear or affine subspace. The second case,
presented in Section 3.5 and which will be used for Maraca, is when there exists
a large (affine) subspace whose almost all elements belong to D. This second
case actually enables the attacker to use a sieving phase which decreases the
time complexity of the general attack.

3.1 Constructing two sets of messages leading to an internal
collision

We consider two sets of padded messages using a given 1024-bit key K. Since
all considered messages before padding are composed of 49 blocks of 1024 bits,
all of them are post-padded with the same value, pad, which only depends on
K and on the message length. This value does not play any role in the attack
since it is the same for all messages and it is involved in the computation after
the internal states collide. Both sets of padded messages are defined as follows:

A = {Ma = (K, a, 047,m,pad), a ∈ {0, 1}1024}
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and
B = {Mb = (K, b, 0, x, 045,m,pad), b ∈ {0, 1}1024}

where x and m are two fixed 1024-bit blocks that will be defined later and where
0i denotes the sequence formed by i occurrences of the all-zero 1024-bit block.
In the following, the message blocks are denoted by Mi where i starts from 0,
i.e., M0 = K for all the messages we consider.

Let Sa (resp. Sb) denote the internal state obtained at the beginning of
Round 49 when Ma (resp. Mb) is hashed. We aim at finding a collision on the
internal state at Round 49, before the second application of Perm, as depicted
on Figure 2. Round 49 for Ma (resp. Mb) actually consists of the following
operations:

– xor m to the current internal state;
– apply Perm to the internal state;
– xor 0 (resp. x′′′) to the internal state;
– apply two additional iterations of Perm.

This comes from the fact that all message blocks Mi, 3 ≤ i ≤ 48, in Ma vanish,
implying that there is no message insertion after the first application of Perm
at Round 49. All message blocks Mi, 3 ≤ i ≤ 48, in Mb vanish except M3 = x,
implying that x′′′, corresponding to x rotated by 6×128, is xored to the internal
state after the first application of Perm at Round 49. Then, all message blocks
which are inserted after Round 49 are equal for both message sets. Thus, an
internal collision occurs as soon as we are able to find three message blocks a, b
and m which satisfy

Perm(Sa ⊕m) = Perm(Sb ⊕m)⊕ x′′′. (1)

It is worth noticing that both Sa and Sb are independent of m.
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Fig. 2. Beginning of Round 49 for Ma (top) and Mb (bottom)
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3.2 Underlying property of the inner permutation Perm

We now investigate the underlying property of Perm which makes Maraca vul-
nerable to the previously described attack. In the following, we express it in a
more general setting which will be useful when we will consider other choices for
Perm. Then, we denote by n the size of the internal state and by h the length
of the message digest.

Equation (1) with v = m ⊕ Sa shows that finding an internal collision for
both previously described message sets is equivalent to finding a pair (Sa, Sb) of
internal states in Fn

2 such that

∃v ∈ Fn
2 , Perm(v ⊕ Sa ⊕ Sb)⊕ Perm(v) = δ, (2)

for a fixed value of δ chosen by the attacker. Let D(δ) denote the set of all input
differences such that (2) holds, i.e.,

D(δ) = {α ∈ Fn
2 , ∃v ∈ Fn

2 , Perm(v ⊕ α)⊕ Perm(v) = δ}.

In the case of any ambiguity on the function we consider, this set will be indexed
by the function, e.g. DPerm(δ).

Then, the attack consists in finding a pair (Sa, Sb) of internal states such
that (Sa ⊕ Sb) ∈ D(δ). As a comparison, the generic birthday attack for finding
an internal collision consists in finding a pair (Sa, Sb) of internal states in Fn

2

such that Sa ⊕ Sb = 0.
Then, randomly choosing Na = Nb = 2

n
2 |D(δ)|−1/2 messages in A and in B

enables us to find a pair of internal states (Sa, Sb) at the beginning of Round 49
with Sa⊕Sb ∈ D(δ). The data complexity of our attack, i.e. the number of calls
to the hash function, is therefore smaller than the data complexity of the generic
internal collision attack as soon as there exists an output difference δ such that
|D(δ)| > 1. In the case where the size of the internal state, n, is larger that
the length h of the message digest, as in Maraca, our attack leads to a collision
attack with data complexity smaller than the generic collision attack if there
exists a difference δ such that |D(δ)| > 2n−h. Note that, in our attack, each
call to the hash function actually corresponds to 49 calls to the round function
since the first 49 blocks in each message Ma and Mb have to be proceeded but
message block 0 is constant and has to be evaluated only once. As a comparison,
the generic collision attack requires at least 46 calls to the round functions (and
30 additional calls to Perm) for each message which is hashed.

