
Symposium on Theoretical Aspects of Computer Science 2009 (Freiburg), pp. 601–612
www.stacs-conf.org

POLYNOMIAL KERNELIZATIONS FOR MIN F+Π1 AND MAX NP

STEFAN KRATSCH 1

1 Max-Planck-Institut für Informatik, Campus E 1 4, 66123 Saarbrücken, Germany
E-mail address: skratsch@mpi-inf.mpg.de

URL: http://www.mpi-inf.mpg.de/~skratsch

Abstract. The relation of constant-factor approximability to fixed-parameter tractabil-
ity and kernelization is a long-standing open question. We prove that two large classes of
constant-factor approximable problems, namely MIN F

+Π1 and MAX NP, including the
well-known subclass MAX SNP, admit polynomial kernelizations for their natural decision
versions. This extends results of Cai and Chen (JCSS 1997), stating that the standard pa-
rameterizations of problems in MAX SNP and MIN F

+Π1 are fixed-parameter tractable,
and complements recent research on problems that do not admit polynomial kernelizations
(Bodlaender et al. ICALP 2008).

1. Introduction

The class APX consists of all NP optimization problems that are approximable to within
a constant factor of the optimum. It is known that the decision versions of most APX-
problems are fixed-parameter tractable or even admit efficient preprocessing in the form of
a polynomial kernelization. How strong is the relation between constant-factor approxima-
bility and polynomial kernelizability? Is there a property inherent to most APX-problems
that explains this relation? What is the nature of APX-problems that do not admit a
polynomial kernelization, such as Bin Packing for example?

Since many prominent APX-problems are complete under approximation preserving
reductions and do not admit arbitrarily small approximation ratios, studying their param-
eterized complexity is a natural approach to obtain better results (recently Cai and Huang
presented fixed-parameter approximation schemes for MAX SNP [7]). In conjunction with
recent work on problems without polynomial kernelizations, positive answers to the ques-
tions may provide evidence against APX-membership for some problems (e.g. Treewidth).

Our work: We prove that the standard parameterizations of problems in two large classes of
constant-factor approximable problems, namely MIN F

+Π1 and MAX NP, admit polyno-
mial kernelizations. This extends results of Cai and Chen [6] who showed that the standard
parameterizations of all problems in MIN F

+Π1 and MAX SNP (a subclass of MAX NP)
are fixed-parameter tractable.1 Interestingly perhaps, both our results rely on the Sunflower
Lemma due to Erdős and Rado [10].

1998 ACM Subject Classification: F.2.2.
Key words and phrases: parameterized complexity, kernelization, approximation algorithms.
1The existence of a kernelization, not necessarily polynomial, is equivalent to fixed-parameter tractability.

c© S. Kratsch
CC© Creative Commons Attribution-NoDerivs License

STACS 2009 
Symposium on Theoretical Aspects of Computer Science 2009 (Freiburg), pp. 601-612 
http://drops.dagstuhl.de/opus/volltexte/2009/1851

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62913933?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


602 S. KRATSCH

Approximation ratio Kernel size
Minimum Vertex Cover 2 [15] O(k) [8]
Feedback Vertex Set 2 [3] O(k3) [4]
Minimum Fill-In O(opt) [19] O(k2) [19]
Treewidth O(

√
log opt) [12] not poly2 [5]

Table 1: Approximation ratio and size of problem kernels for some optimization problems.

Related work: Recently Bodlaender et al. [5] presented the first negative results concern-
ing the existence of polynomial kernelizations for some natural fixed-parameter tractable
problems. Using the notion of a distillation algorithm and results due to Fortnow and
Santhanam [14], they were able to show that the existence of polynomial kernelizations
for so-called compositional parameterized problems implies a collapse of the polynomial
hierarchy to the third level. These are seminal results presenting the first super-linear
lower bounds for kernelization and relating a statement from parameterized complexity to
a hypothesis from classical complexity theory.

In Table 1 we summarize approximability and kernelization results for some well-known
problems.

