
Error Containment in the Presence of
Metastability

Andreas Steininger

Institute of Computer Engineering / ECS group
Vienna University of Technology

A-1040 Vienna, Treitlstrasse 3, Austria
andreas.steininger@tuwien.ac.at

Abstract. Error containment is an important concept in fault-tolerant
system design, and techniques like voting are applied to mask erroneous
outputs, thus preventing their propagation. In this presentation we will
use the example of DARTS, a fault-tolerant distributed clock generation
scheme in hardware, to demonstrate that metastability is a substantial
threat to error containment. We will illustrate how metastability can
originate and propagate such that a single fault may upset the system.
The main conclusion is that modeling efforts on all design levels are
definitely required in order to mitigate and quantify the deteriorating
effect of metastability on system dependability.

Keywords. metastability, fault tolerance, clock generation

1 Introduction

In our research project DARTS (Distributed Algorithms for Robust Tick Syn-
chronization) we implemented a clock synchronization algorithm from the dis-
tributed systems community (in particular a slightly modified version of the
consistent broadcast primitive by Srikanth-Toueg [1]) in hardware. An instance
of this algorithm is implemented in a hardware module called TG-Alg that can
be attached to a conventional synchronous function block, for which it serves
as the clock source. In this way a set of n distributed identical TG-Algs (typ-
ically 5 to 14) run in the system. They communicate over a network of serial
point-to-point connections called TG-Net. In some sense this network of coupled
TG-Algs operates like a large (and very sophisticated) ring oscillator and gen-
erates a system wide clock without the need for an external clock source. For
details on DARTS see [2,3]. Among the benefits of this DARTS approach are:

– The clock remains synchronous over all communicating (non-faulty) TG-
Algs, provably within a bounded precision (typically 2 or 3 clock cycles)

– Up to f arbitrary (Byzantine) failures in the TG-Algs and/or TG-Net can
be tolerated in a system comprising n ≥ 3f + 2 TG-Algs; i.e. all non faulty
TG-Algs still generate a clock within the specified precision.

Dagstuhl Seminar Proceedings 08371 
Fault-Tolerant Distributed Algorithms on VLSI Chips 
http://drops.dagstuhl.de/opus/volltexte/2009/1923

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62914076?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Andreas Steininger

These properties are very interesting, since they allow eliminating the sin-
gle point of failure usually formed by the synchronous clock source, while—in
contrast to the GALS approach [4]—still retaining the important notion of syn-
chrony. The question we want to answer in the following is how our system that is
proven to withstand unrestricted, namely Byzantine, failures on the algorithmic
level, behaves under metastability conditions.

2 Metastability

Metastability is an undesired property of bistable elements whose input space
is continuous-valued [5]. In terms of hardware the usual showcase is a latch cell
whose function is to properly output a HI or LO, while its input voltage and/or
time between certain edges are ultimately continuous. The actual problem is
that for a borderline case at the input the bistable element may need an un-
bounded time to decide which of the discrete output states to assume. This is
a fundamental problem that has been proven to be unsolvable within bounded
time [6]. In a properly designed digital system, however, the input voltage is
either clearly HI or clearly LO (with steep transitions in between), thus avoiding
the borderline case with respect to voltage. Similarly the design style (either
synchronous or handshake based/asynchronous) rules out the occurrence of bor-
derline cases with respect to the time between transitions (In the synchronous
case this simply means observing the setup- and hold time of a flip-flop, e.g.).
Therefore metastability is usually encountered only in the very restricted context
of synchronizers and arbiters, where it is well researched [7,8,9]. Although, as
already mentioned, metastability cannot be avoided in principle, there are means
to make its occurrence arbitrarily improbable, and models exist to (statistically)
estimate the mean time between upsets (MTBU) due to metastability [10,11].

There are three different ways in which metastability can manifest:

1. Excessive delay of a transition. This will normally cause timing violations in
the subsequent (synchronous) circuit.

2. The output assumes an undefined value in between HI and LO for an un-
bounded time. This can lead to a propagation of the undefined logic level
or to ambiguous interpretation by different subsequent circuit elements and
hence to malfunction.

3. Oscillation of the output. The problem here is that the edges generated by
this self-oscillation are not in causal relation with the input.

