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1 LIAFA, Université Paris-Diderot and CNRS, Case 7014, 75205 Paris Cedex 13, France.
E-mail address: Jean-Eric.Pin@liafa.jussieu.fr

Abstract. This survey paper presents the success story of the topological approach to
automata theory. It is based on profinite topologies, which are built from finite topogical
spaces. The survey includes several concrete applications to automata theory.

In mathematics, p-adic analysis is a powerful tool of number theory. The p-adic topology
is the emblematic example of a profinite topology, a topology that is in a certain sense built
from finite topological spaces. The aim of this survey is to convince the reader that profinite
topologies also play a key role in automata theory, confirming once again the following quote
of Marshall Stone [38, p.814]:

’A cardinal principle of modern mathematical research may be stated as a
maxim: “One must always topologize” ’.

Unfortunately, this topic is rather abstract and not really intuitive. In particular, the
appropriate framework to present the whole theory, namely uniform spaces, is unlikely to
be sufficiently familiar to the average participant to STACS. To thwart this “user unfriendly”
aspect, I downgraded from uniform spaces to metric spaces in this survey. This is sufficient
to address most of the theory and it certainly makes the presentation easier to follow. When
uniform spaces are really needed, I simply include a short warning addressed to the more
advanced readers, preceded by the sign �. More details can be found in specialized articles
[1, 2, 3, 5, 27, 30, 40].

Profinite topologies for free groups were explored by M. Hall in [13]. However, the idea
of profinite topologies goes back at least to Birkhoff [8, Section 13]. In this paper, Birkhoff
introduces topologies defined by congruences on abstract algebras and states that, if each
congruence has finite index, then the completion of the topological algebra is compact.
Further, he explicitly mentions three examples: p-adic numbers, Stone’s duality of Boolean
algebras and topologization of free groups. The duality between Boolean algebras and Stone
spaces also appears in [1], [2, Theorem 3.6.1] and [31]. It is also the main ingredient in [12],
where the extended duality between lattices and Priestley spaces is used. This duality
approach is so important that it would deserve a survey article on its own. But due to the
lack of space, I forwent, with some regrets, from presenting it in the present paper. The
interested reader will find duality proofs of the results of Sections 4 and 5 in [12].
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The survey is organised as follows. Section 1 is a brief reminder on metric spaces.
Profinite words are introduced in Section 2 and used to give equational descriptions of
varieties of finite monoids in Section 3 and of lattices of regular languages in Sections 4 and
5. We discuss various extensions of the profinite metric in Section 6 and we conclude in
Section 7.

1. Metric spaces

A metric d on a set E is a map d : E → R+ from E into the set of nonnegative real
numbers satisfying the three following conditions, for every x, y, z ∈ E:

(1) d(x, y) = 0 if and only if x = y,

(2) d(y, x) = d(x, y),

(3) d(x, z) 6 d(x, y) + d(y, z)

An ultrametric satisfies the stronger property

(3′) d(u,w) 6 max{d(u, v), d(v,w)}.

A metric space is a set E together with a metric d on E. The topology defined by d is
obtained by taking as a basis the open ε-balls defined for x ∈ E and ε > 0 by B(x, ε) =
{y ∈ E | d(x, y) < ε}. In other words, an open set is a (possibly infinite) union of open
balls. The complement of an open set is called a closed set. A set is clopen if it is both open
and closed. Every metric space is Hausdorff, which means that any two distinct points can
be separated by open sets.

A Cauchy sequence is a sequence (xn)n>0 of elements of E such that for each ε > 0,
there exists a integer k such that, for each n > k and m > k, d(xn, xm) < ε.

Let (E, d) and (E′, d′) be two metric spaces. A function ϕ from E into E′ is said to be
uniformly continuous if for each ε > 0, there exists δ > 0 such that the relation d(x, y) < δ
implies d′(ϕ(x), ϕ(y)) < ε. If ϕ is uniformly continuous, the image under ϕ of a Cauchy
sequence of E is a Cauchy sequence of E′. We say that ϕ is a uniform isomorphism if it is
a uniformly continuous bijection and ϕ−1 is also uniformly continuous. Two metric spaces
are uniformly isomorphic is there is a uniform isomorphism between them.

A metric space is complete if every Cauchy sequence is convergent. The completion of a

metric space E is a complete metric space Ê together with an isometric embedding of E as

a dense subspace of Ê. One can prove that every metric space admits a completion, which
is unique up to uniform isomorphism. Further, if ϕ is a uniformly continuous function from

(E, d) in a metric space (E′, d′), ϕ admits a uniformly continuous extension ϕ̂ : Ê → E′

and this extension is unique.
The completion of E can be constructed as follows. Let C(E) be the set of Cauchy

sequences in E. Define an equivalence relation ∼ on C(E) as follows. Two Cauchy sequences
x = (xn)n>0 and y = (yn)n>0 are equivalent if the interleave sequence x0, y0, x1, y1, . . . is

also a Cauchy sequence. The completion of E is defined to be the set Ê of equivalence

classes of C(E). The metric d on E extends to a metric on Ê defined by

d(x, y) = lim
n→∞

d(xn, yn)

where x and y are representative Cauchy sequences of elements in Ê. The definition of the
equivalence insures that the above definition does not depend on the choice of x and y in
their equivalence class and the fact that R is complete ensures that the limit exists.
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2. Profinite words

In this section, A denotes a finite alphabet. The set of profinite words is defined as the
completion of A∗ for a certain metric. One can actually choose one of two natural metrics,
which define the same uniform structure. One makes use of finite automata and the other
one of finite monoids.

2.1. Separating words

A deterministic finite automaton (DFA) separates two words if it accepts one of them
but not the other. Similarly, a finite monoid M separates two words u and v of A∗ if there
is a monoid morphism ϕ : A∗ → M such that ϕ(u) 6= ϕ(v).

Example 2.1.

(1) The words ababa and abaa can be separated by a group of order 2. Indeed, let
π : A∗ → Z/2Z be the morphism defined by π(x) = |x| (mod 2). Then π(ababa) = 1
and π(abaa) = 0 and hence π separates u and v.

(2) More generally, two words u and v of unequal length can be separated by a finite
cyclic group. Indeed, suppose that |u| < |v| and let n = |v|. Let π : A∗ → Z/nZ be
the morphism defined by π(x) = |x| (mod n). Then π(v) = 0 but π(u) 6= 0. A similar
idea can be applied if the number of occurrences of some letter a is not the same in
u and v.

(3) Let U2 be the monoid defined on the set {1, a, b} by the operation aa = ba = a,
bb = ab = b and 1x = x1 = x for all x ∈ {1, a, b}. Let u and v be words of {a, b}∗.
Then the words ua and vb can be separated by the morphism π : A∗ → U2 defined by
π(a) = a and π(b) = b since π(ua) = a and π(ub) = b.

These examples are a particular case of a general result.