MIN F+Π1 and MAX NP: Two decades ago Papadimitriou and Yannakakis [23] initi-
ated the syntactic study of optimization problems to extend the understanding of approx-
imability. They introduced the classes MAX NP and MAX SNP as natural variants of NP
based on Fagin’s [11] syntactic characterization of NP. Essentially problems are in MAX NP

or MAX SNP if their optimum value can be expressed as the maximum number of tuples for
which some existential, respectively quantifier-free, first-order formula holds. They showed
that every problem in these two classes is approximable to within a constant factor of the
optimum. Arora et al. complemented this by proving that no MAX SNP-complete problem
has a polynomial-time approximation scheme, unless P=NP [2]. Contained in MAX SNP

there are some well-known maximization problems, such as Max Cut, Max q-Sat, and
Independent Set on graphs of bounded degree. Its superclass MAX NP also contains
Max Sat amongst others.

Kolaitis and Thakur generalized the approach of examining the logical definability
of optimization problems and defined further classes of minimization and maximization
problems [17, 18]. Amongst others they introduced the class MIN F

+Π1 of problems
whose optimum can be expressed as the minimum weight of an assignment (i.e. number of
ones) that satisfies a certain universal first-order formula. They proved that every problem
in MIN F

+Π1 is approximable to within a constant factor of the optimum. In MIN F
+Π1

there are problems like Vertex Cover, d-Hitting Set, and Triangle Edge Deletion.

Section 2 covers the definitions of the classes MIN F
+Π1 and MAX NP, as well as the

necessary details from parameterized complexity. In Sections 3 and 4 we present polynomial
kernelizations for the standard parameterizations of problems in MIN F

+Π1 and MAX NP

respectively. Section 5 summarizes our results and poses some open problems.

2Treewidth does not admit a polynomial kernelization unless there is a distillation algorithm for all coNP
complete problems [5]. Though unlikely, this is not known to imply a collapse of the polynomial hierarchy.



POLYNOMIAL KERNELIZATIONS 603

2. Preliminaries

Logic and complexity classes: A (relational) vocabulary is a set σ of relation sym-
bols, each having some fixed integer as its arity. Atomic formulas over σ are of the
form R(z1, . . . , zt) where R is a t-ary relation symbol from σ and the zi are variables.
The set of quantifier-free (relational) formulas over σ is the closure of the set of all atomic
formulas under negation, conjunction, and disjunction.

Definition 2.1 (MIN F
+Π1, MAX NP). A finite structure of type (r1, . . . , rt) is a tu-

ple A = (A,R1, . . . , Rt) where A is a finite set and each Ri is an ri-ary relation over A.
Let Q be an optimization problem on finite structures of type (r1, . . . , rt). LetR1, . . . , Rt

be relation symbols of arity r1, . . . , rt.
(a) The problem Q is contained in the class MIN F

+Π1 if its optimum on finite structures A
of type (r1, . . . , rt) can be expressed as

optQ(A) = min
S

{|S| : (A, S) |= (∀x ∈ Acx) : ψ(x, S)},

where S is a single relation symbol and ψ(x, S) is a quantifier-free formula in conjunc-
tive normal form over the vocabulary {R1, . . . , Rt, S} on variables {x1, . . . , xcx}. Further-
more, ψ(x, S) is positive in S, i.e. S does not occur negated in ψ(x, S).
(b) The problem Q is contained in the class MAX NP if its optimum on finite structures A
of type (r1, . . . , rt) can be expressed as

optQ(A) = max
S

|{x ∈ Acx : (A,S) |= (∃y ∈ Acy) : ψ(x,y,S)}| ,

where S = (S1, . . . , Su) is a tuple of si-ary relation symbols Si and ψ(x,y,S) is a quantifier-
free formula in disjunctive normal form over the vocabulary {R1, . . . , Rt, S1, . . . , Su} on
variables {x1, . . . , xcx , y1, . . . , ycy}.
Remark 2.2. The definition of MAX SNP is similar to that of MAX NP but without
the existential quantification of y, i.e optQ(A) = maxS |{x : (A,S) |= ψ(x,S)}|.
Example 2.3 (Minimum Vertex Cover). Let G = (V,E) be a finite structure of type (2)
that represents a graph by a set V of vertices and a binary relation E over V as its edges.
The optimum of Minimum Vertex Cover on structures G can be expressed as:

optV C(G) = min
S⊆V

{|S| : (G,S) |= (∀(u, v) ∈ V 2) : (¬E(u, v) ∨ S(u) ∨ S(v))}.

This implies that Minimum Vertex Cover is contained in MIN F
+Π1.