3.3 Time complexity of the general attack

However, if the set of input differences D(δ) does not have any particular struc-
ture, determining whether two internal states are such that Sa ⊕ Sb ∈ D(δ)
might be very time-consuming. The only general strategy which may have time
complexity lower than 2

n
2 consists in storing all Na values of Sa and all Nb values
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of Sb in two tables. Then, all NaNb differences must be computed and compared
to the elements in D(δ). This procedure has time complexity

NaNb log(|D(δ)|) = 2n log(|D(δ)|)
|D(δ)| .

The attack is then faster than the generic internal collision attack only if |D(δ)| >
2

n
2 , and it is faster than the generic collision attack only if |D(δ)| > 2n−h

2 . But,
in general, comparing all differences Sa ⊕ Sb with the elements of D(δ) requires
the storage of D(δ), which needs an amount of memory higher than for the
generic attack. However, this memory complexity can be much lower in some
cases, for instance, if Perm corresponds to the concatenation of several copies
of a smaller `× ` Sbox (eventually followed by an affine permutation), then the
attacker has to store the elements in

DP (δ′) = {α ∈ F`
2, ∃m ∈ F`

2, P (m⊕ α)⊕ P (m) = δ′}

only, for some δ′ ∈ F`
2.

3.4 Exploiting the algebraic structure of D(δ)

Determining whether Sa ⊕ Sb ∈ D(δ) for all (Sa, Sb) is much easier when D(δ)
has a simple algebraic structure. The simplest case is when D(δ) is a linear or an
affine subspace of dimension d. Then, it can be expressed as D(δ) = c+〈e1, . . . ed〉
where (e1, . . . , ed) is a basis of the corresponding linear subspace and c is a
constant vector in Fn

2 . Let (ed+1, . . . , en) be (n − d) vectors in Fn
2 such that

e1, . . . en form a basis of Fn
2 . Then, an element x ∈ Fn

2 belongs to D(δ) if and
only if, for all i, d + 1 ≤ i ≤ n,

x · ei = c · ei,

where x · y denotes the usual scalar product. Therefore, all pairs (Sa, Sb) with
Sa ⊕ Sb ∈ D(δ) can be found by storing in a table the (n − d)-bit words sa

composed of the (n − d) coordinates (Sa · ei), d + 1 ≤ i ≤ n. Then, for each
Sb, the attacker computes the (n− d)-bit word sb = (Sb · ei)d+1≤i≤n and checks
whether sb ⊕ c belongs to the table where c is the constant defining the affine
subspace.

Then, when D(δ) is an affine subspace of dimension d, its size is 2d, implying
that the time complexity of the attack is 2(n−d)Na = 2(n−d)2

n−d
2 . It requires a

table of (n−d)2
n−d

2 bits. The time complexity of this attack is then always lower
than the generic internal collision attack, and it improves the generic collision
attack if d > n− h.

It is worth noticing that the attack only exploits the fact that any element
in the considered subspace belongs to D(δ). Therefore, the same attack can be
mounted if D(δ) contains an affine subspace V of dimension d, but in this case,
we have Na = Nb = 2

n−d
2 instead of Na = Nb = 2

n
2 |D(δ)|− 1

2 .
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3.5 Using a sieving phase

In the case where the largest (affine) subspace included in D(δ) has dimension
d ≤ n−h, then the time complexity of our attack exceeds the time complexity of
the generic collision attack. Then, the existence of a larger (affine) subspace V
of dimension d which contains many elements of D(δ) can be used as a sieve for
selecting the pairs (Sa, Sb) whose differences belong to D(δ). The attack then
aims at finding a pair (Sa, Sb) such that (Sa ⊕ Sb) ∈ (D(δ) ∩ V ). The data
complexity has now increased to

Na = Nb = 2
n
2 |D(δ) ∩ V |−1/2

which improves the generic collision attack if

|D(δ) ∩ V | > 2n−h.