Proposition 2.1. Any pair of distinct words of A∗ can be separated by a finite monoid.

Proof. Let u and v be two distinct words of A∗. Since the language {u} is regular, there
exists a morphism ϕ from A∗ onto a finite monoid M which recognizes it, that is, such that
ϕ−1(ϕ(u)) = {u}. It follows that ϕ(v) 6= ϕ(u) and thus ϕ separates u and v.

2.2. Profinite metrics

We now define two metrics on A∗ with the following idea in mind: two words are close
for d1 [d2] if a large DFA [monoid] is required to separate them. Let us denote by |A| the
number of states of a DFA A. Given two words u, v ∈ A∗, we set

r1(u, v) = min {|A| | A is a DFA that separates u and v}

r2(u, v) = min {|M | | M is a monoid that separates u and v}

We also set d1(u, v) = 2−r1(u,v) and d2(u, v) = 2−r2(u,v) with the usual conventions min ∅ =
+∞ and 2−∞ = 0.

Proposition 2.2. Let d be one of the functions d1 or d2. Then d is an ultrametric and it
satisfies the relations d(uw, vw) 6 d(u, v) and d(wu,wv) 6 d(u, v) for all u, v,w ∈ A∗.

Note that the topology induced on A∗ by d1 or d2 is discrete: every subset of A∗ is
clopen. Further, d1 and d2 define the same uniform structure.
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Proposition 2.3. The metrics d1 and d2 are uniformly equivalent. More precisely, the

following relation holds: 2
− 1

d1 6 d2 6 d1.

We let the reader verify that changing DFAs to NFAs in the definition of d1 would also
lead to a uniformly equivalent metric. Thus (A∗, d1) and (A∗, d2) are metric spaces, and
their completion are uniformly isomorphic. In the sequel, we shall only use d2 (rather than
d1) and simplify the notation to d.

The completion of (A∗, d), denoted by Â∗, is the set of profinite words on the alphabet
A. Let us state some useful properties.

Proposition 2.4.

(1) The concatenation product is a uniformly continuous from A∗ × A∗ to A∗.

(2) Every morphism ϕ from A∗ into a discrete finite monoid M is uniformly continuous.

It follows from Proposition 2.4 and from the density of A∗ in Â∗ that the product on

A∗ can be extended by continuity to Â∗. This extended product makes Â∗ a topological
monoid, called the free profinite monoid.

By the same argument, every morphism ϕ from A∗ onto a finite monoid M extends

uniquely to a uniformly continuous morphism from Â∗ onto M . However, there are some

noncontinuous morphisms form Â∗ onto a finite monoid. For instance, the morphism ϕ

from Â∗ to {0, 1}, defined by ϕ(u) = 1 if u ∈ A∗ and ϕ(u) = 0 otherwise, is not continuous
since ϕ−1(1) = A∗ is not closed. Now, the restriction of ϕ to A∗, which is continuous, has

a continuous extension to Â∗. But this extension maps every profinite word to 1 and is
therefore not equal to ϕ.

Another useful example is the following. The set 2A of subsets of A is a monoid under
union and the function c : A∗ → 2A defined by c(a) = {a} is a morphism. Thus c(u) is the

set of letters occurring in u. Now c extends into a uniformly continuous morphism from Â∗

onto 2A, also denoted c and called the content mapping.

Since A∗ embeds naturally in Â∗, every finite word is a profinite word. However, it
is relatively difficult to give “concrete” examples of profinite words which are not words.
One such example is the profinite word xω, associated with every finite word x. The formal
definition is

xω = lim
n→∞

xn!

and is justified by the fact that the sequence xn! has a limit in Â∗.

Proposition 2.5. For each word x, the sequence (xn!)n>0 is a Cauchy sequence. It con-

verges to an idempotent element of Â∗.

Proof. For the first part of the statement, it suffices to show that for p, q > n, xp! and
xq! cannot be separated by a monoid of size 6 n. Let indeed ϕ : A∗ → M be a monoid
morphism, with |M | 6 n, and put s = ϕ(x). Since M is finite, s has an idempotent power
e = sr, with r 6 n. By the choice of p and q, the integer r divides simultaneously p! and
q!. Consequently, sp! = sq! = e, which shows that M cannot separate xp! and xq!.

For n large enough, we also have ϕ(xn!)ϕ(xn!) = ee = e = ϕ(xn!). It follows that the
limit of the sequence (xn!)n>0 is idempotent.

Note that xω is simply a notation and one should resist the temptation to interpret
it as an infinite word. To get the right intuition, let us compute the image of xω under a
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morphism onto in a finite monoid. Let M be a finite monoid, ϕ : A∗ → M a morphism and
let s = ϕ(u). Then the sequence sn! is ultimately equal to sω, the unique idempotent of the
subsemigroup of M generated by s. Consequently, we obtain the formula ϕ̂(xω) = ϕ(x)ω ,
which justifies the notation xω.

Another convenient way to define profinite words is to use projective systems (see [3] for
more details). Suppose we are given, for each morphism ϕ from A∗ onto a finite monoid M ,
an element xϕ of M . This system of elements is projective if for any surjective morphisms
ϕ : A∗ → M and π : M → N , one has xπ◦ϕ = π(xϕ).

Proposition 2.6. For each projective system of elements (xϕ), there is a unique profinite
word x such that, for every morphism ϕ : A∗ → M , one has ϕ̂(x) = xϕ. In particular, if
two profinite words u and v satisfy ϕ̂(u) = ϕ̂(v) for all morphisms ϕ onto a finite monoid,
then they are equal.

We now state the most important topological property of Â∗.

Theorem 2.7. The set of profinite words Â∗ is compact.

�
If A is infinite, a profinite uniform structure can also be defined on A∗ and its completion

is still a compact space. However, this space is not metrizable anymore.

What about sequences? First, every profinite word is the limit of a Cauchy sequence
of words. Next, a sequence of profinite words (un)n>0 is converging to a profinite word u if
and only if, for every morphism ϕ from A∗ onto a finite monoid, ϕ̂(un) is ultimately equal
to ϕ̂(u).

Here is another example. Recall that a nonempty subset I of a monoid M is an ideal
if, for each s ∈ I and x, y ∈ M , xsy ∈ I. One can show that any finite monoid and any
compact monoid has a unique minimal ideal (for inclusion), called the minimal ideal of M .

Let us fix a total order on the alphabet A and let u0, u1, . . . be the ordered sequence of
all words of A∗ in the induced shortlex order. For instance, if A = {a, b} with a < b, the
first elements of this sequence would be

1, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab, bba, bbb, aaaa, . . .

It is proved in [32, 4] that the sequence of words (vn)n>0 defined by

v0 = u0, vn+1 = (vnun+1vn)(n+1)!

converges to a profinite word ρA, which is idempotent and belongs to the minimal ideal of

Â∗. We shall meet again this profinite word at the end of Section 5.2.

