
Combining Processor Virtualization and

Split Compilation for

Heterogeneous Multicore Embedded Systems

Erven Rohou

INRIA
Campus de Beaulieu, 35042 Rennes CEDEX, France

erven.rohou@inria.fr

Abstract. Complex embedded systems have always been heterogeneous
multicore systems. Because of the tight constraints on power, perfor-
mance and cost, this situation is not likely to change any time soon. As
a result, the software environments required to program those systems
have become very complex too.
We propose to apply instruction set virtualization and just-in-time com-
pilation techniques to program heterogeneous multicore embedded sys-
tems, with several additional requirements:
– the environment must be able to compile legacy C/C++ code to a

target independent intermediate representation;
– the just-in-time (JIT) compiler must generate high performance code;
– the technology must be able to program the whole system, not just

the host processor.
Advantages that derive from such an environment include, among others,
much simpler software engineering, reduced maintenance costs, reduced
legacy code problems. . . It also goes beyond mere binary compatibility
by providing a better exploitation of the hardware platform.
We also propose to combine processor virtualization with split compila-
tion to improve the performance of the JIT compiler. Taking advantage
of the two-step compilation process, we want to make it possible to run
very aggressive optimizations online, even on a very constraint system.

Keywords. heterogeneous multicore, virtualization, compilation, byte-
code, annotations

1 Introduction

Complex embedded systems must provide a wide range of dedicated and de-
manding functionalities, such as communication, multimedia and user interface.
Given their tight area and power constraints, it is impossible to provide those
functions using homogeneous programmable architectures. Rather, they are com-
posed of different subsystems, typically a host microcontroller running the sys-
tem software (OS, user interface, peripheral drivers), a number of heterogeneous
dedicated processors, such as DSP or VLIW, and dedicated hardware.

Dagstuhl Seminar Proceedings 08441 
Emerging Uses and Paradigms for Dynamic Binary Translation 
http://drops.dagstuhl.de/opus/volltexte/2009/1887

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62914006?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Erven Rohou

In the recent years, multicore processors have become mainstream also for
general-purpose computing, exposing to a larger audience the need to better
handle multiprocessing at the software level. Several roadmap documents [1,2,3]
predict that, by the end of the next decade, computing systems — both general
purpose and embedded — will feature many hundreds of cores.

This research project proposes to extend the domain of application of pro-
cessor virtualization and to combine it with split compilation (also known as
multi staged compilation) in the context of heterogeneous multicore systems.
The anticipated goals are:

– to greatly reduce the burden put on software developers because of the main-
tenance of numerous compilers and tools needed to support various platforms
(different models of cell phones, DVD players. . . ), and to give them a sim-
plified homogeneous view of their target systems;

– to improve the applicability of processor virtualization and the performance
of programs running on top of such a layer, by making virtualization possible
from the C (or C++) language;

– to open embedded systems to third-party developers, and to enable indepen-
dent development of high performance application running not only on the
host processor, but also on the more powerful media processors;

– to make aggressive runtime optimizations possible even for embedded sys-
tems thanks to split compilation;

– to propose a solution to the problem of application sustainability, taking
advantage of virtualization to let applications survive architectures and to
exploit new hardware features or additional degrees of parallelism, and at
the same time, to free architects from the constraints of binary compatibility
and legacy code.

The following section reviews the state of the art related to both virtualiza-
tion and split compilation. Section 3 then details our proposal. We conclude in
Section 4.

2 State of the Art – Related Work

2.1 Virtualization

Processor virtualization is not a new idea. It was already well known when it
has been made popular for the PC market by Java [4] two decades ago, and
today dedicated versions (Java Micro Edition) specifically target the embbeded
domain.

CLI (Common Language Infrastructure) is the latest widespread processor
independent format. Initially introduced by Microsoft under the name .NET, it
is now an international standard [5,6]. CLI is multi language, it also support
managed as well as unmanaged code. In other words it can be used for high level
programmation paradigms (object orientation, garbage collection. . . ) but it can
also express the typical low-level programming style of the C language and it can



Combining Virtualization and Split Compilation 3

achieve better performance than Java. There are open source initiatives: Mono
[7], Portable.NET [8] as well as commercial offers: the MicroFramework [9] for
the embedded world from Microsoft.

