
A Conviviality Measure for Early Requirement Phase
of Multiagent System Design

Patrice Caire1, Leendert van der Torre1

Computer Science and Communication, University of Luxembourg, Luxembourg

Abstract. In this paper, we consider the design of convivial multi-agent sys-
tems. Conviviality has recently been proposed as a social concept to develop
multi-agent systems. In this paper we introduce temporal dependence networks to
model the evolution of dependence networks and conviviality over time, we intro-
duce epistemic dependence networks to combine the viewpoints of stakeholders,
and we introduce normative dependence networks to model the transformation of
social dependencies by hiding power relations and social structures to facilitate
social interactions. We show how to use these visual languages in design, and we
illustrate the design method using an example on virtual children adoptions.

1 Introduction

The focus of this paper is the social/organizational structure of a multiagent system.
In particular, we are interested in the design of convivial multiagent systems, which is
directly related to well studied issues such as groups and teams, norms and normative
behavior, and coalition formation. First, we discuss the determining factors and the de-
cisions we have to make concerning the actual convivial characteristics of the system.
Following the TROPOS methodology, this process leads us to our dependence network
model. A crucial step in this phase is to manage conflicting requirements such as recon-
ciling freedom with exclusion and missing or incomplete specifications such as implicit
agents goals. Second, we propose a representation of our model and present our formal-
ism, initially expressing dependencies with static dependence network. We then express
the sequence of different actors point of views, temporal dynamic networks. Third, we
define the actors interactions and model a protocol.

We study the following research questions:

1. How to design the evolution of convivial social relations?
2. How to combine viewpoints from stakeholders?
3. How to incorporate normative aspects of conviviality?

The description level of this paper is methodologies and languages. To answer these
questions we develop temporal dependence networks to model the evolution of depen-
dence networks and conviviality over time, we introduce epistemic dependence net-
works to combine the viewpoints of stakeholders, and we introduce normative depen-
dence networks to model the transformation of social dependencies by hiding power
relations and social structures to facilitate social interactions.

Dagstuhl Seminar Proceedings 09121 
Normative Multi-Agent Systems 
http://drops.dagstuhl.de/opus/volltexte/2009/1899

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62914029?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


The inspiration source of our work is political and social science. Empathy and reci-
procity were foregrounded by Polanyi in 1964. “Individual freedom realized in personal
interdependence" was tooled up by Illich in 1974 [17]. And in 1988, Putnam consid-
ered conviviality as a condition for civil society and social capital, a concept referring
to the collective values of all social networks. One of the four themes of the Euro-
pean Community fifth framework program was entitled the “societe de l’information
conviviale” (1998-2002) [25], which was translated as “the user-friendly information
society.” Today, a number of research fields such as computer supported cooperative
work and social software aim at supporting users to interact and share data. Convivial-
ity has recently been proposed also as a social concept to develop multi-agent systems
[9].

As a running example, we use the design of a virtual adoption agency for instance on
Second Life (SL). Adopting virtual children is a successful experience and a flourishing
business on SL. Parents wishing to adopt a child must pay a fee to the adoption agency.
The procedure typically involves that parents list themselves to advertise their profile
to prospective children who can select them. The agency then matches children and
parents and organizes a try-out period. There is no pressure. Once parents and children
have made their decision, they simply come back to the agency to cancel the adoption
if unhappy or otherwise to confirm it and get their adoption certificate and a ceremony.
The experience must be convivial.

The conviviality literature discusses many definitions and relations with other so-
cial concepts, which we do not introduce in the formal model in this paper, referring
to qualities such as trust, privacy and community identity. Also, in this paper we do
not consider Polanyi’s notion of empathy, which needs trust, shared commitments and
mutual efforts to build up and maintain conviviality.

The layout of this paper is as follows. In Section 2 we discuss the social focus of
this paper by explaining how the social concept “conviviality” can be used to develop
multiagent systems in general, and their design in particular. In the following four sec-
tions we answer the research questions. In Section 3 we introduce temporal dependence
networks to model the evolution of dependence networks and conviviality over time. In
Section 4 we introduce epistemic dependence networks to combine the viewpoints of
stakeholders. In section 5 we introduce normative dependence networks to model the
transformation of social dependencies.