3. Equational definitions of varieties

A variety of monoids is a class of monoids closed under taking submonoids, quotients
and direct products. Similarly, a variety of finite monoids is a class of finite monoids
closed under taking submonoids, quotients and finite direct products. For instance, finite
groups form a variety of finite monoids (the trick is that a submonoid of a finite group is
a group). Another famous example is the variety of finite aperiodic monoids. Recall that
a finite monoid M is aperiodic if there exists a positive integer n such that, for all x ∈ M ,
xn = xn+1.
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Formally, an identity is a pair (u, v) of words of A∗, for some finite alphabet A. A
monoid M satisfies the identity u = v if, for every morphism ϕ : A∗ → M , ϕ(u) = ϕ(v).
It is a well known theorem of Birkhoff that varieties can be defined by a set of identities.
A variety that can be defined by a finite set of identities is said to be finitely based. For
instance, the variety of commutative monoids is finitely based, since it is defined by the
single identity xy = yx. But in general, a variety is not finitely based, even if it is generated
by a finite monoid. Consider the monoid M = {1, a, b, ab, ba, 0} defined by the relations
aa = bb = 0, aba = a and bab = b. It has been proved that the variety generated by M is
not finitely based.

An interesting question is to know whether varieties of finite monoids can also be defined
by identities. The problem was solved by several authors but the most satisfactory answer

is due to Reiterman [33]. A profinite identity is a pair (u, v) of profinite words of Â∗, for
some finite alphabet A. A finite monoid M satisfies the profinite identity u = v if, for every
morphism ϕ : A∗ → M , ϕ̂(u) = ϕ̂(v). Reiterman’s theorem is now the exact counterpart of
Birkhoff’s theorem:

Theorem 3.1. Every variety of finite monoids can be defined by a set of profinite identities.

For instance the variety of finite aperiodic monoids is defined by the identity xω = xω+1

and the variety of finite groups is defined by the identity xω = 1.

4. Recognizable languages and clopen sets

A series of results, mainly due to Almeida [1, 3], [2, Theorem 3.6.1] and Pippenger [31],
establishes a strong connection between regular languages and clopen sets. This section
gives a short overview of these results.

Recall that a subset P of a monoid M is recognizable if there exists a morphism ϕ from
M onto a finite monoid F such that P = ϕ−1(ϕ(P )). For instance, the recognizable subsets
of a free monoid are the regular languages.

The syntactic congruence of P is the congruence ∼P defined on M by u ∼P v if and
only if, for all x, y ∈ M , the conditions xuy ∈ P and xvy ∈ P are equivalent. The monoid
M/∼P is called the syntactic monoid of P .

In the context of uniform spaces, the morphisms are uniformly continuous. It is there-
fore natural to extend the notion of recognizable set as follows: A subset P of a compact
monoid M is recognizable if there exists a uniformly continuous morphism ϕ from M onto a
finite discrete monoid F such that P = ϕ−1(ϕ(P )). When M is a free profinite monoid, the
recognizable subsets have a nice topological characterization, due to Hunter [14, Lemma 4].

Proposition 4.1. Let P be a subset of Â∗. The following conditions are equivalent:

(1) P is clopen,

(2) the syntactic congruence of P is a clopen subset of Â∗ × Â∗,

(3) P is recognizable (in the topological sense).

Proof. Let us denote by ∼P the syntactic congruence of P and by η̂ : Â∗ → M its syntactic

morphism. Recall that s ∼P t if, for all u, v ∈ Â∗, the conditions usv ∈ P and utv ∈ P are
equivalent.
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(1) implies (2). It follows from the definition of ∼P that

∼P =
⋂

u,v∈cA∗

(
(u−1Pv−1 × u−1Pv−1) ∪ (u−1P cv−1 × u−1P cv−1)

)
(4.1)

If P is clopen, each set u−1Pv−1 is also clopen. Indeed, u−1Pv−1 is the inverse image of
the clopen set P under the continuous function x 7→ uxy. Now, Formula (4.1) shows that
∼P is closed.

In order to show that the complement of ∼P is closed, consider a sequence (sn, tn) of
elements of (∼P )c, converging to a limit (s, t). Since sn 6∼P tn, there exist some profinite

words un, vn such that unsnvn ∈ P and untnvn /∈ P . Since Â∗×Â∗ is compact, the sequence
(un, vn) has a convergent subsequence. Let (u, v) be its limit. Since both P and P c are

closed and since the multiplication in Â∗ is continuous, one gets usv ∈ P and utv /∈ P .
Therefore, s 6∼P t, which shows that (∼P )c is closed. Thus ∼P is clopen.

(2) implies (3). If ∼P is clopen, then for each s ∈ Â∗, there exists an open neighbour-
hood U of s such that U × U ⊆ ∼P . Therefore U is contained in the ∼P -class of s. This
proves that the ∼P -classes form an open partition of Â∗. By compactness, this partition
is finite and thus P is recognizable. Further, since each ∼P -class is open, the syntactic
morphism of P is continuous.

(3) implies (1). Let π : Â∗ → M be the syntactic morphism of P . Since P is recog-
nizable, M is finite. One has P = π−1(π(P )) and since M is finite, π(P ) is clopen in M .

Finally, since π is continuous, P is clopen in Â∗.

We now turn to languages of A∗.

Proposition 4.2. If L be a language of A∗, then L = L ∩ A∗. Further, the following
conditions are equivalent:

(1) L is recognizable,

(2) L = K ∩ A∗ for some clopen subset K of Â∗,

(3) L is clopen in Â∗,

(4) L is recognizable in Â∗ (in the topological sense).

Proof. The inclusion L ⊆ L ∩ A∗ is obvious. Let u ∈ L ∩ A∗ and let M be the syntactic
monoid of {u}. Since M separates u from any word v different from u, one gets r(u, v) 6 |M |
if u 6= v. Let (un)n∈N be a sequence of words of L converging to u. If d(un, u) < 2−|M |, one
has necessarily u = un and thus u ∈ L.

(1) implies (2). If L is recognizable, there is a morphism ϕ from A∗ onto a finite monoid
M such that L = ϕ−1(ϕ(L)). Let K = ϕ̂−1(ϕ(L)). Since M is discrete, ϕ(L) is a clopen
subset of M and since ϕ̂−1 is continuous, K is also clopen. Further, ϕ and ϕ̂ coincide on
A∗ and thus L = ϕ̂−1(ϕ(L)) ∩ A∗ = K ∩ A∗.

(2) implies (3). Suppose that L = K ∩ A∗ with K clopen. Since K is open and A∗ is

dense in Â∗, K ∩ A∗ is dense in K. Thus L = K ∩ A∗ = K = K. Thus L is clopen in Â∗.
(3) implies (4) follows from Proposition 4.1.