Case (1) either leads to a delayed recognition of the input change, or, in the
worst case, to a propagation of the metastability to the next bistable element.
In context with usual technologies case (2) has most often been encountered
and researched especially for synchronous systems. Case (3) has quite rarely
been reported from experiments and observations in practical applications, and
has received very limited attention in the literature. In a synchronous design
chances are that the oscillation goes unnoticed due to temporal masking, while
in case of transition based signal encoding (like in QDI circuits [12]) the acausal



Error Containment in the Presence of Metastability 3

edges are likely to upset the circuit. While the effect of metastability is hence
strongly dependent on the design style, existing research indicates that the type
of manifestation depends on technology parameters rather than the conditions
of stimulation, which suggests an independence of the design style for the latter.

3 Metastable Upsets in DARTS

3.1 DARTS Block diagram

As shown in Fig. 1 a TG-Alg comprises a set of Counter Modules (one for each
“remote” clock coming from an other TG-Alg) and a Threshold Modules unit.

...Pipe Compare Signal Gen.

Local

Pipeline

Diff-

Gate

Remote 

Pipeline

Counter Module 2

Pipe Compare Signal Gen.

Local

Pipeline

Diff-

Gate

Remote

Pipeline

Counter Module 3

Pipe Compare Signal Gen.

Local

Pipeline
Diff-

Module

Remote 

Pipeline

Counter Module n-1

GR, GEQ

f+1

2f+1

Tick
Gen

Fig. 1. The DARTS implementation.

Both these modules are implemented in asynchronous logic, since the pur-
pose of the TG-Algs is to generate a clock in the first place. A Counter Module is
essentially an up/down-counter that is internally built from two elastic pipelines
[13] that serve as buffers for transitions. One is fed from the remote clock in-
put (Remote Pipeline) and the other one from the local clock (Local Pipeline).
A so-called Difference Module—essentially a Muller C-Element [13]—removes
matching transition pairs from these pipelines, leaving the difference of transi-
tions in one of the pipelines. This information is extracted by a combinational
logic block, the Pipe Compare Signal Generator and provided to the Threshold
Modules. This unit comprises four threshold gates, each of which is a purely
combinational function block that outputs a HI when it receives a HI on at least
k of its n−1 inputs. Actually the four threshold gates operate partially in paral-
lel (different thresholds k) and partially in alternation (separately for rising and
falling edges), for details see [2]. Finally, the Tick Generation module translates
the status outputs received from the threshold gates into a sequence of transi-
tions that forms the clock output of the respective TG-Alg. In short, the purpose
of the Threshold Modules unit is to fire a new transition on the clock output



4 Andreas Steininger

as soon as a sufficient number of nodes has requested to do so. According to
the algorithm’s principle this threshold mechanism masks erroneous or missing
requests and thus ensures error containment.

3.2 Metastability generation and propagation

A closer analysis of these modules with respect to metastability yields the fol-
lowing status:

– The purely combinational blocks, namely PCSG and threshold gate, are
no bistable elements (no internal state, or no positive feedback, resp.) and
hence not prone to metastability. They are, however, capable of propagating
a metastable state. Consider the threshold gate as an example: With k−1 HI
inputs the element is just below its threshold, such that a metastable state
on one of the remaining inputs may be propagated to the output. Notice,
however, that in all other cases a metastable input will not be propagated.

– Elastic Pipeline, Difference Module and Tick Generation Module contain
state-holding elements, in particular Muller C-Elements. We have formally
derived timing constraints under which these blocks are guaranteed to find
proper operating conditions [14], and we have considered all of these con-
straints in our implementation. So there is no threat of metastability in the
fault free case. In case of faults, however, these Muller C-Elements do have
the potential of going metastable. Consider the case of a glitch or runt on
one of the connections within the TG-Net being caused by electromagnetic
interference or by an SEU hitting the sender’s output. In general it cannot
be ruled out that such an event will create that very borderline condition
that makes the first Muller C-Element in the Elastic Pipeline go metastable.
Its metastable output may cause a borderline condition for the subsequent
Muller C-Element, and so on, such that the metastability propagates.