Example 2.4 (Maximum Satisfiability). Formulas in conjunctive normal form can be
represented by finite structures F = (F,P,N) of type (2, 2): Let F be the set of all clauses
and variables, and let P and N be binary relations over F . Let P (x, c) be true if and only
if x is a literal of the clause c and let N(x, c) be true if and only if ¬x is a literal of the
clause c. The optimum of Max Sat on structures F can be expressed as:

optMS(F) = max
T⊆F

|{c ∈ F : (F , T ) |= (∃x ∈ F ) : (P (x, c) ∧ T (x)) ∨ (N(x, c) ∧ ¬T (x))}|.

Thus Max Sat is contained in MAX NP.

For a detailed introduction to MIN F
+Π1, MAX NP, and MAX SNP we refer the

reader to [17, 18, 23]. An introduction to logic and complexity can be found in [22].

Parameterized complexity: The field of parameterized complexity, pioneered by Downey
and Fellows, is a two-dimensional approach of coping with combinatorially hard problems.



604 S. KRATSCH

Parameterized problems come with a parameterization that maps input instances to a pa-
rameter value. The time complexity of algorithms is measured with respect to the input
size and the parameter. In the following we give the necessary formal definitions, namely
fixed-parameter tractability, standard parameterizations, and kernelization.

Definition 2.5 (Fixed-parameter tractability). A parameterization of Σ∗ is a polynomial-
time computable mapping κ : Σ∗ → N. A parameterized problem over an alphabet Σ is a
pair (Q, κ) consisting of a set Q ⊆ Σ∗ and a parameterization κ of Σ∗.

A parameterized problem (Q, κ) is fixed-parameter tractable if there exists an algo-
rithm A, a polynomial p, and a computable function f : N → N such that A decides x ∈ Q
in time f(κ(x)) · p(|x|). FPT is the class of all fixed-parameter tractable problems.

Definition 2.6 (Standard parameterization). Let Q be a maximization (minimization)
problem. The standard parameterization of Q is p-Q = (d-Q, κ) where κ : (A, k) 7→ k

and d-Q is the language of all tuples (A, k) such that optQ(A) ≥ k (optQ(A) ≤ k).

Basically d-Q is the decision version of Q, asking whether the optimum is at least k
(respectively at most k). The standard parameterization of Q is d-Q parameterized by k.

Definition 2.7 (Kernelization). Let (Q, κ) be a parameterized problem over Σ. A poly-
nomial-time computable function K : Σ∗ → Σ∗ is a kernelization of (Q, κ) if there is a
computable function h : N → N such that for all x ∈ Σ∗ we have

(x ∈ Q ⇔ K(x) ∈ Q) and |K(x)| ≤ h(κ(x)).

We call h the size of the problem kernel K(x). The kernelization K is polynomial if h
is a polynomial. We say that (Q, κ) admits a (polynomial) kernelization if there exists a
(polynomial) kernelization of (Q, κ).

Essentially, a kernelization is a polynomial-time data reduction that comes with a guar-
anteed upper bound on the size of the resulting instance in terms of the parameter.

For an introduction to parameterized complexity we refer the reader to [9, 13, 20].

Hypergraphs and sunflowers: We assume the reader to be familiar with the basic graph
notation. A hypergraph is a tuple H = (V,E) consisting of a finite set V , its vertices, and
a family E of subsets of V , its edges. A hypergraph has dimension d if each edge has
cardinality at most d. A hypergraph is d-uniform if each edge has cardinality exactly d.

Definition 2.8 (Sunflower). Let H be a hypergraph. A sunflower of cardinality r is a
set F = {f1, . . . , fr} of edges of H such that every pair has the same intersection C, i.e. for
all 1 ≤ i < j ≤ r: fi ∩ fj = C. The set C is called the core of the sunflower.

Note that any family of pairwise disjoint sets is a sunflower with core C = ∅.
Lemma 2.9 (Sunflower Lemma [10]). Let k, d ∈ N and let H be a d-uniform hypergraph
with more than (k−1)d ·d! edges. Then there is a sunflower of cardinality k in H. For every
fixed d there is an algorithm that computes such a sunflower in time polynomial in |E(H)|.
Corollary 2.10 (Sunflower Corollary). The same holds for d-dimensional hypergraphs with
more than (k − 1)d · d! · d edges.

Proof. For some d′ ∈ {1, . . . , d}, H has more than (k − 1)d · d! ≥ (k − 1)d
′ · d′! edges of

cardinality d′. Let Hd′ be the d′-uniform subgraph induced by the edges of cardinality d′.
We apply the Sunflower Lemma on Hd′ and obtain a sunflower F of cardinality k in time
polynomial in |E(Hd′)| ≤ |E(H)|. Clearly F is also a sunflower of H.