(4) implies (1). Let η̂ : Â∗ → F be the syntactic morphism of L and let P = η̂(L). Let
η be the restriction of η̂ to A∗. Then we have L = L ∩ A∗ = η̂−1(P ) ∩ A∗ = η−1(P ). Thus
L is recognizable.

We now describe the closure in Â∗ of a recognizable language of A∗.
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Proposition 4.3. Let L be a regular language of A∗ and let u ∈ Â∗. The following condi-
tions are equivalent:

(1) u ∈ L,

(2) ϕ̂(u) ∈ ϕ(L), for all morphisms ϕ from A∗ onto a finite monoid,

(3) ϕ̂(u) ∈ ϕ(L), for some morphism ϕ from A∗ onto a finite monoid that recognizes L,

(4) η̂(u) ∈ η(L), where η is the syntactic morphism of L.

Proof. (1) implies (2). Let ϕ be a morphism from A∗ onto a finite monoid F and let ϕ̂

be its continuous extension to Â∗. Then ϕ̂(L) ⊂ ϕ̂(L) since ϕ̂ is continuous, and ϕ̂(L) =
ϕ̂(L) = ϕ(L) since F is discrete. Thus if u ∈ L, then ϕ̂(u) ∈ ϕ(L).

(2) implies (4) and (4) implies (3) are trivial.
(3) implies (1). Let ϕ be a morphism from A∗ onto a finite monoid F . Let un be a

sequence of words of A∗ converging to u. Since ϕ̂ is continuous, ϕ̂(un) converges to ϕ̂(u).
But since F is discrete, ϕ̂(un) is actually ultimately equal to ϕ̂(un). Thus for n large enough,
one has ϕ̂(un) = ϕ̂(u). It follows by (3) that ϕ(un) = ϕ̂(un) ∈ ϕ(L) and since ϕ recognizes
L, we finally get un ∈ ϕ−1(ϕ(L)) = L. Therefore u ∈ L.

Let us denote by Clopen(Â∗) the Boolean algebra of all clopen sets of Â∗.

Theorem 4.4. The maps L 7→ L and K 7→ K ∩ A∗ define mutually inverse isomorphism

between the Boolean algebras Reg(A∗) and Clopen(Â∗). In particular, the following formulas
hold, for all L,L1, L2 ∈ Reg(A∗):

(1) Lc = (L)c,

(2) L1 ∪ L2 = L1 ∪ L2,

(3) L1 ∩ L2 = L1 ∩ L2.

Proof. Property (1) follows from Proposition 4.3. Indeed, let η be the syntactic morphism
of L. Then since L = η−1(η(L)) and Lc = η−1(η(L)c), one has η(Lc) = η(L)c. Therefore,
one gets the following sequence of equalities:

Lc = η̂−1(η(Lc)) = η̂−1(η(L)c) = [η̂−1(η(L))]c = (L)c

Property (2) is a general result of topology and (3) is a consequence of (1) and (2).

Theorem 4.4 shows that the closure operator behaves nicely with respect to Boolean
operations. It also behaves nicely for the left and right quotients and for inverse of mor-
phisms.

Proposition 4.5. Let L be a regular language of A∗ and let x, y ∈ A∗. Then x−1Ly−1 =
x−1Ly−1.

Proposition 4.6. Let ϕ : A∗ → B∗ be a morphism of monoids and L be a regular language
of B∗. Then ϕ̂−1(L) = ϕ−1(L).

5. Equational characterization of languages

A lattice of languages of A∗ is a set of regular languages of A∗ containing the empty
language ∅, the full language A∗ and which is closed under finite union and finite intersection.
The aim of this section is to show that each lattice can be, in a certain sense, defined by a
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set of profinite equations. These results were obtained jointly with Mai Gehrke and Serge
Grigorieff and first presented at ICALP’08 [12].

5.1. Lattices of languages

Formally, an explicit equation is a pair (u, v) of words of A∗ and a profinite equation is

a pair (u, v) of profinite words of Â∗. We say that a language L of A∗ satisfies the explicit
equation u → v if the condition u ∈ L implies v ∈ L and that it satisfies the profinite
equation u → v if the condition u ∈ L implies v ∈ L. Since L ∩A∗ = L, the two definitions
are consistent, that is, one can really consider explicit equations as a special case of profinite
equations. Proposition 4.3 leads immediately to some equivalent definitions:

Corollary 5.1. Let L be a regular language of A∗, let η be its syntactic morphism and
let ϕ be any morphism onto a finite monoid recognizing L. The following conditions are
equivalent:

(1) L satisfies the equation u → v,

(2) η̂(u) ∈ η(L) implies η̂(v) ∈ η(L),

(3) ϕ̂(u) ∈ ϕ(L) implies ϕ̂(v) ∈ ϕ(L).

Given a set E of equations of the form u → v, the subset of Reg(A∗) defined by E is the set
of all regular languages of A∗ satisfying all the equations of E. It is easy to see that it is a
lattice of languages.

Our aim is now to show that the converse also holds. We start with a result on languages
interesting on its own right. Note in particular that there is no regularity assumption in
this proposition.

Proposition 5.2. Let L, L1, . . . , Ln be languages. If L satisfies all the explicit equations
satisfied by L1, . . . , Ln, then L belongs to the lattice of languages generated by L1, . . . , Ln.

Proof. We claim that

L =
⋃

I∈I

⋂

i∈I

Li (5.1)

where I is the set of all subsets of {1, . . . , n} for which there exists a word v ∈ L such that
v ∈ Li if and only if i ∈ I. Let R be the right member of (5.1). If u ∈ L, let I = {i | u ∈ Li}.
By construction, I ∈ I and u ∈ ∩i∈ILi. Thus u ∈ R. This proves the inclusion L ⊆ R.

To prove the opposite direction, consider a word u ∈ R. By definition, there exists a
set I ∈ I such that u ∈ ∩i∈ILi and a word v ∈ L such that v ∈ Li if and only if i ∈ I. We
claim that the equation v → u is satisfied by each language Li. Indeed, if i ∈ I, then u ∈ Li

by definition. If i /∈ I, then v /∈ Li by definition of I, which proves the claim. It follows that
v → u is also satisfied by L. Since v ∈ L, it follows that u ∈ L. This concludes the proof of
(5.1) and shows that L belongs to the lattice of languages generated by L1, . . . , Ln.

It follows that finite lattices of languages can be defined by explicit equations.

Corollary 5.3. A finite set of languages of A∗ is a lattice of languages if and only if it can
be defined by a set of explicit equations of the form u → v, where u, v ∈ A∗.

Proof. Consider a finite lattice L of languages and let E be the set of explicit equations
satisfied by all the languages of L. Proposition 5.2 shows that any language L that satisfies
the equations of E belongs to L. Thus L is defined by E.

We now are now ready for the main result.
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Theorem 5.4. A set of regular languages of A∗ is a lattice of languages if and only if it

can be defined by a set of equations of the form u → v, where u, v ∈ Â∗.