2 Convivial multiagent systems

In this section we discuss the use of social concepts in general, and “conviviality” in
particular, for the development of multiagent systems.

2.1 Social concepts in multiagent systems

A social concept like “conviviality” can be used in multiagent systems in various ways.
Consider the following examples:

Informal requirements of decision makers: “our system should be convivial and easy
to use”

2



Formal concept in an ontology for modeling multiagent systems: “system A is con-
vivial whereas system B is efficient”

Performance measures: “the conviviality is 87 on a scale from 0 to 100”
Programming constructs: “if use<10 then conviviality++”

Though the latter ones may seem farfetched at the moment, consider some of the many
other social concepts have been adopted by computer science at all these different lev-
els, from concepts in informal requirements via modeling concepts in UML to program-
ming constructs (this list is far from complete!).

“Service” is a concept from business economics which has been used in computer
science in service oriented architectures and in web services. Not only business
processes but also computer applications are modeled as service providers.

“Contract” has been introduced in Meyer’s design by contract [19, 18, 1], a well
known software design methodology that views software construction as based on
contracts between clients (callers) and suppliers (routines), relying on mutual obli-
gations and benefits made explicit by assertions.

“Coordination” is emerging as an interdisciplinary concept to deal with the complex-
ity of compositionality and interaction. Coordination languages, models and sys-
tems constitute a recent field of study in programming and software systems, with
the goal of finding solutions to the problem of managing the interaction among
concurrent programs.

“Trust” and reputation are used as fundamental concepts in security.
“Architecture” is defined as the fundamental organization of a system embodied in

its components, their relationships to each other, and to the environment, and the
principles guiding its design and evolution. The recent standard called IEEE 1471-
2000 [2] emphasizes that views on the architecture should always be considered
in the context of a viewpoint of a stakeholder (e.g., software engineer, business
manager) with a particular concern (e.g., security).

Value and quality are economic concepts. Value networks model the creation, distri-
bution, and consumption of economic value in a network of multiple enterprizes
and end-consumers.

Concepts, models and theories from the social sciences are studied in multiagent sys-
tems to regulate or control interactions among agents [3], as a theoretical basis for the
development of so-called social software [21], and to develop multi-agent systems for
computational social science [10]. Examples of social concepts studied in multi-agent
systems are societies, coalitions, organizations, institutions, norms, power, and trust
[11].

2.2 Conviviality requirements

Requirements for multiagent systems say that systems must be convivial, whereas sys-
tem researchers and developers use other concepts. To model the requirement, the de-
velopers may interpret the conviviality requirement as being autonomous to make sug-
gestions, to react the discussion in the meeting to reach their goals, being pro-active to

3



take the initiative and being goal-directed, and most importantly being social by inter-
acting with others to reach their goals.

When writing down requirements for user friendly multiagent systems, it is crucial
to understand the inherent threads of conviviality, such as deception, group fragmenta-
tion and reductionism [9]. Whereas conviviality was put forward by Illich as a positive
concept, also negative aspects were discussed. People are often not rational and coop-
erative to achieve conviviality [23] and unity through diversity [16] may lead to sup-
pression of minorities. Taylor explores the contradiction that conviviality cannot exist
outside institutions: i.e., the question “whether it is possible for convivial institutions
to exist other than by simply creating another set of power relationships and social or-
ders that, during the moment of involvement, appear to allow free rein to individual
expression. Community members may experience a sense of conviviality which is de-
ceptive and which disappears as soon as the members return to the alienation of their
fragmented lives.”

2.3 Conviviality ontology

The use of conviviality as a computer science concept ensures that considerations on
the user-friendliness of multiagent systems get the same importance and considerations
on the functionality of the system. For example, our experience with the development
of a digital city in Europe is that computer engineers are focussed on filling in forms
and developing menu structures and other interface issues, and do not take into account
that a digital city should be a meeting place for human and artificial agents.