POLYNOMIAL KERNELIZATIONS 605

3. Polynomial kernelization for MIN F+
Π1

We will prove that the standard parameterization of any problem in MIN F
+Π1 admits

a polynomial kernelization. The class MIN F
+Π1 was introduced by Kolaitis and Thakur

in a framework of syntactically defined classes of optimization problems [17]. In a follow-up
paper they showed that every problem in MIN F

+Π1 is constant-factor approximable [18].
Throughout the section let Q ∈ MIN F

+Π1 be an optimization problem on finite
structures of type (r1, . . . , rt). Let R1, . . . , Rt be relation symbols of arity r1, . . . , rt and
let S be a relation symbol of arity cS . Furthermore, let ψ(x, S) be a quantifier-free formula
in conjunctive normal form over the vocabulary {R1, . . . , Rt, S} on variables {x1, . . . , xcx}
that is positive in S such that

optQ(A) = min
S⊆AcS

{|S| : (A, S) |= (∀x ∈ Acx) : ψ(x, S)}.

Let s be the maximum number of occurrences of S in any clause of ψ(x, S). The
standard parameterization p-Q of Q is the following problem:

Input: A finite structure A of type (r1, . . . , rt) and an integer k.
Parameter: k.
Task: Decide whether optQ(A) ≤ k.

We will see that, given an instance (A, k), deciding whether optQ(A) ≤ k is equivalent

to deciding an instance of s-Hitting Set.3 Our kernelization will therefore make use of
existing kernelization results for s-Hitting Set. The parameterized version of s-Hitting

Set is defined as follows:
Input: A hypergraph H = (V,E) of dimension s and an integer k.
Parameter: k.
Task: Decide whether H has a hitting set of size at most k, i.e. S ⊆ V , |S| ≤ k,

such that S has a nonempty intersection with every edge of H.

We consider the formula ψ(x, S) and a fixed instance (A, k), with A = (A,R1, . . . , Rt).
For every tuple x ∈ Acx we can evaluate all literals of the form Ri(z) and ¬Ri(z) for
some z ∈ {x1, . . . , xcx}ri . By checking whether z ∈ Ri, we obtain 1 (true) or 0 (false) for
each literal. Then we delete all occurrences of 0 from the clauses and delete all clauses
that contain a 1. For each x, we obtain an equivalent formula that we denote with ψx(S).
Each ψx(S) is in conjunctive normal form on literals S(z) for some z ∈ {x1, . . . , xcx}cS (no
literals of the form ¬S(z) since ψ(x, S) is positive in S).

Remark 3.1. For all x ∈ Acx and S ⊆ AcS it holds that (A, S) |= ψ(x, S) if and only
if (A, S) |= ψx(S). Moreover, we can compute all formulas ψx(S) for x ∈ Acx in polynomial
time, since cx and the length of ψ(x, S) are constants independent of A.

Deriving a formula ψx(S) can yield empty clauses. This happens when all liter-
als Ri(·), ¬Ri(·) in a clause are evaluated to 0 and there are no literals S(·). In that
case, no assignment S can satisfy the formula ψx(S), or equivalently ψ(x, S). Thus (A, k) is
a no-instance. Note that clauses of ψx(S) cannot contain contradicting literals since ψ(x, S)
is positive in S.

Remark 3.2. From now on, we assume that all clauses of the formulas ψx(S) are nonempty.

We define a mapping Φ from finite structures A to hypergraphs H. Then we show that
equivalent s-Hitting Set instances can be obtained in this way.

3In literature the problem is often called d-Hitting Set but we will need d = s.



606 S. KRATSCH

Definition 3.3. Let A be an instance of Q. We define Φ(A) := H with H = (V,E). We
let E be the family of all sets e = {z1, . . . , zp} such that (S(z1) ∨ · · · ∨ S(zp)) is a clause of
a ψx(S) for some x ∈ Acx . We let V be the union of all sets e ∈ E.

Remark 3.4. The hypergraphs H obtained from the mapping Φ have dimension s since
each ψx(S) has at most s literals per clause. It follows from Remark 3.1 that Φ(A) can be
computed in polynomial time.