Proof. For each regular language L, set

EL = {(u, v) ∈ Â∗ × Â∗ | L satisfies u → v}

Lemma 5.5. For each regular language L, EL is a clopen subset of Â∗ × Â∗.

Proof. One has

EL = {(u, v) ∈ Â∗ × Â∗ | L satisfies u → v}

= {(u, v) ∈ Â∗ × Â∗ | u ∈ L implies v ∈ L}

= {(u, v) ∈ Â∗ × Â∗ | v ∈ L or u /∈ L}

= (L
c
× Â∗) ∪ (Â∗ × L)

The result follows since, by Proposition 4.2, L is clopen.

Let L be a lattice of languages and let E be the set of profinite equations satisfied by
all languages of L. We claim that E defines L. First, by definition, every language of L
satisfies the equations of E. It just remains to proving that if a language L satisfies the
equations of E, then L belongs to L.

First observe that the set
EL ∪ {Ec

K | K ∈ L}

is a covering of Â∗ × Â∗. Indeed, if (u, v) /∈ ∪K∈LEc
K , then (u, v) ∈ ∩K∈LEK , which means

by definition that all the languages of L satisfy u → v. It follows that L also satisfies this
equation, and thus (u, v) ∈ EL. Further, Proposition 5.5 shows that the elements of this

covering are open sets. Since Â∗ × Â∗ is compact, it admits a finite subcovering, and we
may assume that this covering contains EL and is equal to

EL ∪ {Ec
L1

, . . . , Ec
Ln

}

for some languages L1, . . . , Ln of L. By the same argument as above, it follows that if an
equation u → v is satisfied by L1, . . . , Ln, then it is satisfied by L. By Proposition 5.2, L
belongs to the lattice of languages generated by L1, . . . , Ln and hence belongs to L.

Writing u ↔ v for (u → v and v → u), we get an equational description of the Boolean
algebras of languages.

Corollary 5.6. A set of regular languages of A∗ is a Boolean algebra of languages if and

only if it can be defined by a set of profinite equations of the form u ↔ v, where u, v ∈ Â∗.

These results apply in particular to any class of regular languages defined by a fragment
of logic closed under conjunctions and disjunctions (first order, monadic second order, tem-
poral, etc.). Consider for instance Büchi’s sequential calculus, which comprises the relation
symbols S and < and a predicate a for each letter a. To each word nonempty word u ∈ A∗

is associated a structure
Mu = ({1, 2, . . . , |u|}, S, (a)a∈A)

where S denotes the successor relation on {1, 2, . . . , |u|}, < is the usual order and a is set
of all positions i such that the i-th letter of u is an a. For instance, if A = {a, b} and
u = abaab, then a = {1, 3, 4} and b = {2, 5}. The language defined by a sentence ϕ is
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the set of words which satisfy ϕ. Several fragments will be considered in this survey. We
use a transparent notation of the form Type [Signature] to designate these fragments. For
instance FO[<] denotes the set of first order formulas in the signature < and BΣ1[S] consists
of the Boolean combinations of existential first order formulas in the signature S.

This latter fragment allows to specify some combinatorial properties of words, like “the
factor aa occurs at least twice”, which defines the language A∗aaA∗aaA∗∪A∗aaaA∗. Indeed,
this language is described by the formula

ϕ = ∃x1 ∃x2 ∃y1 ∃y2 (¬(x1 = y1) ∧ Sx1x2 ∧ Sy1y2 ∧ ax1 ∧ ax2 ∧ ay1 ∧ ay2

The BΣ1(S)-definable languages form a lattice of languages. An equational description of
these languages can be derived from the results of [25]: for all r, s, u, v, x, y ∈ A∗,

uxωy ↔ uxω+1v uxωryωsxωtyωv ↔ uxωtyωsxωryωy

xωuyωvxω ↔ yωvxωuyω y(xy)ω ↔ (xy)ω ↔ (xy)ωx

Note that this example because it does not enter in the category considered in the next
section since the correspondence lattice of languages is not closed under quotient.

We now specialize Theorems 5.4 and Corollary 5.6 to lattices of languages closed under
quotient in Section 5.2 and to varieties and C-varieties of languages in Section 5.3.

5.2. Lattices of languages closed under quotient

We say that a lattice of regular languages L is closed under quotient if for every L ∈ L
and u ∈ A∗, u−1L and Lu−1 are also in L. The equational description of such lattices can
be simplified by introducing a convenient definition.

Let u and v be two profinite words of Â∗. We say that L satisfies the equation u 6 v

if, for all x, y ∈ Â∗, it satisfies the equation xvy → xuy. Since A∗ is dense in Â∗, it is
equivalent to state that L satisfies these equations only for all x, y ∈ A∗. But there is a
much more convenient characterization using the syntactic ordered monoid of L.

Recall that the syntactic preorder of a language L is the relation 6L over A∗ defined
by u 6L v if and only if, for every x, y ∈ M ,

xvy ∈ L ⇒ xuy ∈ L

It is easy to see that 6L is a partial preorder on A∗, whose associated equivalence relation
is the syntactic congruence of L. Therefore, 6L induces a partial order on the syntactic
monoid M of L, called the syntactic order of L. The ordered monoid (M,6L) is called the
syntactic ordered monoid of L.

Proposition 5.7. Let L be a regular language of A∗, let (M,6L) be its syntactic ordered
monoid and let η : A∗ → M be its syntactic morphism. Then L satisfies the equation u 6 v
if and only if η̂(u) 6L η̂(v).

Proof. Corollary 5.1 shows that L satisfies the equation u 6 v if and only if, for every x, y ∈
A∗, η̂(xvy) ∈ η(L) implies η̂(xuy) ∈ η(L). Since η̂(xvy) = η̂(x)η̂(v)η̂(y) = η(x)η̂(v)η(y) and
since η is surjective, this is equivalent to saying that, for all s, t ∈ M , sη̂(v)t ∈ η(L) implies
sη̂(u)t ∈ η(L), which exactly means that η̂(u) 6L η̂(v).

We can now state the equational characterization of lattices of languages closed under
quotients.
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Theorem 5.8. A set of regular languages of A∗ is a lattice of languages closed under
quotients if and only if it can be defined by a set of equations of the form u 6 v, where

u, v ∈ Â∗.

Theorem 5.8 can be readily extended to Boolean algebras. Let u and v be two profinite
words. We say that a regular language L satisfies the equation u = v if it satisfies the
equations u 6 v and v 6 u. Proposition 5.7 now gives immediately:

Proposition 5.9. Let L be a regular language of A∗ and let η be its syntactic morphism.
Then L satisfies the equation u = v if and only if η̂(u) = η̂(v).

This leads to the following equational description of the Boolean algebras of languages
closed under quotients.