Conviviality is a useful high level modeling concept for organizations and commu-
nities, emphasizing the social side of them rather than the legal side. Erickson and Kel-
logg [14] say: “In socially translucent systems, we believe it will be easier for users
to carry on coherent discussions; to observe and imitate others’ actions; to engage
in peer pressure; to create, notice, and conform to social conventions. We see social
translucence as a fundamental requirement for supporting all types of communication
and collaboration". Taylor studies conviviality in British pantomime and observes that:
“conviviality masks the power relationships and social structures that govern societies.”

2.4 Design of convivial systems

In this paper we study how convivial multiagent systems can be designed using our
operationalized concept of conviviality. We illustrate our arguments and contributions
with a running example on multiagent systems for virtual adoptions, where typically
physical reality such as multiagent technologies interact with virtual and social realities.

The aim of social scientists to create conviviality by creating the desired conditions
for social interaction, coincides with the aim of designers of multiagent systems. For
example, Illich defines a convivial learning experience in which the teacher and the
student switch roles, such that the teacher becomes the student and the student becomes
the teacher. This role swapping emphasizes the role of reciprocity as a key component
for conviviality. Parallelely the importance of reciprocity in conviviality was shown
for instance in [15]. As a result, such role swapping scenarios can directly be used in
multi-agent systems.

4



3 Temporal dependence networks

In this section, we propose a design methodology for convivial multi-agent systems
based on the agent-oriented software development process, Tropos [4]. Key ideas in
Tropos are first, that throughout the process phases, e.g. from early requirements to im-
plementation, agents are endowed with intentionality. Second, the importance of very
early phases of requirement analysis to allow for a profound understanding of the envi-
ronment and of the interactions for the software to be built. This methodology guides
designer through an incremental process, from the initial model of stakeholders, to re-
fined intermediate models that, at the end, becomes the code.

3.1 Dependence networks

Multiagent systems technology can be used to create tools for conviviality. Illich de-
fines conviviality as “individual freedom realized in personal interdependence” [17].
Dependence network is a tool that allows us to model this interdependence [11, 24]. In
a recently published paper [9] dependence networks were formally defined as in Def. 1.

Definition 1 (Dependence networks). A dependence network is a tuple 〈A,G, dep,≥〉
where:

– A is a set of agents
– G is a set of goals
– dep : A× 2A → 22G

is a function that relates with each pair of an agent and a set
of agents, all the sets of goals on which the first depends on the second.

– ≥: A → 2G × 2G is for each agent a total pre-order on goals which occur in
its dependencies: G1 ≥ (a)G2 implies that ∃B, C ⊆ A such that a ∈ B and
G1, G2 ∈ depend(B, C).

Nevertheless, this representation of conviviality is static and therefore has a limited
field of application. In the next sub-section, we present our extension to encompass the
temporal aspect of conviviality.

3.2 Temporal dependence networks

Before proposing our definition, we introduce our virtual adoption running example.
The procedure typically involves that parents list themselves to advertise their profile
to prospective children who, if they like the parents, can select them. The agency then
matches children and parents and organizes a try-out period. Once parents and children
have made their decision, they simply come back to the agency to cancel the adoption
if unhappy or otherwise to confirm it and get their adoption certificate and a ceremony.

We start by informally listing critical stakeholders. We then identify the relevant
goals and the social dependencies of the stakeholders represented as actors. In partic-
ular, the actor Parent is associated with the goal: adopt child, while the actor Child
is associated with the goal: get adopted and Virtual Agency with the goal: provide
adoption service.

5



get adopted

select profile

Try out match

get certificate
plan ceremony

provide 
adoption 

service

match profiles get paid

adopt child

advertise 
profile

match profile try out match

get certificate
plan ceremony

Fig. 1. Decomposition of goals.

To enrich the model with a finer goal structure and elicit dependencies, we decom-
pose each root goal into sub-goals. For instance, Child goal: get adopted, is decomposed
into three sub-goals: select profile, try out match and get certificate - plan ceremony.
In Fig. 1, a graphical representation of goal modeling is given through a goal diagram;
AND decomposition only are shown, no OR decomposition, e.g. no alternate sub-goals.