But, the time complexity is much lower. Actually, once the much smaller list of
pairs with difference in V has been obtained, all differences (Sa ⊕ Sb) from this
list can be exhaustively computed until a difference in D(δ) ∩ V is found. The
sieving phase selects

NaNb

2n−d
= 2d 1

|D(δ) ∩ V |
pairs (Sa, Sb) among the 2n 1

|D(δ)∩V | possible pairs. The overall time complexity
is then

2(n− d)2
n
2 (|D(δ) ∩ V |)− 1

2 + 2d log2(|D(δ) ∩ V |)(|D(δ) ∩ V |)−1,

where the last term is the cost for checking whether a difference in the previous
list belongs to D(δ) ∩ V . The attack is then faster than the generic collision
attack as soon as the proportion of elements in V which belong to D(δ), i.e.
2−d|D(δ) ∩ V | = |V |−1|D(δ) ∩ V | exceeds 2−

h
2 .

4 Application to the inner permutation used in Maraca

4.1 Structure of the inner permutation Perm.

The inner permutation Perm used in Maraca is formed by 128 parallel applica-
tions of a unique 8× 8 permutation P whose first three output bits are linear:

P1(x0, . . . , x7) = (x0 ⊕ x4 ⊕ x5 ⊕ x7)
P2(x0, . . . , x7) = (x1 ⊕ x2 ⊕ x3 ⊕ x5)
P3(x0, . . . , x7) = (x1 ⊕ x3 ⊕ x4 ⊕ x5)

and the other five output bits have a higher degree. A constant is then added
to all 1024 bits and a bit permutation is applied to the resulting 1024-bit out-
put. Perm can then be seen as a function which applies to a 128-byte word
(b1, . . . , b128), and which outputs

σ(P (b1), . . . , P (b128))
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where σ is a permutation of the 1024 bits composing the internal state, i.e.,

σ(x1, . . . , x1024) = (xπ(1), . . . , xπ(1024))

with π a permutation of {1, . . . , 1024}.

4.2 Differential properties of Perm

We now focus on the difference table of the 8 × 8 Sbox P used in Perm. This
difference table enables us to determine for each nonzero output difference δ the
set of input differences which can lead to δ, i.e.,

DP (δ) = {α ∈ F8
2, ∃x ∈ F8

2, P (x⊕ α)⊕ P (x) = δ}.

Since the first three coordinates of P , Pi, 1 ≤ i ≤ 3, are linear, we have that
any α ∈ DP (δ) must satisfy

(P1(α), P2(α), P3(α)) = (δ1, δ2, δ3). (3)

Then, DP (δ) is included in the 5-dimensional affine subspace defined by

(δ1, δ2, δ3, 0, 0, 0, 0, 0)⊕ 〈e4, . . . , e8〉

where e1, . . . , e8 is the canonical basis of F8
2.

Now, we search for the output difference δ for which the size |DP (δ)| is
maximal. The highest value which can be obtained for this size is 21, and it can
be reached for 20 output differences δ. An example of a such an output difference
is δ = 0x3.

4.3 Attack on Maraca-512

We now describe the concrete attack on Maraca. Using the notation defined in
Sections 2 and 3, we choose the message block x such as its rotated version x′′′

equals the 128-byte word σ(δ, . . . , δ) where δ is an output difference for P which
can be obtained from 21 input differences, e.g. δ = 0x3. It follows that any input
difference in

D = {(α, . . . , α), α ∈ DP (δ)}
can lead to the output difference x′′′. In other words, for each pair of internal
states (Sa, Sb) such that Sa ⊕ Sb belongs to D, there exists a message block m
such that

Perm(m⊕ Sa) = Perm(m⊕ Sb)⊕ x′′′.

Here, |D| = (21)128, implying that we need Na = Nb = 2230.5.
We then use the particular structure of P for sieving the pairs (Sa, Sb): the

set of input differences is included in an affine subspace V of dimension 640 (note
that this is a particular case of the attack described in Section 3.5 where it was
allowed that some elements of D(δ) do not belong to V ). Using this subspace,
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we are able to find all pairs (Sa, Sb) whose differences belong to V . The average
number of such pairs (Sa, Sb) is

NaNb

2384
= 277.

Now, for those 277 favorable pairs of internal states, we have to check whether
(Sa ⊕ Sb) belongs to D. This occurs with probability

|D|
25×128

= 2−77.

