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Collaborative filtering has been successfully applied for predicting a person’s
preference on an item, by aggregating community preference on the item. Typ-
ically, collaborative filtering systems are based on based on quantitative prefer-
ence modeling, which requires users to express their preferences in absolute nu-
merical ratings. However, quantitative user ratings are known to be biased and
inconsistent and also significantly more burdensome to the user than the alterna-
tive qualitative preference modeling, requiring only to specify relative preferences
between the item pair. More specifically, we identify three main components
of collaborative filtering– preference representation, aggregation, and similarity
computation, and view each component from a qualitative perspective. From
this perspective, we build a framework, which collects only qualitative feedbacks
from users. Our rating-oblivious framework was empirically validated to have
comparable prediction accuracies to an (impractical) upper bound accuracy ob-
tained by collaborative filtering system using ratings.

1 Introduction

Collaborative filtering (CF) [1] has been widely adopted for inferring user prefer-
ence, by aggregating the community preference. To motivate, we illustrate how
such inference typically works in Example 1.

Example 1 (Movie recommendation). Consider a customer renting DVDs from
an online rental shop, e.g., netflix.com where recommended items are reported
to be responsible for more than 60% of the rental decisions [2]. For accurate
recommendation, a CF system infers user rating on the unrated DVD, based on
the ratings of other people with similar histories. For instance, some user rated 5
for all the previous Batman movies is likely to rent “Dark knight”, if other users
who also liked all the previous Batman movies rate highly on “Dark knight”.

More specifically, though details may vary, CF systems consist of the follow-
ing three components:

– Preference representation: User preference on an item, e.g., a movie, is
typically represented as a numerical rating, e.g., five stars. A user is thus
represented as a rating vector.

– Preference similarity: For inferring a user rating for an item, other users
sharing similar rating histories, should be identified. Toward this goal, simi-
larity metrics need to be defined, e.g., correlation between rating vectors.
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– Preference aggregation: Given a user community of similar preferences
identified, CF systems then aggregate their preference, e.g., by averaging
community ratings, to compute a single representative community prefer-
ence.

Prior work focuses on using a quantitative user preference model, e.g., rating
vector, for the above components. However, such perspective, by requiring users
to provide absolute numerical ratings to represent their preferences, is known to
be efficient for computation, but not very user-friendly.

Alternatively, qualitative model [3] has been explored in database systems, as
a more intuitive alternative to present user preferences or queries in a form of “I
liked movie A better than B”, rather than giving an absolute numerical rating
or score. However, qualitative model also has its drawbacks– While preference
similarity and aggregation computation has been studied for qualitative model as
well, state-of-the-art algorithms are significantly less efficient, compared to their
quantitative counterparts, which partly explains why qualitative model has not
been actively explored for CF system. While recently [4] adopted qualitative
model for collaborative filtering, this framework builds upon numerical ratings,
which defeats our motivation.

This paper aims at combining the strength of the two models, to enable a CF
system that is both computation- and user-friendly. In particular, we achieve the
goal, by collecting user feedbacks in qualitative forms and computing the sim-
ilarity and aggregation in quantitative forms. Our extensive evaluation results
validate that our proposed system identifies the recommended items with com-
parable quality to the results from quantitative CF systems, while requiring
significantly less cognitive overheads to users.

We summarize our contributions as follows:

– Our proposed framework recommends items based on qualitative user feed-
backs and thus do not require users to provide absolute numerical ratings.

– For computing similarity and aggregation, we use equivalent quantitative
representations for efficiency.

– We validate that our proposed framework has comparable accuracies to a
widely adopted implementation of quantitative collaborative filtering.

2 Related Work

This section overviews the related prior research efforts. We first survey existing
work on collaborative filtering. We then discuss recent efforts on modeling pref-
erence qualitatively and processing technologies that can be used as component
technologies for collaborative filtering.

Collaborative filtering: Collaborative filtering approach has been success-
fully adopted to most real-life recommender systems which can be categorized
into the following two categories:

– Heuristics-based: In this line of work, each user is represented by her rating
vector on data items. For finding similar users, various similarity metrics
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have been adopted, including correlation coefficient [5], cosine similarity,
and Jaccard coefficient [6]. To predict the unknown rating, the ratings from
similar users identified will then be aggregated, using various aggregation
functions, including weighted average [7–10].