The UML sequence diagram (Fig. 2), illustrates the interactions among the stake-
holders and how operations are carried out. The diagram shows time incrementing ver-
tically. In particular, the diagram models the interaction among the three Users: parent,
agency and child. The interaction starts with the advertise profile request by the parent
to the agency and ends with the pay fee by the parent to the agency. We note that the
match ok sent by both parent and child can be asynchronous. Moreover, the agency
sends the adoption certificate and the plan ceremony to both child and parent.

Based on actor diagrams and goal decomposition, we proceed with a goal analysis
taking each actor point of view. The objective is to obtain a set of strategic dependencies
among the actors. We therefore perform an iterative analysis on each goal until all are
analyzed. We build a succession of dependence networks from each actor point of view.

With temporal dependence networks, we aim at analyzing the evolution of depen-
dence networks and conviviality over time. We identify the most relevant interactions
in our running example and build a model with the key succession of dependence net-
works.

Definition 2 (Temporal dependence networks). A dependence network is a tuple DP =
〈A,G, goals, dep〉 where:

– A is a set of agents
– G is a set of goals
– T is the set of natural numbers
– goals : T ×A → 2G is a function that relates with each pair of a sequence number

and an agent, the set of goals the agent is interested in.
– dep : T × A × 2A → 22G

is a function that relates with each triple of a sequence
number, an agent and a set of agents, all the sets of goals on which the first depends
on the second if the third creates the dependency.

We use this structure to model our example (Fig. 3). Note that the set of agents does
not change, but the goals of the agents and the dependencies among them, changes over
time.

6



parent: User agency: User Child: User

advertise profile
select 

profilesend select profile

match profile

try out matchtry out match

match okmatch ok

adoption certificate

plan ceremony

pay fee

Fig. 2. Actor diagram modeling the stakeholders for the virtual adoption domain.

Agents A = {P,C, VA} and
Goals G = {g1, g2, g3, g4, g5, g6, g7, g8, g9, g10}
We thus have the following sequence of dependence networks:
DP4 = 〈A,G, goals4, dep4〉, where:

– goals(4, VA) = {{g5, g6, g7}}: In dep4, the goals of agent VA are to provide adop-
tion service, to get paid and to match parent-child profiles.

– goals(4, P ) = {{g1, g10}}: In dep4, the goals of agent P are to adopt a child and
to try out match.

– goals(4, C) = {{g8, g10}}: In dep4, the goals of agent C are to get adopted and to
try out match.

– dep(4, VA, {P, C}) = {{g7}}: In dep4, agent VA depends on agents P and C to
achieve goal g7: match parent-child profiles.

– dep(4, P, {C}) = {{g10}}: In dep4, agent P depends on agents C to achieve goal
g10: try out match.

– dep(4, C, {P}) = {{g10}}: In dep4, agent C depends on agents P to achieve goal
g10: try out match.

7



In our notation, depi refers to the temporal dependence network where i ∈ T and
denotes the ith sequence, P refers to agent Parent, C to agent Child and VA to agent
Virtual Agency.

Plan ceremony, 

get certificate

Advertise 

profile

Select 

profiles

Match 

profiles

Try out 

match

g5

DP1

C VA

P g1
, g2

C VA

P

C VA

P

C VA

P

C VA

P

C VA

P

g9

g7

DP2
g7

g2

DP3

g1
0

g10 g7

g7

DP4DP5DP6
g
6

g3,g4

g3
, g4

g1

g8

Fig. 3. DP sequences

4 Epistemic dependence networks

In our running example, we use the Tropos methodology [4], with the difference that
we include neither plans nor resources. However similarly to Tropos, we identify ac-
tors which depend on each other to achieve their hardgoals, simply referred to as goals,
and softgoals, the latter being typically used to model non-functional requirements and
“having no clear -cut definition and/or criteria for deciding wheter they are satisfied or
not" [4]. In Fig. 4, we show an actor diagram for the virtual adoption. In particular,
Parent is associated with the goal: adopt child, and the softgoal: get nice child. Sim-
ilarly, Child is associated with the goal: get adopted and the softgoal get nice parents
while Virtual agency wants to provide adoption service and has the softgoal to provide
a good service. Finally, the diagram includes one softgoal dependency where Parent
depends on Virtual agency to fulfill the softgoal: adoption fee well spent.