Once such a pair has been found, we can pick up a value of m which makes
possible to obtain the desired output difference from the input difference Sa⊕Sb.
Such an m can be constructed as a 128-byte word (µ1, . . . , µ128) defined by

P (µi ⊕ (Sa)i)⊕ P (µi ⊕ (Sb)i) = δ

where (Sa)i (resp. (Sb)i) is the i-th byte in Sa (resp. Sb).
This procedure then leads to a pair of messages Ma ∈ A and Mb ∈ B such

that
Perm(Sa ⊕m) = Perm(Sb ⊕m)⊕ x′′′,

i.e., to an internal collision after Round 49. Since all the blocks which must
be inserted in the following rounds are the same for both messages, we clearly
obtain an internal collision after the computation of the hash value. The attack
then requires fewer than 2231.5 × 49 = 2237 calls to the round function. The
memory complexity is 2230.5 bits. From the analysis in Section 3.5, we deduce
that the overall time complexity is 2240 operations, which is clearly less than for
the generic collision attack when the length of the message digest is greater than
or equal to 512. Note that the complexity of the last step of the attack, i.e. after
sieving is negligible.

5 Resistance of other inner permutations to the attack

Since our attack does not exploit any classical weakness of Perm, we may wonder
whether it comes from a unlucky choice for Perm and whether more appropriate
choices for Perm could be easily found.

A permutation is vulnerable to our attack (in the sense that our attack
improves the generic collision attack) if there exists an output difference δ such
that one of the following conditions holds:

1. |D(δ)| > 2n−h
2 ;

2. there exists an (affine) subspace V such that |D(δ) ∩ V | > 2n−h and the
proportion of elements in V which belong to D(δ) exceeds 2−

h
2 .

Condition 1 corresponds to the attack without any sieving, as described in Sec-
tion 3.3. Condition 2 corresponds to the attack when the differences in the d-
dimensional subspace V are first selected. From the analysis of Section 3.5, the
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data complexity of the attack is then 2
n
2 |D(δ) ∩ V |− 1

2 , which must be less than
2

h
2 . The cost for finding the differences in D(δ) after sieving is then propor-

tional to |V |/|D(δ) ∩ V |, implying that the time complexity is less than 2
h
2 if

the condition on the proportion of elements of D(δ) in V is satisfied. It is also
worth noticing that Condition 2 includes the case where D(δ) contains an affine
subspace of dimension at least n − h; this corresponds to the case where the
proportion of elements of D(δ) in V is equal to 1. We now investigate these
conditions. Note that both of them provide a lower bound on the size of D(δ)
since Condition 2 implies that |D(δ)| > 2n−h.

5.1 Size of D(δ) and link with differential cryptanalysis

Because a large |D(δ)| is a necessary condition for resisting our attack, we first
focus on its maximal value for a permutation F over Fn

2 . We denote by DF the
following parameter

DF = max
δ∈Fn

2

|DF (δ)|.

A suitable permutation F for Maraca must have a small DF . However, we can
show that there is a trade-off between a small DF and a good resistance to
differential cryptanalysis.

It is well-known that differential cryptanalysis [2] exploits the fact that the
nonlinear functions used in a primitive are such that the difference between the
images of two inputs with a given difference takes the same value with a high
probability. Therefore, the resistance of a function F : Fn

2 → Fn
2 to this attack

is quantified by the following parameter [3,4],

∆F = max
α,β∈Fn

2 , α6=0
∆(α, β) with ∆(α, β) = |{x ∈ Fn

2 , F (x⊕ α)⊕ F (x) = β}|.

A function with ∆F = ∆ is said to be differentially ∆-uniform. This parameter
∆ must be as small as possible. Since any equation

F (x⊕ α)⊕ F (x) = β

has an even number of solutions x, the minimal value for ∆ is 2 and the func-
tions for which ∆ = 2 are named almost perfect nonlinear (APN). However,
since the existence of APN permutations of an even number of variables is an
open problem, most permutations used in symmetric ciphers are differentially
4-uniform; the most famous example is the inverse function over the field F2n

used in the AES.
Now, the relationship between both quantities DF and ∆F comes from the

following simple observation.