Even though the processor virtualization technology is quite mature and
popular, nowadays Java and CLI are applied only to the host processor of an
embedded system. Still, we have shown that CLI makes a compact program
representation [10], and that the bytecode can be efficiently compiled to native
code [11]. Our research has been implemented in the open source compiler GCC
[12] and contributed back to the community [13].

2.2 Split compilation

Split (or multi staged) compilation refers to the fact that the compilation process
may be decomposed into several steps. Some standard static compilers already
implement this strategy to some degree. For example, the GCC compiler [12]
has two internal representations: the first one (GIMPLE) is a high level, target-
independent representation, whose abstractions are much closer to the semantics
of the source program; the second one (RTL) is a much lower level representation
closer to the processor instruction set.

This definition of split compilation easily extends to all steps of a program
“lifetime”: static compilation, linking, installation, loading, runtime, and even
the time between different runs (sometimes refered to as idle time). Each step
brings additional knowledge about the runtime environment (shared libraries,
operating system, processor, input values), opening the door to new classes of
optimizations. Link time optimizers have the visibility of the whole application
and apply interprocedural analyses and transformations (for example alto [14],
or Diablo [15]). Runtime optimizations are applied by JIT compilers [16] and
dynamic binary rewriters [17,18]. Idle time optimizers reoptimize an existing
binary, taking into account profiling information produced by previous runs of
the application (for example, Morph [19]).

LLVM [20] is an approach that aims to make lifelong program analysis and
transformation available for arbitrary software, and in a manner that is trans-
parent to programmers.

It is also a known fact that static optimizations can be too aggressive, to
the point that some dynamic optimizers undo at runtime the transformations
applied by the static compiler [21].

During the transformation from high level language, optimizers gain increas-
ing knowledge about the final runtime environment, but they also gradually lose
semantical information (arrays become pointers, typed integers become 32-bit
amorphous values, etc.) There have been many attempts to help compilers with
information it cannot derive by itself (C pragmas, HPF directives, OpenMP,
DyC [22], aC# [23]), or to propagate information while lowering the program
representation in order to make runtime optimizations more efficient (annota-
tions in Java class file for register allocation [24,25], array bound checks removal
[26], side effect analysis [27], etc. [28]).



4 Erven Rohou

Our own contribution in this field consisted in investigating the addition of
annotation to the CLI file format for the benefit of a potential runtime vectorizer
[29].

3 Proposal

Embedded systems have always been heterogeneous multicores. The hard con-
straints in terms of cost, area, performance, power consumption and real-time
simply make a general purpose processor unfit for the task. The restricted ap-
plication domain they serve makes symmetric multiprocessing very inefficient.
With the exception of the host microcontroller, most hardware components used
to be dedicated accelerators. However, the fixed cost of the design of a chip in the
most advanced technologies now plays in favor of more programmable systems.

In today’s PC market, multicore computers are sold for less than 400 euros
at local supermarkets. Since technological and economical reasons have put a
stop to the increase of clock frequency, performance improvements now come in
the form of additional parallelism. It is expected that the number of available
cores will grow to reach several orders of magnitude [1,2,3] by the end of the
next decade.

Applications have a much longer lifetime than hardware. Most of them have
been written with a sequential model in mind, or at best for a limited amount of
parallelism. And while the number of available cores on a system is approaching
hundreds, maybe thousands in the not-so-far future, it is unconceivable to rewrite
millions of lines of code at each generation to exploit them. It will be increasingly
important to be able to run applications on architectures with a higher degree of
parallelism than they were designed for, and with different kinds of processors.

This document proposes to extend the split compilation approach and to
combine it with processor virtualization to improve on a number of issues related
to programming heterogeneous multicore systems.