Corollary 5.10. A set of regular languages of A∗ is a Boolean algebra of languages closed
under quotients if and only if it can be defined by a set of equations of the form u = v,

where u, v ∈ Â∗.

Let us illustrate these results by three examples taken from [12].

(1) A language with zero is a language whose syntactic monoid has a zero. Languages
with zero form a lattice of languages closed under quotient. They are characterized by
the equations xρA = ρA = ρAx for all x ∈ A∗, where ρA is the profinite word defined
at the end of Section 2.

(2) A language L of A∗ is dense if, for every word u ∈ A∗, L ∩ A∗uA∗ 6= ∅. One can
show that regular nondense or full languages form a lattice of languages closed under
quotients. They are characterized by the equations x 6 ρA and xρA = ρA = ρAx for
all x ∈ A∗.

(3) Recall that a language L is sparse if it has a polynomial density, that is, if |L∩An| =
O(nk) for some k > 0. Equivalently, a language is sparse if it is a finite union of
languages of the form u0v

∗
1u1 · · · v

∗
nun, where u0, v1, . . . , vn, un are words. Sparse

or full languages form a lattice of languages closed under quotient and thus admit
an equational description. On a one letter alphabet, every recognizable language is
sparse and the result is trivial. If |A| > 2, one can take the following set of equations:
xρA = ρA = ρAx for all x ∈ A∗ and (xωyω)ω = ρA for each x, y ∈ A+ such that the
first letter of x is different from the first letter of y.

5.3. Varieties of languages

A class of languages F associates with each alphabet A a set F(A∗) of regular languages
of A∗. A positive variety of languages is a class of languages V such that

(1) for each alphabet A, V(A∗) is a lattice of languages closed under quotient,

(2) for each morphism of monoid ϕ : A∗ → B∗, X ∈ V(B∗) implies ϕ−1(X) ∈ V(A∗),

A variety of languages is a positive variety of languages closed under complement.

For [positive] varieties, is is wise to use identities as we did for Reiterman’s theorem.
Intuitively, an identity is an equation in which one can substitute a word for each letter.

More formally, let u and v be two profinite words of B̂∗ and let L be a regular language
of A∗. One says that L satisfies the profinite identity u 6 v [u = v] if, for all morphisms
γ : B∗ → A∗, L satisfies the equation γ̂(u) 6 γ̂(v) [γ̂(u) = γ̂(v)].
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Theorem 5.11. A class of languages is a positive variety of languages if and only if it can
be defined by a set of profinite identities of the form u 6 v. It is a variety of languages if
and only if it can be defined by a set of profinite identities of the form u = v.

Theorem 5.11 and Reiterman’s theorem allows one to recover Eilenberg’s variety theo-
rem. Let us first recall this important result.

If V is a variety of finite monoids, denote by V(A∗) the set of regular languages of A∗

whose syntactic monoid belongs to V. The correspondence V → V associates with each
variety of finite monoids a variety of languages. Conversely, to each variety of languages
V, we associate the variety of monoids V generated by the monoids of the form M(L)
where L ∈ V(A∗) for a certain alphabet A. Eilenberg’s variety theorem [10] states that
the correspondences V → V and V → V define mutually inverse bijective correspondences
between varieties of finite monoids and varieties of languages.

Now, it follows from Theorem 5.11 that any variety of languages can be defined by a
set of profinite identities. And Reiterman’s theorem states that varieties of finite monoids
can also be defined by profinite identities. This gives the variety theorem.

There is an analogous result for ordered monoids [22], which gives mutually inverse
bijective correspondences between the varieties of finite ordered monoids and the positive
varieties of languages.

Equational descriptions are known for a large number of [positive] varieties of languages.
We just give a few emblematic examples in elliptic style below, but many more can be found
in the survey articles [9, 24].

(1) Finite or full languages: yxω = xω = xωy and y 6 xω.

(2) Star-free languages (closure of finite languages under Boolean operations and prod-
uct): xω+1 = xω. These languages are also captured by the logical fragment FO[<].

(3) Shuffle ideals (finite unions of languages of the form A∗a1A
∗a2A

∗ · · · akA
∗, where

a1, . . . , ak are letters): x 6 1. These languages are also captured by the logical
fragment Σ1[<].

(4) Piecewise testable languages (the Boolean closure of shuffle ideals): xω+1 = xω and
(xy)ω = (yx)ω. These languages are also captured by the logical fragment BΣ1[<].

(5) Unambiguous star-free languages (closure of finite languages under Boolean opera-
tions and unambiguous product): xω+1 = xω and (xy)ω(yx)ω(xy)ω = (xy)ω. These
languages are also captured by the logical fragments FO2[<] (first order with two vari-
ables), by ∆2[<] or by unary temporal logic (based on the operators eventually in the
future and eventually in the past). Finally, they are disjoint unions of unambiguous
products of the form A∗

0a1A
∗
1 · · · akA

∗
k, where a1, . . . , ak are letters and A0, . . . , Ak

are subsets of A.

A more general notion was introduced by Straubing [39] (see also Ésik and Ito [11]). Let
C be a class of morphisms between finitely generated free monoids that is closed under
composition and contains all length-preserving morphisms. Examples include the classes of
length-preserving morphisms, of length-multiplying morphisms, of non-erasing morphisms,
of length-decreasing morphisms and of course the class of all morphisms.
A positive C-variety of languages is a class of languages V such that

(1) for every alphabet A, V(A∗) is a lattice of languages closed under quotient,

(2) if ϕ : A∗ → B∗ is a morphism of C, L ∈ V(B∗) implies ϕ−1(L) ∈ V(A∗),

A C-variety of languages is a positive C-variety of languages closed under complement.



44 JEAN-ÉRIC PIN

It is easy to extend Theorem 5.11 to C-varieties by using C-identities. Let us say
that a language L satisfies the profinite C-identity u 6 v [u = v] if, for all C-morphisms
γ : B∗ → A∗, L satisfies the equation γ̂(u) 6 γ̂(v) [γ̂(u) = γ̂(v)]. Then we can state

Theorem 5.12. A class of languages of A∗ is a positive C-variety of languages if and only
if it can be defined by a set of profinite C-identities of the form u 6 v. It is a C-variety of
languages if and only if it can be defined by a set of profinite C-identities of the form u = v.

5.4. Summary

We summarize below the various types of equations. . .

Closed under Equations Definition

∪,∩ u → v η̂(u) ∈ η̂(L) ⇒ η̂(v) ∈ η̂(L)

quotient u 6 v xvy → xuy

complement u ↔ v u → v and v → u

quotient and complement u = v xvy ↔ xuy

. . . and the various types of C-identities.

Class of morphisms C Interpretation of variables

all morphisms words

nonerasing morphisms nonempty words

length multiplying morphisms words of equal length

length preserving morphisms letters

6. Pro-V uniformities

The profinite uniformities defined in Section 2 can be generalized in various ways using
varieties of finite ordered monoids [30] or even lattices of languages [12]. In this section, we
only consider the case of a variety of finite monoids V.