– Model-based: Alternatively, each user can be represented as a pre-trained
classifier, such as Maximum entropy [11], SVM [12], or linear regression [13]
classifiers. A key difference between heuristics- and model-based approaches
is that the former refers to other users’ ratings at runtime for rating pre-
diction, while the latter refers only to the model, trained in advance for the
given user.

Qualitative preference modeling/processing: Qualitative preference mod-
eling has gained attention lately, as it is more intuitive to user to formulate or
elicit their preferences qualitatively.

Qualitative preferences are typically represented as partial orders, which gen-
eralizes quantitative models mapping each object into numerical scores which
generates total orders.

For similarity metrics, the most widely adopted metrics are Spearman [14]
and Kendall-tau [15] distance. Unlike quantitative similarity metrics, measuring
the score difference, these two metrics do not consider scores at all and only
consider the rank difference of each object in the two orders– The Spearman
footrule distance is the sum of the absolute rank difference in the two orders,
while the Kendall tau distance counts the number of pairwise disagreements
between two lists. However, these metrics, though not using numerical scores,
assume preferences can be represented as total orders of data objects and cannot
apply to partial orders, as we will discuss further in Section 3.

For aggregating similar preferences, many aggregation algorithms have been
studied for generating the optimal combination, minimizing the distance with all
the input preferences, based on Spearman and Kendall-tau distances discussed
above. Such optimal aggregation, however, is studied to be NP-hard [16]. While
an approximation with quality guarantee was studied [17] and later extended to
aggregate bucket orders in [18], this extension cannot support arbitrary partial
orders.

As overviewed above, the computation of similarity and aggregation for qual-
itative preferences are yet to be fully studied and current findings suggest that
such computation is computationally intractable even in limited problem set-
tings. This paper thus explores using the equivalent quantitative representations
instead, where the similarity and aggregation computation is well-studied and
efficient. The closest work to our paper is [4], which similarly explores to adopt
qualitative modeling for recommendation, though this work still requires users
to rate items numerically unlike ours.

3 Preliminaries

In this section, we first overview how a typical quantitative CF system imple-
ments the three main components for recommendation– preference representa-
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tion, similarity, and aggregation. (Section 3.1). We then discuss how qualitative
modeling generalizes the task (Section 3.2).

3.1 Quantitative CF

To illustrate a typical CF system implementation, this section describes how
Open source toolkits CoFE1 implements three major CF tasks.

Preference Representation CoFE assumes we can obtain absolute numerical
ratings on data items, i.e., quantitative modeling. Each user is thus represented
as a d-dimensional numerical vector of ratings on d data items, where some items
are yet to be rated, denoted by ru,o for the rating of user u on object o.

Preference Similarity For the missing rating, CoFE predicts the numerical
rating, based on the ratings from the set N of “neighboring” users similar tastes.
To identify such set, CoFE quantifies the similarity between two users v and w,
using the Pearson correlation coefficient metrics below:

ωv,w =
∑d

i=1 (rv,i − rv)× (rw,i − rw)
σv × σw

(1)

Note that rv and σv represent the average and standard deviation of the
ratings by user v respectively.

Preference Aggregation The rating vectors of the users in N are then aggre-
gated to predict the missing ratings. For such aggregation, CoFE uses a weighted
average, weighting the ratings from the users with more similar tastes. (We dis-
card users with negative correlations.):

ru,o = ru +
∑

i∈N (ri,o − ri)× ωu,i∑n
i=1 ωu,i

(2)

3.2 Qualitative CF

We now move on to discuss how qualitative modeling can generalize the above
problem, and how such generalization complicates the problem.

Preference Representation As overviewed in Section 2, recent research ef-
forts point out that it is non-trivial for users to represent their preferences ad-
equately with absolute numerical scores. In contrast, qualitative representation
enables to state preference in more intuitive form of comparing whether user
“likes A better than B”. For effectively collecting qualitative user preferences to

1 http://eecs.oregonstate.edu/iis/CoFE/
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identify highly relevant results with minimal user intervention, many elicitation
schemes [19–25] were studied.

We represent the qualitative preferences collected as a m− by−m pair order
matrix C, where each entry Cij indicates whether user prefers item i over item
j. Specifically, we explore two representations for the qualitative preferences of
user u.

– Boolean perspective: The most widely adopted representation is using
Boolean value for Cu

ij to indicate whether user prefers i over j is true (rep-
resented by value 1) or false (represented by 0).