Development Tools Developers need a complete toolchain for each kind of
core present on their systems. Each compiler might (and often does) come
from a different vendor, and thus it might be based on its own technology,
controlled by its own set of command-line arguments, and expose specific
optimization behavior to the programmer. Maintaining these tools, while not
of theoretical content, is nevertheless a significant burden (and cost!) to the
developers. Virtualization can contribute to the simplification by exposing
a single environment to the developers and by postponing the specialization
of the tools to the systems (e.g. to a JIT).

Debuggability, reproducibility Because the same application needs to run
on different pieces of hardware, the source code tends to contain many con-
ditional preprocessing directives (#ifdef in C). And because performance
is critical, programmers rely on compiler intrinsics and adhoc command line
flags to drive the compiler. This severely impacts code readability and thus
productivity. Similarly, the application binary tested and debugged by the



Combining Virtualization and Split Compilation 5

programmer on his workstation is different from the one that eventually
runs on the system. Virtualization makes it possible to run the same binary

program on many hardware variants, including the developer’s workstation.
Platform Openness Independent software vendors rarely have access to the

tools to program the most powerful parts of the system, namely the DSP
and the media processors. They are given access only the host processor,
typically through a Java virtual machine and, most likely, a Java bytecode
interpreter. Virtualization can make the whole platform programmable, and
it opens the door to third-party high performance applications.

Binary Compatibility and Application Sustainability Hardware’s lifecy-
cle is much shorter than software’s. Successful hardware vendors often have
to make newer versions of their processors backward compatible, at a high
cost. Virtualization lets them introduce radically new and efficient architec-
tures, without having to worry about legacy code. But virtualization can
even go beyond mere compatibility. Since the native code is generated on
the system, old applications can exploit new hardware features that did not
even exist when the application was first compiled.

Java applications have the reputation to be slow. This could be because the
first virtual machines only had an interpreter, or a simple JIT compiler. As a
consequence, all bytecode formats are often a priori perceived as inappropriate
for performance intensive applications and for embedded systems. However, we
have shown that a bytecode format produces a code size similar to dense instruc-
tion sets [10]. Moreover, we also proved that the bytecode representation can be
compiled to native code with performance similar to static compilation [11].

As of today, virtualization is applied only to the host processor. In order
to develop the above mentioned directions, we propose to extend it along three
main directions:

– for languages such as C and C++;
– for high performance;
– for whole system programming, i.e. not only host processor, but also DSP,

media processors and accelerators, grid of computing nodes, etc.

Processor virtualization can be of a great help to program heterogeneous
multicore systems. Since the final code generation occurs at run time, mapping
and scheduling of computations can be performed across all available processing
nodes, independently from their underlying architectures.

Processor virtualization provides the framework for split compilation. The
application is compiled in two stages: firstly, from source code to the intermediate
format; secondly, from the intermediate format to native code. The latter occurs
on the system and it is CPU and memory bound, but the former occurs on the
developer’s powerful workstation. Another significant difference is that the first
one does not know the final target the code will run on, while the second has full
knowledge. Dynamic optimization is not a replacement for static optimization,
but a complementary optimization opportunity that leverages information not
available until runtime.



6 Erven Rohou

We propose to take advantage of this two-step situation to transfer the com-
plexity of compiler optimizations as much as possible to the first stage. When
an optimization cannot be applied — either because it is target-dependent, or
because it may increase code size too much, or because it is too costly to be
applied at runtime — it might still be considered: an analysis can be run and its
results encoded into annotations embedded in the intermediate format. The sec-
ond stage can rely on the annotations and skip expensive analysis to implement
straightforward code transformations. Annotations may also express the hard-
ware requirements or characteristics of a piece of code (I/O required, benefits
from hardware floating point support, etc.)

This multi stage process makes it possible to apply to embedded systems the
most recent aggressive techniques like iterative compilation [30] or transforma-
tion in the polyhedral model [31].

Many complex optimizations, especially those considered too complex to fit
a JIT compiler, can be revisited in the light of split compilation.