The idea is to generalize the metric d on A∗ by defining dV as follows:

rV(u, v) = min {|M | | M is a monoid of V that separates u and v}

dV(u, v) = 2−rV(u,v)

Unfortunately, dV is not always a metric since the monoids of V may not suffice to separate
two distinct words. For instance, if V is the variety Com of finite commutative monoids,
there is no way to separate the words ab and ba.

There are two possibilities to overcome this difficulty. The first solution is algebraic:
the relation ∼V defined on A∗ by u ∼V v if and only if dV(u, v) = 0 is a congruence on A∗

and dV induces a metric on the quotient monoid A∗/∼V and one can take the completion of
the metric space (A∗/∼V, dV). For instance, if V = Com, A∗/∼V is the free commutative
monoid N

A.
The second solution is topological. Even if dV fails to be a metric, it still satisfies

conditions (2) and (3) of the definition of a metric and this suffices to define an Hausdorff
completion. A systematic study of the corresponding uniform spaces can be found in [30].
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The two methods lead to the same object, called the free pro-V monoid on A, denoted

by F̂V(A). This monoid is compact and can be alternatively defined as the quotient of Â∗

by the congruence induced by the profinite identities defining V.
The study of these free profinite monoids, for various varieties V, is a central topic of

the theory of finite monoids and regular languages. It is not possible to describe in detail
the numerous results obtained in this area, and we refer the interested reader to the survey
articles [3, 5] and to the articles of Almeida, Auinger, Margolis, Steinberg, Weil, Zeitoun or
the author for more information.

We limit ourselves in this survey to direct consequences in automata theory. First,
uniform continuous functions have a very concrete characterization.

Theorem 6.1. A function f : A∗ → B∗ is uniformly continuous for dV if and only if, for
every language L of B∗ recognized by a monoid of V, the language f−1(L) is also recognized
by a monoid of V.

It is worth considering separately the case where V is the variety of all finite monoids.

Corollary 6.2. A function f : A∗ → B∗ is uniformly continuous for d if and only if, for
every regular language L of B∗, the language f−1(L) is also regular.

We illustrate the power of this approach by solving a standard exercise in automata
theory: Show that the square root of a regular language is regular.

Proof. Since the concatenation product is uniformly continuous, the product h of two uni-
formly continuous functions f and g, defined by h(u) = f(u)g(u), is also uniformly contin-
uous. In particular, the function u → u2, from A∗ into itself, is uniformly continuous. It
follows that, if L is regular, the set {u ∈ A∗ | u2 ∈ L} is also regular.

Here are two more advanced results. Given a class L of regular languages, the polynomial
closure Pol(L) of L is the set of all languages which are finite unions of languages of the
form L0a1L1 · · · akLk where a1, . . . , ak are letters and L0, . . . , Lk are languages of L. It can
be shown that if V is a variety of languages, then Pol(V) is a positive variety of languages.
Further, it follows from the results of [29] that, given the profinite equations satisfied by V,
one can find, at least implicitly, the profinite equations defining Pol(V) .

Theorem 6.3. The positive variety Pol(V) is defined by the profinite identities of the form
xωyxω 6 xω where x and y are profinite words such that the identities x = y = x2 hold in
V.

Similar results hold for the unambiguous polynomial closure (the identities are now of
the form xωyxω = xω) and for the closure under Boolean operations and product.

Theorem 6.4. The closure under Boolean operations and product of a variety of languages
V is defined by the profinite identities of the form xω+1 = xω where x and y are profinite
words such that the identities x = y = x2 hold in V.

We now concentrate on two important particular cases which proved to have unexpected
connections with automata theory: the variety of finite groups G and the variety of finite
p-groups Gp, where p is a prime number. Recall that a p-group is a finite group whose order
is a power of p.
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6.1. Progroup topology

The pro-group topology was originally introduced by M. Hall in group theory [13]. It
was first considered for the free monoid by Reutenauer [34, 35] and studied in full details in
[19, 26, 23], notably in connection with a celebrated problem of Rhodes in finite semigroup
theory. This problem was ultimately solved by Ash using a combinatorial approach [6] and
by Ribes and Zalesskii using profinite methods [36].

The definition of the pro-group metric is obtained by taking V = G in the definition
of dV. One can show that dG is an ultrametric, but contrary to the profinite metric d, the
topology induced by dG on A∗ is not discrete and it is an interesting question to decide
whether a given regular language is open, closed or clopen for this topology.

Recall that a group language is a language whose syntactic monoid is a group, or,
equivalently, is recognized by a finite deterministic automaton in which each letter defines
a permutation of the set of states. According to the definition of a polynomial closure, a
polynomial of group languages is a finite union of languages of the form L0a1L1 · · · akLk

where a1, . . . , ak are letters and L0, . . . , Lk are group languages. It can be shown that a
regular language is clopen if and only if it is a group language. For the open sets, the
following characterization holds.

Theorem 6.5. Let L be a regular language. The following conditions are equivalent:

(1) L is a polynomial of group languages,

(2) L is open in the group topology,

(3) L satisfies the identity xω 6 1,

(4) the minimal deterministic automaton of L contains no configuration of the form

q2 p q q1
y x y

x

where x, y ∈ A∗, q1 is final and q2 is nonfinal.

One can show also that the closure of regular language for dG is again regular and can
be effectively computed [26, 36].

These results also permit to study another class of finite automata. A reversible au-
tomaton is a finite automaton whose transitions are both deterministic and co-deterministic.
In other words, each letter a induces a partial one-to-one map from the set of states into
itself. However, we make no assumption on the set of initial states and the set of final states,
which can be arbitrary. It is not difficult to see that any finite language can be accepted
by a reversible automaton. For instance, a reversible automaton accepting {a, ac, bc} is
represented below:

1 2 3 4 5
a

a

b

c

It is tempting to guess that a language is accepted by some reversible automaton if and
only if its minimal DFA is reversible, but this is not the case and the characterization of
these languages [20] is more involved.



PROFINITE METHODS IN AUTOMATA THEORY 47

Theorem 6.6. Let L be a regular language and let M be its syntactic monoid. The following
conditions are equivalent:

(1) L is accepted by a reversible automaton,

(2) the idempotents of M commute and L is closed in the profinite group topology of A∗.

(3) L satisfies the identities xωyω = yωxω and 1 6 ω,

6.2. Pro-p topology

The definition of the pro-p metric is obtained by taking V = Gp in the definition of
dV. The resulting ultrametric dp defines the p-adic topology on A∗. When A is a one
letter alphabet, the free monoid A∗ is isomorphic to the additive monoid N and its pro-p
completion is the additive group of p-adic numbers.

As for dG, the closure of regular language for dp is again regular and can be effectively
computed [37, 18], but this is a difficult result.