So in summary in our DARTS circuit we do find a potential for the gener-
ation of metastability—namely in case of a fault—and for its propagation. In
particular it can be shown quite easily that a single metastable event can spread
all over the system, causing all TG-Algs to fail. Although this appears to be an
extremely unlikely scenario, it stands in sharp contrast to the formal proofs on
the algorithmic level claiming the system can withstand (even more than one)
arbitrary component failures. Obviously the problem here is that metastability
can overcome usual error containment boundaries (like the Threshold Modules
in our example) in a way that is not captured in the formal treatment.

So far we have implicitly assumed a metastability manifestation as an unde-
fined logic level (case (2) in the above list). It goes without saying that no error
containment boundaries will hold for the oscillatory case (3) either.

4 Conclusion

We have given evidence for the threat represented by metastability in our DARTS
system, and we are convinced that the case we made here is not limited to



Error Containment in the Presence of Metastability 5

DARTS alone but applies to many (if not all) fault-tolerant architectures. Given
the implicit electrical, logical and temporal masking effects as well as the ex-
plicit measures for metastability mitigation that are sometimes introduced, the
residual risk may seem negligible. But even if this may be so, it cannot be re-
liably judged without a sound quantitative assessment. Unfortunately the state
of the art with respect to metastability modeling is—while being quite elabo-
rate for the synchronous case—not sufficiently developed for MTBU predictions
in asynchronous systems, especially for fault-induced glitches and runts. So a
sound quantitative MTBU prediction in this context remains an open research
task. Further research is needed with respect to the inclusion of metastability in
higher-level models, which might enable its mitigation on the algorithmic level.

References

1. Srikanth, T.K., Toueg, S.: Optimal clock synchronization. Journal of the ACM 34
(1987) 626–645

2. Ferringer, M., Fuchs, G., Steininger, A., Kempf, G.: VLSI Implementation of a
Fault-Tolerant Distributed Clock Generation. IEEE International Symposium on
Defect and Fault-Tolerance in VLSI Systems (DFT2006) (2006) 563–571

3. Fuegger, M., Schmid, U., Fuchs, G., Kempf, G.: Fault-Tolerant Distributed Clock
Generation in VLSI Systems-on-Chip. In: Proceedings of the Sixth European De-
pendable Computing Conference (EDCC-6), IEEE CS Press (2006) 87–96

4. Chapiro, D.M.: Globally-Asynchronous Locally-Synchronous Systems. PhD thesis,
Stanford University (1984)

5. Lamport, L.: Using time instead of timeout for fault-tolerant distributed systems.
ACM Transactions on Programming Languages and Systems 6 (1984) 254–280

6. Marino, L.: General theory of metastable operation. IEEE Transactions on Com-
puters C-30 (1981) 107–115

7. Dike, C., Burton, E.: Miller and noise effects in a synchronizing flip-flop. IEEE
Journal of Solid-State Circuits SC-34 (1999) 849–855

8. Yang, S., Greenstreet, M.: Computing synchronizer failure probabilities. In: Proc.
Intl. Conference on Design Automation and Test in Europe, IEEE CS Press (2007)

9. Kinniment, D.J., Dike, C.E., Heron, K., Russell, G., Yakovlev, A.V.: Measuring
deep metastability and its effect on synchronizer performance. IEEE Transactions
on VLSI Systems Circuits 15 (2007) 1028–1039

10. Kleeman, L., Cantoni, A.: Metastable behavior in digital systems. IEEE Design
& Test of Computers 4 (1987) 4–19

11. Semiat, Y., Ginosar, R.: Timing measurements of synchronization circuits. In:
Proc. IEEE Int. Symp. on Asynchronous Circuits and Systems, IEEE Computer
Society Press (2003) 1–10

12. Martin, A.J.: Limitations to delay-insensitivity in asynchronous circuits. Technical
report, California Institute of Technology, Pasadena, CA, USA (1990)

13. Sutherland, I.E.: Micropipelines. Communications of the ACM, Turing Award 32
(1989) 720–738 ISSN:0001-0782.

14. Fuchs, G., Fuegger, M., Steininger, A., Zangerl, F.: Analysis of constraints in a
fault-tolerant distributed clock generation scheme. 3rd International Workshop on
Dependable Embedded Systems (WDES’06) (2006)