Temporal dependence networks allow us to capture a relation from a specific point
of view and at a specific time. Unfortunately, it is not sufficient for the situation we want
to model, so in the next section, we try to answer this question by introducing a new
model that will allow us to capture a more global view from the system point of view.

In order to model such system, we use the epistemic dependence network formally
defined as Def. 3.

8



Actor

Hardgoal

Softgoal

Softgoal 

dependency

depender

dependum

dependee

adoption fee

well spent
get nice 
parents

get adopted

adopt child

provide 

adoption 

service

Child
provide a good 

service
Virtual 

Agency

get nice 

child

Parent

Fig. 4. Actor diagram modeling the stakeholders for the virtual adoption.

Definition 3 (Epistemic dependence networks). An epistemic dependence network is
a tuple DP = 〈A,G, T, goals, dep〉 where:

– A is a set of agents
– G is a set of goals
– T is the set of natural numbers
– goals : T × A → 2G is a function that relates with each pair of sequence number

and an agent, the set of goals the agent is interested in.
– dep : A → T × A× 2A → 22G

is a function that expresses from the point of view
of an agent a ∈ A, the dependence relation between another agent b ∈ A and a set
of other agents regarding the goals of agent b in a sequence t ∈ T .

If we consider Fig. 5 the starting goal diagram, the three steps of this design process
are:

1. Goal delegation: Each goal of any actor may be delegated to any other actor, already
existing or new. It proceeds with the analysis of goals from the point of view of each
actor. This generates a network of delegation between stakeholders, external actors
and the system. The inclusion of new actors and sub-actors and subsequently, the
delegation of sub-goals to sub-actors continues until all goals have been analyzed.
Actors that contribute to the requirements are also included.

2. Goal decomposition: Goals and softgoals are further decomposed into sub-goals
or found not reachable. Through this refinement process a goal hierarchy is cre-
ated where leaf goals represent alternatives to root goals. Moreover, some identi-
fied sub-goals become reasons for new dependencies with new actors. Therefore,
dependencies in actors diagrams must be revised.

3. When all actors fulfill their goals, all the goals have been analyzed and the root
goals are satisfied then, this design process is complete.

9



select profilesearch by web 

profile

search by 

visited places search by 

appearance

Child

Parent

advertise 

profile

Virtual 

Agency

get parent 
profile info

search by 

groups

Fig. 5. Goal diagram for the goal select profile and dependencies between the actor
Child and other environment’s actors.

4.1 Example

In our running example, let’s consider the set of agents
A = {P, C, VA, AS}, where AS is the Adoption System.
dep(P ) = (2, VA, {C}) = {g9}: Parent believes that in sequence 2, Adoption

System depends on Child to achieve goal g9: select profile.
We express Fig. 6 as follows: dep(AS) = (2, P, {C}) = {g9}: Adoption System

believes that in sequence 2, Parent depends on Child to achieve goal {g9}: select pro-
file. We note that there is no dependency from Adoption System towards Adoption
System for the goal: select profile.

With Fig. 5 and 6, we explain the iterative design process from the Tropos method-
ology that are tool supported [22].

To explain what is the delegation process, and as an example, we here give a partial
view on goal: select profile.

To start, we have the goal of Child: select profile. After analyzing the rational for
this goal from each actor point of view, we delegate this goal to the new actor, the
system-to-be Adoption System . We continue by analyzing each sub-goal.

We then identify the capabilities needed by Adoption System to fulfill all the four
identified sub-goals: search by web profile, search by visited places, search by groups
and search by appearance. In order for this latter sub-goal to be fulfilled, we add a new
goal: provide photo/video and a new dependency from Adoption System towards Par-
ent. Similarly, in Fig. 5 the sub-goal: search by web profile has no dependency while

10



in 6 a new dependency from Adoption System towards Child has been created to ful-
fill the subgoal: know web address. Of course, each dependency must be mapped to
a capability. We then define a set of agent types and assign each of them one or more
capabilities. The specification of agent’s goals, beliefs, capabilities and the communica-
tion between the agents depends on the adopted platform and the chosen programming
language. We therefore leave this part for further work.

select profile

search by 

groups

Adoption

Sytem

Child

get adopted

provide 

photos/videos

search by 

visited places

Parentspecify visited 
places

search by 

appearance

know web 

address

search by web 

profile

classify 

profiles

Fig. 6. Goal diagram for the goal select profile and dependencies between the actor
Adoption System and other environment’s actors.