There is also a nice connection [21] between this topology and a generalization of the
binomial coefficients. Let u and v be two words of A∗. Let u = a1 · · · an, with a1, . . . , an ∈ A.
Then u is a subword of v if there exist v0, . . . , vn ∈ A∗ such that v = v0a1v1 . . . anvn.
Following [10, 15], we define the binomial coefficient of u and v by setting

(
v

u

)
= |{(v0, . . . , vn) | v = v0a1v1 . . . anvn}|

Observe that if a is a letter, then
(
v
a

)
is simply the number of occurrences of a in v. Further,

if u = an and v = am, then
(
v
u

)
=

(
m
n

)
and hence these numbers constitute a generalization

of the classical binomial coefficients. Let us set now

r′p(u, v) = min

{
|x|

∣∣ x ∈ A∗ and

(
u

x

)
6≡

(
v

x

)
(mod p)

}

d′p(u, v) = p−r′p(u,v).

It is proved in [21, Theorem 4.4] that d′p is an ultrametric uniformly equivalent to dp.
The next proposition should be compared with Proposition 2.5.

Proposition 6.7. For every word u ∈ A∗, one has lim
n→∞

upn

= 1 for the metric dp.

Proof. By the definition of the topology, it suffices to show that if ϕ : A∗ → G is a monoid
morphism onto a discrete p-group G, then lim

n→∞
ϕ(gpn

) = 1. But if |G| = pk, then for n > k,

ϕ(gpn

) = 1 since the order of ϕ(g) divides pk.

There is another nice example of converging sequence, related to the Prouhet-Thue-
Morse word t = abbabaabbaababba · · · . Recall that this infinite word on the alphabet {a, b}
is obtained from a by iterating the morphism τ defined by τ(a) = ab and τ(b) = ba.

Denoting by t[m] the prefix of length m of t, one has:

Theorem 6.8 (See [7]). For every prime number p, there exists a strictly increasing se-
quence m1 < m2 < · · · such that lim

n→∞
t[mn] = 1.

The sequence mn depends on p but can be explicitly given. For p 6= 2, one can choose
mn = 2np1+⌊logpn⌋, but as often in mathematics, the case p = 2 is singular. In this case,
one can take mn = 2k if Fk−1 6 n < Fk, where F denotes the Fibonacci sequence defined
by F0 = 0, F1 = 1 and Fn+2 = Fn+1 + Fn for every n > 0.
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The connection between the pro-p topology and the binomial coefficients comes from the
characterization of the languages recognized by a p-group given by Eilenberg and Schützen-
berger (see [10, Theorem 10.1, p. 239]). Let us call a p-group language a language recognized
by a p-group.

Proposition 6.9. A language of A∗ is a p-group language if and only if it is a Boolean
combination of the languages

L(x, r, p) = {u ∈ A∗ |

(
u

x

)
≡ r mod p},

for 0 6 r < p and x ∈ A∗.

We conclude this section with a result presented at STACS last year [28], which extends
a classical result of Mahler [16, 17].

Let f : A∗ → Z be a function. For each letter a, we define the difference operator ∆a

by (∆af)(u) = f(ua)−f(u). One can now define inductively an operator ∆w for each word
w ∈ A∗ by setting (∆1f)(u) = f(u), and for each letter a ∈ A, (∆awf)(u) = (∆a(∆wf))(u).
It is easy to see that these operators can also be defined directly by setting

∆wf(u) =
∑

06|x|6|w|

(−1)|w|+|x|

(
w

x

)
f(ux)

For instance, ∆aabf(u) = −f(u) + 2f(ua) + f(ub) − f(uaa) − 2f(uab) + f(uaab).
One can show that for each function f : A∗ → Z, there exists a unique family 〈f, v〉v∈A∗

of integers such that, for all u ∈ A∗, f(u) =
∑

v∈A∗〈f, v〉
(
u
v

)
. These coefficients are given by

〈f, v〉 = (∆vf)(1) =
∑

06|x|6|v|

(−1)|v|+|x|

(
v

x

)
f(x)

If n is a non-zero integer, we denote by |n|p the p-adic norm of n, which is the real number

p−k, where k is the largest integer such that pk divides n. By convention, |0|p = 0. The
main result of [28] gives a simple description of the uniformly continuous functions for dp.

Theorem 6.10. Let f(u) =
∑

v∈A∗〈f, v〉
(
u
v

)
be the Mahler’s expansion of a function from

A∗ to Z. The following conditions are equivalent:

(1) f is uniformly continuous for dp,

(2) the partial sums
∑

06|v|6n〈f, v〉
(
u
v

)
converge uniformly to f ,

(3) lim|v|→∞ |〈f, v〉|p = 0.

7. Conclusion

Profinite topologies are a powerful tool to solve decidability problems on regular lan-
guages. In particular, they lead to equational definitions of lattices of languages which can
sometimes be used to obtain decidability results. For instance, it follows from the deep re-
sults of McNaughton and Schützenberger that FO[<]-definable languages are defined by the
identity xω = xω+1. Since Büchi has shown that monadic second order MSO[<] captures
all regular languages, it follows that one can effectively decide whether a monadic second
order formula is equivalent to a first order formula on finite words (or, in the language of
model theory, on finite coloured linear orders).
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There are however two problems to extend this type of arguments to a given lattice of
languages. First, one needs to find effectively the equations foretold by Theorem 5.4. This
step can be extremely difficult. For instance, it is conjectured that the languages captured
by the logical fragment BΣ2[<] are defined by the identities

(
(xωpyωqxω)ωxωpyωsxω(xωryωsxω)ω

)
=

(
(xωpyωqxω)ω(xωryωsxω)ω

)

where x, y, p, q, r, s ∈ Â∗ are profinite words with the same content, but this conjecture is
still open.

If some set of equations have been found, one still needs to decide whether a given
regular language satisfies these equations. This second problem might also be difficult to
solve. For instance, it is not clear whether the implicit descriptions given in Theorems 6.3
ant 6.4 lead to effective decision criteria. A lot of work has been done, notably by Almeida
and Steinberg, to address this type of questions. A key idea is that certain varieties can be
defined by identities involving words and simple profinite operations, like the ω operation.
When a basis of such identities can be found, the second problem becomes generally easy.

To conclude, we would like to suggest a new path of research. The starting point is
the following observation: the hierarchies considered in computability, in complexity theory
and in descriptive set theory are defined in terms of appropriate reductions. In each case,
the definition of a reduction follows the same pattern: given two sets X and Y , Y reduces to
X if there exists a function f such that X = f−1(Y ). In complexity theory, f is required to
be computable in polynomial time. In descriptive set theory, f is continuous. We propose
to study the reductions between regular languages based on uniformly continuous functions
(for instance for some metric dV). One could then explore the corresponding hierarchies,
as it has been done in descriptive set theory and in computability theory.
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