The following lemma establishes that (A, k) and (H, k) = (Φ(A), k) are equivalent in
the sense that (A, k) ∈ p-Q if and only if (H, k) ∈ s-Hitting Set.

Lemma 3.5. Let A = (A,R1, . . . , Rt) be an instance of Q then for all S ⊆ AcS :

(A, S) |= (∀x) : ψ(x, S) if and only if S is a hitting set for H = Φ(A).

Proof. Let H = Φ(A) = (V,E) and let S ⊆ AcS :

(A, S) |= (∀x ∈ Acx) : ψ(x, S)
⇔ (A, S) |= (∀x ∈ Acx) : ψx(S)
⇔ (∀x ∈ Acx) : each clause of ψx(S) has a literal S(z) for which z ∈ S

⇔ S has a nonempty intersection with every set e ∈ E

⇔ S is a hitting set for (V,E).

Our kernelization will consist of the following steps:

(1) Map the given instance (A, k) for p-Q to an equivalent instance (H, k) = (Φ(A), k)
for s-Hitting Set according to Definition 3.3 and Lemma 3.5.

(2) Use a polynomial kernelization for s-Hitting Set on (H, k) to obtain an equivalent
instance (H′, k) with size polynomial in k.

(3) Use (H′, k) to derive an equivalent instance (A′, k) of p-Q. That way we will be able
to conclude that (A′, k) is equivalent to (H, k) and hence also to (A, k).

There exist different kernelizations for s-Hitting Set: one by Flum and Grohe [13]
based on the Sunflower Lemma due to Erdős and Rado [10], one by Nishimura et al. [21] via
a generalization of the Nemhauser-Trotter kernelization for Vertex Cover, and a recent
one by Abu-Khzam [1] based on crown decompositions. For our purposes of deriving an
equivalent instance for p-Q, these kernelizations have the drawback of shrinking sets during
the reduction. This is not possible for our approach since we would need to change the
formula ψ(x, S) to shrink the clauses. We prefer to modify Flum and Grohe’s kernelization
such that it uses only edge deletions.

Theorem 3.6. There exists a polynomial kernelization of s-Hitting Set that, given an
instance (H, k), computes an instance (H∗, k) such that E(H∗) ⊆ E(H), H∗ has O(ks)
edges, and the size of (H∗, k) is O(ks) as well.

Proof. Let (H, k) be an instance of s-Hitting Set, with H = (V,E). If H contains a
sunflower F = {f1, . . . , fk+1} of cardinality k + 1 then every hitting set of H must have a
nonempty intersection with the core C of F or with the k+1 disjoint sets f1\C, . . . , fk+1\C.
Thus every hitting set of at most k elements must have a nonempty intersection with C.

Now consider a sunflower F = {f1, . . . , fk+1, fk+2} of cardinality k+2 in H and let H′ =
(V,E \{fk+2}). We show that the instances (H, k) and (H′, k) are equivalent. Clearly every
hitting set for H is also a hitting set for H′ since E(H′) ⊆ E(H). Let S ⊆ V be a hitting set
of size at most k for H′. Since F \{fk+2} is a sunflower of cardinality k+1 in H′, it follows
that S has a nonempty intersection with its core C. Hence S has a nonempty intersection



POLYNOMIAL KERNELIZATIONS 607

with fk+2 ⊇ C too. Thus S is a hitting set of size at most k for H, implying that (H, k)
and (H′, k) are equivalent.

We start with H∗ = H and repeat the following step while H∗ has more than (k+1)s·s!·s
edges. By the Sunflower Corollary we obtain a sunflower of cardinality k + 2 in H∗ in time
polynomial in |E(H∗)|. We delete an edge of the detected sunflower from the edge set of H∗

(thereby reducing the cardinality of the sunflower to k + 1). Thus, by the argument from
the previous paragraph, we maintain that (H, k) and (H∗, k) are equivalent.

Furthermore E(H∗) ⊆ E(H) and H∗ has no more than (k + 1)s · s! · s ∈ O(ks) edges.
Since we delete an edge of H∗ in each step, there are O(|E(H)|) steps, and the total time is
polynomial in |E(H)|. Deleting all isolated vertices from H∗ yields a size of O(s·ks) = O(ks)
since each edge contains at most s vertices.

The following lemma proves that every s-Hitting Set instance that is “sandwiched”
between two equivalent instances must be equivalent to both.