4.2 Nested dependencies

We first mention that by nested we simply mean a belief produced and only accessible
by an agent a and about another agent b, e.g. inaccessible to all others. For instance,
empathy provides a way to know what another agent’s preference is, and therefore to
better adapt to it, allowing for a convivial relation, whereby agents contribute to each
other. In our running example, let’s assume that Parent believes that Child depends
on it, Parent, for its goal: select profile. Let’s further assume that Child believes that
Parent depends on it to advertise parent profile, for example if Child first had to publish
an announcement on a board that it is seeking parents to be adopted by. We write:

11



dep(P ) = (1, C, {P}) = {g9}: agent P believes that in sequence 1, agent C de-
pends on it, P to achieve its goal g9: select parents’ profile.

dep(C) = (1, P, {C}) = {g2}: agent C believes that in sequence 1, agent P de-
pends on it, C, to achieve its goal g2: advertise its profile.

5 Norms and masks

There are many different kinds of goals, some goals may be considered normative,
others personal. Agents do not only have personal goals, they also have normative goals,
e.g. goals imposed by the procedures. We propose a further extension of epistemic
dependence networks that we call “Normative epistemic dependence networks" in order
to take into account the differences in the two kinds of goals as well as obligations and
violations.

Definition 4 (Normative epistemic dependence
networks). A dependence network is a tuple

DP = 〈A,G, N, O, V, T, goals, dep〉 where:

– A is a set of agents
– G is a set of goals
– N is a set of norms
– T is the set of natural numbers
– O : N ×A → 2G is a function that associates with each norm and agent the goals

the agent must achieve to fulfill the norm; We assume for all n ∈ N and a ∈ A that
O(n, a) ∈ power({a});

– V : N ×A → 2G is a function that associates with each norm and agent the goals
that will not be achieved if the norm is violated by agent a; We assume for each
B ⊆ A and H ∈ power(B) that (∪a∈AV (n, a)) ∩H = ∅.

– goals : T × A → 2G is a function that relates with each pair of sequence number
and an agent, the set of goals the agent is interested in.

– dep : A → T × A× 2A → 22G

is a function that expresses from the point of view
of an agent a ∈ A, the dependence relation between another agent b ∈ A and a set
of other agents regarding the goals of agent b in a sequence t ∈ T .

5.1 Example 1

We explain with an example how to use our formalism and model normative situations.
In sequence 2 of our running example, while Child’s obligation to select profiles is a
normative goal, Child’s desire to select the parents it prefers is a personal goal. In this
case, personal and normative goals coincide:

The goal g9, to select parents’ profile, is both a personal goal and a normative goal,
that is, goals(2, C) = g9 ∪ O(2, C) = g9, where g9 ∈ PGC : in sequence 2, agent C
has the goal and the obligation to select parents’ profiles g9, where PG is personal goal.

GC = ∪O(n,C) ∪ PGC , where GC ∈ G is the set of normative goals of agent
C ∈ A, n ∈ N is an adoption norm, O(n,C) is the obligation for C to respect norm n
resulting in its normative goals, and PGC ∈ G are the personal goals of C.