1, if i is preferred over j
Cu

ij = 0, if j is preferred (3)
−, if unrated

– Uncertainty matrix: Alternatively, we can extend the representation to
use Cu

ij to indicate a fuzzy value, indicating the degree of how certain it is
that user prefers i over j. The higher value indicates higher certainty.
More specifically, for each pairwise user elicitation, e.g., user prefers i over
j is true, we take it as an evidence toward Cu

ij and thus increment its value
by 1. In addition, for every pairwise elicitation on (i, j), we increment not
only Cu

ij but also all the other entries affected by transitivity combined with
the past elicitation– For instance, if user already expressed that she prefers
j over k before, user elicitation of preferring i over j is an evidence for both
Cu

ij and Cu
jk (by transitivity), both of which we increment by 1.

A quantitative modeling is a special case of this representation where rated
items generate a total. In a clear contrast, our model is more general to support
any arbitrary partial orders.

Similarity Similarity metrics between two total orders, such as Kendall-tau and
Spearman, are well studied. However, these metrics, relying on the rank of each
object in the entire data set, cannot be defined in arbitrary partial orders. To
address this problem, recent efforts extended two partial orders into two sets of
all possible total orders, then compared the expected distance between the two
sets in [26]. However, such enumeration is proved to be expensive, i.e., #P-hard.

In this work, we keep qualitative user preferences in quantitative forms, as a
pairwise comparison matrix C (Eq. 3), and use quantitative similarity metrics
(Eq. 1), to identify neighboring users. While this naive representation of pairwise
comparison matrix extends the problem size quadratically, our empirical results
validate this qualitative modeling achieves comparable accuracies to CF sys-
tem (serving as accuracy upper bound) without exploiting numerical user rating
as CF does. We leave a more compact representation for the given qualitative
preferences as future work.
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Aggregation We now discuss how we aggregate pairwise comparison matrix
Cn of all neighboring users n ∈ N , to predict Cu matrix for the given user u.

As overviewed in Section 2, finding the optimal aggregation of qualitative
total orders has been proven to be NP-hard [16]. Though approximation for
bucket orders has been studied [27], it is not applicable for aggregating arbitrary
qualitative partial orders.

Similarly to the similarity computation, in this work, we explore aggregating
preference matrices using quantitative aggregation function (Eq. 2) and leave
more effective schemes as future work.

4 Experiments

This section reports our experiment setting then our evaluation results compar-
ing quantitative and qualitative CF systems.

For dataset, we used MovieLens rating dataset, collected by the GroupLens
Research Project [7]. This set consists of user ratings on movies, rated in five
scales {1, 2, 3, 4, 5}.

For accuracy metrics, we use kendall-tau rank metric, which compares how
pairwise comparisons in the predicted user preference are concordant with those
in the “ground-truth ordering”. More specifically,

τ =
nc − nd

1
2n(n− 1)

(4)

where nc is the number of concordant pairs, and nd is the number of discordant
pairs in the data set.

Among the 100,000 ratings by 943 users on 1682 items in MovieLens rating
dataset, we selected heavily rated 100 items with the largest number of ratings.
For each prediction, we aggregated the ratings of 100 neighboring users. From
this dataset, we set aside the ratings from randomly chosen 5% of the users
as ground-truth and compute τ compared to the predicted preferences for such
users. We then compare the accuracy τ of our proposed frameworks with that
of quantitative CF (using CoFE engine). Note, we compute τ for each user and
report the average of all users.

More specifically, we implement recommendation engines QCF and QCFa
using Boolean and uncertain representations respectively. As the MovieLens
dataset are rated in five discrete scales, we discretize pairwise comparisons, to
consider two entries with value difference less than δ as ties.

We stress that from the numerical ratings, our framework only extracts pair-
wise comparisons. Our goal is thus, unlike class CF where users have to specify
the strength of preference in absolute numerical values, to predict such strength
from pairwise comparisons, to predict closely to CF, without referring to ratings
as CF does. We thus use the accuracy of CF to serve as an (impractical) upper
bound while using that of random prediction as a lower bound. Our empirical
results in Figure 4 indicate that, our qualitative CF engines, both QCF and
QCFa, are comparable to upper bound.
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5 Conclusion

This paper presents the problem of collaborative filtering from a qualitative
perspective. In particular, we study how to adopt a qualitative model on the
preference representation, aggregation, and similarity computation. Our exten-
sive evaluation results report the prediction accuracy of our qualitative imple-
mentation, compared against an open-source quantitative collaborative filtering
implementation.
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