Proposition 1. Let F be a permutation over Fn
2 . For any δ ∈ Fn

2 we have:

D(δ) = {α ∈ Fn
2 , ∃x ∈ Fn

2 with F (x⊕ α)⊕ F (x) = δ}
= {F−1(x⊕ δ)⊕ F−1(x), x ∈ Fn

2}.



Internal collision attack on Maraca 11

Proof. Let x ∈ Fn
2 be a solution of

F (x⊕ α)⊕ F (x) = δ.

With y = F (x), this equation can equivalently be written as

y ⊕ δ = F (x⊕ α)

that means
F−1(y ⊕ δ) = F−1(y)⊕ α.

We then deduce that the set D(δ) consists of all values (F−1(y ⊕ δ) ⊕ F−1(y))
when y varies in Fn

2 .

From this simpler expression of D(δ), we deduce that any permutation F
with a small ∆F has a high DF .

Theorem 1. Let F be a permutation over Fn
2 . If F is differentially ∆-uniform,

then, for any δ ∈ Fn
2 , we have

|D(δ)| ≥ 2n

∆

and equality holds for δ 6= 0 if and only if for all α ∈ Fn
2 , the equations

F−1(x⊕ δ)⊕ F (x) = α,

have either 0 or ∆ solutions.

Proof. Let ∆(δ, α) denote the number of solutions x ∈ Fn
2 of

F−1(x⊕ δ)⊕ F−1(x) = α.

Then, we have ∑

α∈Fn
2

∆(δ, α) = 2n

and ∑

α∈Fn
2

∆(δ, α) ≤ max
α

∆(δ, α)|D(δ)| ≤ ∆F−1 |D(δ)|,

with equality if and only if

∀α ∈ Fn
2 , ∆(δ, α) ∈ {0, ∆F−1}.

Using that
∆F−1 = max

δ 6=0,α
∆(δ, α) = ∆F ,

since both F and F−1 have the same parameter ∆ [5], we deduce that, for any
δ 6= 0,

∆F |D(δ)| ≥ 2n.

Moreover, we obviously have
|D(0)| = 1

for any permutation F , completing the proof.
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We then deduce the following direct corollary.

Corollary 1. Let F be a permutation over Fn
2 . Then

DF = max
δ∈Fn

2

|DF (δ)| = 1

if and only if F has degree 1.

Proof. Any function obviously satisfies ∆F ≤ 2n with equality if and only if F
has degree 1.

This corollary notably implies that, for any choice of Perm (except the trivial case
where the hash function is linear), our attack requires fewer calls to the round
function than the generic internal collision attack (without any consideration of
time and memory complexity).

Let us now investigate some a priori natural choices for Perm and their
impact on the complexity of our attack. For obvious implementation reasons,
we assume that Perm consists of the concatenation of several copies of the same
smaller Sbox P , eventually followed by a linear permutation as in the original
function.

Example 1. Since no APN permutation of an even number of variables is known,
we can slightly modify the size of the internal state, n = mk with m odd and
choose for P an APN permutation over Fm

2 . For instance, m = 9 and k = 128
could be an appropriate choice. From Theorem 1, we deduce that, for any nonzero
δ ∈ Fm

2 , |DP (δ)| = 2m−1 since P−1 is APN, i.e. all equations P−1(x⊕δ)⊕P−1(x)
have either 0 or 2 solutions. It follows that, for any δ = (δ1, . . . , δk) ∈ (Fm

2 )k

with all δi 6= 0,
|DPerm(δ)| = 2k(m−1).

Our attack (without sieving) then requires to hash

Na = Nb = 2
k
2

messages in Ma and Mb, where k is the number of copies of P . All the 2k

differences (Sa ⊕ Sb) can then be computed and compared to the elements of
DPerm(δ). Due to the concatenated structure of Perm, checking whether each
(Sa ⊕ Sb) belongs to DPerm(δ) costs at most

k∑

i=1

log2(|DP (δi)|) = k(m− 1) operations,

leading to an overall time complexity less than or equal to k(m − 1)2k. This
improves the generic collision attack as soon as the length of the message digest
exceeds 2(k + log(n − k)) where n is the size of the internal state and k is the
number of copies of P in Perm. For k = 128 and n = 9× 128, this corresponds
to h ≥ 276. The memory complexity corresponds to the storage of all internal
states Sa and Sb and of all elements of DP (δi) (which requires m2m−1 bits since
the attacker can choose the same value for all δi).
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Example 2. If we want to keep the original parameters, i.e. k = 128 and m = 8,
a natural choice for P is the inverse function over F28 as in the AES, or any
linearly equivalent permutation. It is well-known that the inverse function over
F2m , m even, is differentially 4-uniform and that the equation