4 Conclusion

Recent technology trends started changing the way advanced architectures will
look like in the future. The clock frequency has reached its limit, and additional
performance will now come from an increased number of cores on the processor.
This phenomenon drastically changes the way applications must be handled.
Multicores will be ubiquitous. Applications will have to exploit an increasing
degree of parallelism, made available in many possible ways: accelerators, grids
of computing nodes, DSP. . .

Processor virtualization is a natural way to address heterogeneity. However,
JIT compilers are constrained by the amount of memory and CPU time they
can consume. In this paper, we propose to combine processor virtualization with
split compilation techniques to overcome those limitations. An offline compiler
can afford very aggressive analyses to collect relevant information about the
application or the expected benefit of potential optimizations. The JIT compiler
can rely on the precomputed information and combine it with the additional
runtime knowledge to apply powerful transformations.

The ability to handle legacy code will be of utmost importance and processor
virtualization and just-in-time (JIT) compilation combined with split compila-
tion appears to be a reasonable way to efficiently handle the diversity of available
computing resources in the near future.

References

1. De Bosschere, K., Luk, W., Martorell, X., Navarro, N., O’Boyle, M., Pnev-
matikatos, D., Ramirez, A., Sainrat, P., Seznec, A., Stenström, P., Temam, O.
In: High-Performance Embedded Architecture and Compilation Roadmap. Volume
4050/2007 of Lecture Notes in Computing Science. Springer Berlin / Heidelberg
(2007) 5–29



Combining Virtualization and Split Compilation 7

2. Asanović, K., Bodik, R., Catanzaro, B., Gebis, J., Husbands, P., Keutzer, K., Pat-
terson, D., Plishker, W., Shalf, J., Williams, S., Yelik, K.: The Landscape of Parallel
Computing Research: A View from Berkeley. Technical Report UCB/EECS-2006-
183, EECS Department, University of California at Berkeley (2006)

3. Computing Systems Consultation Meeting: Research Challenges for Computing
Systems – ICT Workprogramme 2009–2010. European Commission – Information
Society and Media, Braga, Portugal (2007)

4. Lindholm, T., Yellin, F.: The Java Virtual Machine Specification. 2nd edn.
Addison-Wesley (1999)

5. ECMA International Rue du Rhône 114, 1204 Geneva, Switzerland: Common
Language Infrastructure (CLI) Partitions I to IV. 4th edn. (2006)

6. International Organization for Standardization and International Electrotechnical
Commission: International Standard ISO/IEC 23271:2006 – Common Language
Infrastructure (CLI), Partitions I to VI. 2nd edn. (2006)

7. Novell: The Mono Project. (http://www.mono-project.com)

8. Southern Storm Software, Pty Ltd: DotGNU project. (http://dotgnu.org)

9. Microsoft: Introducing the .NET Micro Framework. Product Positioning and
Technology White Paper (2007)

10. Costa, R., Rohou, E.: Comparing the Size of .NET Applications with Native Code.
In: Proc. of the 3rd International Conference on Hardware/Software Codesign and
System Synthesis, Jersey City, NJ, USA (2005) 99–104

11. Cornero, M., Costa, R., Fernández Pascual, R., Ornstein, A.C., Rohou, E.: An
Experimental Environment Validating the Suitability of CLI as an Effective De-
ployment Format for Embedded Systems. In: HiPEAC’08. Volume 4917 of Lecture
Notes in Computer Science., Göteborg, Sweden (2008) 130–144

12. Free Software Foundation: The GNU Compiler Collection. (http://gcc.gnu.org)

13. Costa, R., Ornstein, A., Rohou, E.: CLI Back-End in GCC. In: GCC Developers’
Summit, Ottawa, Canada (2007) 111–116

14. Muth, R., Debray, S., Watterson, S., De Bosschere, K.: alto: a link-time optimizer
for the Compaq Alpha. Software: Practice and Experience 31 (2001) 67–101

15. Van Put, L., Chanet, D., De Bus, B., De Sutter, B., De Bosschere, K.: Diablo:
a reliable, retargetable and extensible link-time rewriting framework. In: Proc. of
the International Symposium On Signal Processing And Information Technology,
Athens, Greece (2005) 7–12