12



5.2 Example 2

In this paragraph, we explain the notions of positive and negative consequences to a
norm violation. A positive consequence is adding a goal to the existing ones whereas
a negative consequence forbid the realization of a goal. We further explain with our
example. Let’s assume that the parent believes that, in sequence 2, the child depends
on the virtual agency to hide its information to parents. However, the parent violates its
obligation to respect it and looks up the child’s information. One possible sanction is
that the parent cannot advertise its profile at the agency any longer, which means that
this goal is unrealizable. In the case of the violation sanctioned by the removal of the
goal g2, the obligation O(n2, P ) is not possible any longer as agent P cannot advertise
its profile at the agency, it cannot depend on the agency to get the child information
any longer. Moreover, agent P cannot achieve its personal goal g1: adopt a child, any
longer as g2 is a normative goal needed for agent P to achieve g1. And the violations
are: V −(n2, P ) = g2: agent P violating norm n2 will not be able to achieve goal g2,
advertise its profile, because g2 is removed.

As a consequence, the parent cannot adopt a child. Another possible sanction is that
the parent must make a donation, e.g. pay a fee, in which case a new goal is added to
the parent. As a result, until the parent has fulfill this new obligation, it cannot continue
the process.

dep(P ) = (2, C, VA) = g14: agent P believes that in sequence 2, agent C depends
on agent VA to achieve its goal g14: no child look up. Where the obligations are:

O(n1, C) = g9: agent C has the obligation to fulfill norm n1 to achieve goal g9,
select parent profile.

O(n2, P ) = g14: agent P has the obligation to fulfill norm n2 to achieve goal g14,
no look up child.

V +(n2, P ) = g15: agent P violating norm n2 will not be able to achieve goal g2,
advertise its profile, because a new goal g15, make a donation, is added. Until this new
goal is achieved, g2 cannot be achieved.

In the case of the violation sanctioned with the addition of the goal g15, we note that
a mechanism is needed to make sure that the new goal is fulfilled before agent P can
further proceeds.

6 Related work

Castelfranchi [11] introduces concepts like groups and collectives from social theory
in agent theory, both to enrich agent theory and to develop experimental, conceptual
and theoretical new instruments for the social sciences. For further work on the use of
the concept of conviviality in computer science and multiagent system see [6, 8, 5, 7].
A large body of work on design has been produced, to only cite a few: the AOSE
methodology [20], GAIA [12], the PASSY methodology [13].

7 Summary

– To express the temporal aspects of goal-oriented agents’ interactions in multi-agent
systems, we use sequences of dependence networks.

13



– To take into account the individual perspectives of agents for the design of convivial
multi-agent systems, we model one dependence network for each agent.

– To design interaction mechanisms that ensure conviviality in multi-agent systems,
we use norms.

We apply the social viewpoints on multiagent systems to the concept of conviviality.
We use goal refinement within dependence networks by adding and removing goals.

We obtain the following results.

1. By introducing a temporal dimension to out models, we can model the dynamic
aspects of conviviality, such as Ashby’s observation that enforcing conviviality for
the majority re-inforces non-conviviality for minority. Moreover, we can model
conviviality by allowing the desired conditions for social interaction, e.g. the cre-
ation of new dependence networks and change of the existing ones.

Topics for further research are: We can extend the social models (for example with
privacy and community identity) to cover a wider range of notions of conviviality. For
instance, Polany’s notion of empathy, which needs trust, shared commitments and mu-
tual efforts to build up and maintain conviviality will benefit from such extensions. We
can use nested modalities representing agent profiles to model such empathy and related
notion of conviviality.

14



Bibliography

[1] TOOLS Europe 2001: 38th International Conference on Technology of Object-
Oriented Languages and Systems, Components for Mobile Computing, Zurich,
Switzerland, 12-14 March 2001. IEEE Computer Society, 2001.

[2] Systems and software engineering - recommended practice for architectural de-
scription of software-intensive systems. Technical report, 2007.

[3] Guido Boella, Luigi Sauro, and Leendert W. N. van der Torre. Social viewpoints
on multiagent systems. In AAMAS, pages 1358–1359, 2004.

[4] Paolo Bresciani, Anna Perini, Paolo Giorgini, Fausto Giunchiglia, and John My-
lopoulos. Tropos: An agent-oriented software development methodology. Au-
tonomous Agents and Multi-Agent Systems, 8(3):203–236, 2004.

[5] Patrice Caire. A normative multi-agent systems approach to the use of conviviality
for digital cities. In Pablo Noriega and Julian Padget, editors, Proceedings of The
International Workshop on Coordination, Organization, Institutions and Norms in
Agent Systems (COIN), pages 15–26.