Lemma 3.7. Let (H, k) be an instance of s-Hitting Set and let (H∗, k) be an equiva-
lent instance with E(H∗) ⊆ E(H). Then for any H′ with E(H∗) ⊆ E(H′) ⊆ E(H) the
instance (H′, k) is equivalent to (H, k) and (H∗, k).

Proof. Observe that hitting sets for H can be projected to hitting sets for H′ (i.e. restricted
to the vertex set of H′) since E(H′) ⊆ E(H). Thus if (H, k) is a yes-instance then (H′, k)
is a yes-instance too. The same argument holds for (H′, k) and (H∗, k). Together with the
fact that (H, k) and (H∗, k) are equivalent, this proves the lemma.

Now we are well equipped to prove that p-Q admits a polynomial kernelization.

Theorem 3.8. Let Q ∈ MIN F
+Π1. The standard parameterization p-Q of Q admits a

polynomial kernelization.

Proof. Let (A, k) be an instance of p-Q. By Lemma 3.5 we have that (A, k) is a yes-instance
of p-Q if and only if (H, k) = (Φ(A), k)) is a yes-instance of s-Hitting Set. We apply
the kernelization from Theorem 3.6 to (H, k) and obtain an equivalent s-Hitting Set

instance (H∗, k) such that E(H∗) ⊆ E(H) and H∗ has O(ks) edges.
Recall that every edge of H, say {z1, . . . , zp}, corresponds to a clause (S(z1)∨· · ·∨S(zp))

of ψx(S) for some x ∈ Acx . Thus for each edge e ∈ E(H∗) ⊆ E(H) we can select a tuple xe

such that e corresponds to a clause of ψxe(S). Let X be the set of the selected tuples xe for
all edges e ∈ E(H∗). Let A′ ⊆ A be the set of all components of tuples xe ∈ X, ensuring
that X ⊆ A′cx . Let R′

i be the restriction of Ri to A′ and let A′ = (A′, R′
1, . . . , R

′
t).

Let (H′, k) = (Φ(A′), k). By definition of Φ and by construction of H′ we know
that E(H∗) ⊆ E(H′) ⊆ E(H) since X ⊆ A′cx and A′ ⊆ A. Thus, by Lemma 3.7, we
have that (H′, k) is equivalent to (H, k). Furthermore, by Lemma 3.5, (H′, k) is a yes-
instance of s-Hitting Set if and only if (A′, k) is a yes-instance of p-Q. Thus (A′, k)
and (A, k) are equivalent instances of p-Q.

We conclude the proof by giving an upper bound on the size of (A′, k) that is polynomial
in k. The set X contains at most |E(H∗)| ∈ O(ks) tuples. These tuples have no more
than cx · |E(H∗)| different components. Hence the size of A′ is O(cx · ks) = O(ks). Thus
the size of (A′, k) is O(ksm), where m is the largest arity of a relation Ri. The values cx, s,
and m are constants that are independent of the input (A, k). Thus (A′, k) is an instance
equivalent to (A, k) with size polynomial in k.



608 S. KRATSCH

4. Polynomial kernelization for MAX NP

We prove that the standard parameterization of any problem in MAX NP admits
a polynomial kernelization. The class MAX NP was introduced by Papadimitriou and
Yannakakis in [23]. They showed that every problem in MAX NP is constant-factor ap-
proximable.

Throughout the section let Q ∈ MAX NP be an optimization problem on finite
structures of type (r1, . . . , rt). Let R1, . . . , Rt be relation symbols of arity r1, . . . , rt and
let S = (S1, . . . , Su) be a tuple of relation symbols of arity s1, . . . , su. Let ψ(x,y,S) be
a formula in disjunctive normal form over the vocabulary {R1, . . . , Rt, S1, . . . , Su} on vari-
ables {x1, . . . , xcx , y1, . . . , ycy} such that for all finite structures A of type (r1, . . . , rt):

optQ(A) = max
S

|{x ∈ Acx : (A,S) |= (∃y ∈ Acy) : ψ(x,y,S)}|.

Let s be the maximum number of occurrences of relations S1, . . . , Su in any disjunct
of ψ(x,y,S). The standard parameterization p-Q of Q is the following problem:

Input: A finite structure A of type (r1, . . . , rt) and an integer k.
Parameter: k.
Task: Decide whether optQ(A) ≥ k.