16. Paleczny, M., Vick, C., Click, C.: The Java HotSpotTM Server Compiler. In: Proc.
of the Java Virtual Machine Research and Technology Symposium, Monterey, CA,
USA (2001)

17. Bala, V., Duesterwald, E., Banerjia, S.: Dynamo: A transparent dynamic opti-
mization system. In: Proc. of the Conference on Programming Language Design
and Implementation. (2000) 1–12

18. Desoli, G., Mateev, N., Duesterwald, E., Faraboschi, P., Fisher, J.: DELI: a new
run-time control point. In: Proc. of 35th Annual International Symposium on
Microarchitecture, Istanbul, Turkey (2002) 257–268

19. Zhang, X., Wang, Z., Gloy, N., Chen, J.B., Smith, M.D.: System support for auto-
matic profiling and optimization. In: Proc. of the 16th Symposium on Operating
System Principles, Saint-Malo, France (1997) 15–26

20. Lattner, C., Adve, V.: LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation. In: Proc. of the International Symposium on Code
Generation and Optimization, Palo Alto, CA, USA (2004)



8 Erven Rohou

21. Hazelwood, K., Conte, T.M.: A lightweight algorithm for dynamic if-conversion
during dynamic optimization. In: Proc. of the International Conference on Parallel
Architectures and Compilation Techniques, Philadelphia, PA, USA (2000) 71–80

22. Grant, B., Mock, M., Philipose, M., Chambers, C., Eggers, S.J.: DyC: An Expres-
sive Annotation-Directed Dynamic Compiler for C. Technical Report UW-CSE-
97-03-03, Univ. of Washington (1999)

23. Cazzola, W., Cisternino, A., Colombo, D.: [a]C#: C# with a Customizable Code
Annotation Mechanism. In: Proc. of the 10th Symposium on Applied Computing,
Santa Fe, NM, USA, ACM Press (2005) 1274–1278

24. Azevedo, A., Nicolau, A., Hummel, J.: Java annotation-aware just-in-time (AJIT)
compilation system. In: Java Grande. (1999) 142–151

25. Jones, J.: Annotating Mobile Code for Performance. PhD thesis, University of
Illinois at Urbana Champaign (2002)

26. Pominville, P., Qian, F., Vallée-Rai, R., Hendren, L., Verbrugge, C.: A framework
for optimizing Java using attributes. In: Proc. of the 10th International Conference
on Compiler Construction. Volume 2027 of Lecture Notes in Computer Science.,
Genova, Italy (2001) 334–354

27. Le, A., Lhoták, O., Hendren, L.: Using inter-procedural side-effect information
in JIT optimizations. Technical Report 2004-5, McGill University - School of
Computer Science (2004)

28. Krintz, C., Calder, B.: Using annotations to reduce dynamic optimization time. In:
Proc. of the Conference on Programming Language Design and Implementation,
Snowbird, UT, USA (2001) 156–167

29. Leśnicki, P., Cornero, M., Cohen, A., Fursin, G., Ornstein, A., Rohou, E.: Split
compilation: an application to just-in-time vectorization. In: Workshop on GCC
for Research in Embedded and Parallel Systems (GREPS’07), Braşov, Romania
(2007)

30. Bodin, F., Kisuki, T., Knijnenburg, P., O’Boyle, M., Rohou, E.: Iterative compi-
lation in a non-linear optimisation space. In: Workshop on Profile and Feedback-
Directed Compilation, in Conjunction with PACT’98, Paris, France (1998)

31. Bastoul, C., Cohen, A., Girbal, S., Sharma, S., Temam, O.: Putting polyhedral
loop transformations to work. In: Proc. of the 16th International Workshop on Lan-
guages and Compilers for Parallel Computing, College Station, TX, USA, Springer-
Verlag (2003) 23–30


	Combining Processor Virtualization and Split Compilation for Heterogeneous Multicore Embedded Systems
	Erven Rohou