(x + δ)−1 + x−1 = γ, δ 6= 0

has 4 solutions x if and only if γ = δ−1 [6,5]. Thus, when x varies in F2m and
differs from these 4 solutions, ((x+δ)−1 +x−1) takes exactly (2m−1−2) distinct
values since each value is obtained for exactly 2 elements x. Using Proposition 1,
we deduce that, when P corresponds to the inverse function over F2m , for any
nonzero δ ∈ F2m , |DP (δ)| = (2m−1 − 2) + 1 = 2m−1 − 1. Then, with our
parameters, |DPerm(δ)| = (27−1)128 = 2894.5. Our attack (without sieving) then
requires to hash

Na = Nb = 264.7

messages in Ma and Mb. Even without any sieving, it is faster than the generic
collision attack since examining all differences (Sa ⊕ Sb) requires

128× 895× 2129.4 = 2146 operations

and the memory cost is roughly 276 bits. Therefore, if P is replaced by the inverse
function in Maraca, our attack becomes much more efficient and its complexity
is lower than the complexity of the generic attack when the length of the message
digest exceeds 292.

5.2 Algebraic structure of D(δ)

In the case where Perm is such that DPerm exceeds 2n−h
2 , i.e. DP ≤ 28−h

2 when
Perm is the concatenation of 128 copies of a permutation P over F8

2, an efficient
attack requires that D(δ) has a particular structure, as explained in Sections 3.4
and 3.5. For instance, Proposition 1 implies that a particular case where DP (δ)
is an affine subspace is the case where P−1 is quadratic.

Proposition 2. Let F be a permutation over Fn
2 such that F−1 has degree 2.

Then, for any δ ∈ Fn
2 , δ 6= 0, D(δ) is an affine subspace.

Note that this does not apply to the permutation P used in Maraca since we
have deg(P ) = 2 and not deg(P−1) = 2.

More generally, the structure of D(δ) is an open problem which has been
raised in [7,?] in the case of subspaces of codimension 1: the permutations F−1

such that all sets D(δ), δ 6= 0 are affine hyperplanes are called crooked func-
tions, and they correspond to almost bent functions [8, Lemma 5], which are a
particular case of APN functions. However, the only examples of crooked func-
tions known at present have degree 2[7]; they correspond to the case studied in
Proposition 2. Here, the search for a good permutation for Maraca raises the
more general open issue, related to the converse of Proposition 2.
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Open problem 1 Does there exist any permutation F over Fn
2 with deg(F−1) >

2 such that D(δ) is an (affine) subspace for all δ ∈ Fn
2 , δ 6= 0.

But, since our attack requires that D(δ) has a particular algebraic structure
for one difference δ only, and not for all of them, it is related to the following
more general problems.

Open problem 2 Characterize the permutations F over Fn
2 such that, there

exists an input difference δ 6= 0 for which

D(δ) = {F (x⊕ δ)⊕ F (x), x ∈ Fn
2}

is an (affine) subspace.

Finding an inner permutation for Maraca which resists our attack is related to
the following issue.

Open problem 3 For a permutation F over Fn
2 , find the smallest integer h > 0

such that there exists an input difference δ 6= 0 and an (affine) subspace V which
satisfy

|D(δ) ∩ V | > 2n−h

and |V |
|D(δ) ∩ V | < 2

h
2 .

6 Conclusions

We have presented an internal collision attack against Maraca, with complexity
lower than the complexity of the generic attack. Besides this concrete crypt-
analysis, the main interest of our attack is that the underlying weakness corre-
sponds to some differential properties of the inner permutation which, to our best
knowledge, have not been exploited before. Moreover, these differential proper-
ties are, in some sense, in contradiction with the security criterion corresponding
to differential cryptanalysis. For instance, it appears that replacing the original
permutation of Maraca by a commonly used Sbox increases the vulnerability
of the hash function. Finding an inner permutation which resists our attack for
512-bit message digests is not an easy task, which is related to some interesting
theoretical problems on Boolean functions.
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