[6] Patrice Caire. Conviviality for ambient intelligence. In Patrick Olivier and Chris-
tian Kray, editors, Proceedings of Artificial Societies for Ambient Intelligence, Ar-
tificial Intelligence and Simulation of Behaviour (AISB’07), pages 14–19, 2007.

[7] Patrice Caire. A critical discussion on the use of the notion of conviviality for
digital cities. In Proceedings of Web Communities 2007, pages 193–200, 2007.

[8] Patrice Caire. Designing convivial digital cities. In O. Stock A. Nijholt and
T. Nishida, editors, Proceedings of the 6th Workshop on Social Intelligence Design
(SID’07), pages 25–40, 2007.

[9] Patrice Caire, Serena Villata, Guido Boella, and Leendert van der Torre. Convivi-
ality masks in multiagent systems. In Lin Padgham, David C. Parkes, Jörg Müller,
and Simon Parsons, editors, AAMAS (3), pages 1265–1268. IFAAMAS, 2008.

[10] C. Castelfranchi. Modeling social action for AI agents. Artificial Intelligence,
103(1-2):157–182, 1998.

[11] C. Castelfranchi. The micro-macro constitution of power. Protosociology,
18:208–269, 2003.

[12] Luca Cernuzzi and Franco Zambonelli. Dealing with adaptive multi-agent orga-
nizations in the gaia methodology. In Jörg P. Müller and Franco Zambonelli, edi-
tors, AOSE, volume 3950 of Lecture Notes in Computer Science, pages 109–123.
Springer, 2005.

[13] Antonio Chella, Massimo Cossentino, Luca Sabatucci, and Valeria Seidita. Agile
passi: An agile process for designing agents. Comput. Syst. Sci. Eng., 21(2), 2006.

[14] Thomas Erickson and Wendy A. Kellogg. Social translucence: an approach to
designing systems that support social processes. ACM Trans. Comput.-Hum. In-
teract., 7(1):59–83, 2000.

[15] Eduardo Rodrigues Gomes, Elisa Boff, and Rosa Maria Vicari. Social, affective
and pedagogical agents for the recommendation of student tutors. In Proceedings
of Intelligent Tutoring Systems, 2004.

15



[16] Wolfgang Hofkirchner. Unity through diversity.dialectics - systems thinking -
semiotics. Trans, Internet journal for cultural sciences, 1(15), 2004.

[17] Ivan Illich. Tools for Conviviality. Marion Boyars Publishers, August 1974.
[18] Bertrand Meyer. Systematic concurrent object-oriented programming. In

Raimund K. Ege, Madhu S. Singh, and Bertrand Meyer, editors, TOOLS (11),
page 553. Prentice Hall, 1993.

[19] Bertrand Meyer. At the edge of design by contract. In TOOLS (38) [1], page 3.
[20] James Odell, Paolo Giorgini, and Jörg P. Müller, editors. Agent-Oriented Software

Engineering V, 5th International Workshop, AOSE 2004, New York, NY, USA, July
19, 2004, Revised Selected Papers, volume 3382 of Lecture Notes in Computer
Science. Springer, 2004.

[21] Rohit Parikh. Social software. Synthese, 132(3):187–211, 2002.
[22] Loris Penserini, Anna Perini, Angelo Susi, and John Mylopoulos. High variability

design for software agents: Extending tropos. TAAS, 2(4), 2007.
[23] M. David Sadek, Philippe Bretier, and E. Panaget. ARTIMIS: Natural dialogue

meets rational agency. In International Joint Conferences on Artificial Intelligence
(2), pages 1030–1035, 1997.

[24] Jaime Simão Sichman and Rosaria Conte. Multi-agent dependence by dependence
graphs. In Procs. of The First International Joint Conference on Autonomous
Agents & Multiagent Systems, AAMAS 2002, pages 483–490. ACM, 2002.

[25] Claus Weyrich. Orientations for workprogramme 2000 and beyond. Information
society technologies report, Information Society Technologies Advisory Group,
September, 17 1999.

16