Similarly to the previous section, we consider the formula ψ(x,y,S) and a fixed in-
stance (A, k) with A = (A,R1, . . . , Rt). We select tuples x ∈ Acx and y ∈ Acy and evaluate
all literals of the form Ri(z) and ¬Ri(z) for some z ∈ {x1, . . . , xxc , y1, . . . , ycy}ri . By check-
ing whether z ∈ Ri we obtain 1 (true) or 0 (false) for each literal. Since ψ(x,y,S) is in
disjunctive normal form, we delete all occurrences of 1 from the disjuncts and delete all
disjuncts that contain a 0. Furthermore, we delete all disjuncts that contain contradicting
literals Sj(z),¬Sj(z) since they cannot be satisfied. We explicitly allow empty disjuncts
that are satisfied by definition for the sake of simplicity (they occur when all literals in a
disjunct are evaluated to 1). We obtain an equivalent formula that we denote with ψx,y(S).

Remark 4.1. For all x, y, and S it holds that (A,S) |= ψ(x,y,S) iff (A,S) |= ψx,y(S).
Moreover, we can compute all formulas ψx,y(S) for x ∈ Acx , y ∈ Acy in polynomial time,
since cx, cy, and the length of ψ(x,y,S) are constants independent of A.

Definition 4.2. Let A = (A,R1, . . . , Rt) be a finite structure of type (r1, . . . , rt).
(a) We define XA ⊆ Acx as the set of all tuples x such that (∃y) : ψx,y(S) holds for some S:

XA = {x : (∃S) : (A,S) |= (∃y) : ψx,y(S)}.
(b) For x ∈ Acx we define YA(x) as the set of all tuples y such that ψx,y(S) holds for
some S:

YA(x) = {y : (∃S) : (A,S) |= ψx,y(S)}.
Remark 4.3. The sets XA and YA(x) can be computed in polynomial time since the
number of tuples x ∈ Acx and y ∈ Acy is polynomial in the size of A and ψ(x,y,S) is of
constant length independent of A.

Lemma 4.4. Let (A, k) be an instance of p-Q. If |XA| ≥ k ·2s then optQ(A) ≥ k, i.e. (A, k)
is a yes-instance.

Proof. The lemma can be concluded from the proof of the constant-factor approximability of
problems in MAX NP in [23]. For each x ∈ XA we fix a tuple y ∈ YA(x) such that ψx,y(S)
is satisfiable. This yields |XA| formulas, say ψ1, . . . , ψ|XA|. Papadimitriou and Yannakakis



POLYNOMIAL KERNELIZATIONS 609

showed that one can efficiently compute an assignment that satisfies at least
∑
fi of these

formulas, where fi is the fraction of all assignments that satisfies ψi.
To see that fi ≥ 2−s; consider such a formula ψi. Since ψi is satisfiable there exists a

satisfiable disjunct. To satisfy a disjunct of at most s literals, at most s variables need to
be assigned accordingly. Since the assignment to all other variables can be arbitrary this
implies that fi ≥ 2−s. Thus we have that

∑
fi ≥ |XA| ·2−s. Therefore |XA| ≥ k ·2s implies

that the assignment satisfies at least k formulas, i.e. that optQ(A) ≥ k.

Henceforth we assume that |XA| < k · 2s.

Definition 4.5. Let (A, k) be an instance of p-Q with A = (A,R1, . . . , Rt). For x ∈ Acx

we define DA(x) as the set of all disjuncts of ψx,y(S) for y ∈ YA(x).

Definition 4.6. We define the intersection of two disjuncts as the conjunction of all literals
that occur in both disjuncts. A sunflower of a set of disjuncts is a subset such that each pair
of disjuncts in the subset has the same intersection (modulo permutation of the literals).

Remark 4.7. The size of each DA(x) is bounded by the size of YA(x) ⊆ Acy times the
number of disjuncts of ψ(x,y,S) which is a constant independent of A. Thus the size of
each DA(x) is bounded by a polynomial in the input size. The definition of intersection
and sunflowers among disjuncts is a direct analog that treats disjuncts as sets of literals.

Definition 4.8. A partial assignment is a set L of literals such that no literal is the negation
of another literal in L. A formula is satisfiable under L if there exists an assignment that
satisfies the formula and each literal in L.

Proposition 4.9. Let (A, k) be an instance of p-Q. For each x ∈ Acx there exists a
set D∗

A(x) ⊆ DA(x) of cardinality O(ks) such that:

(1) For every partial assignment L of at most sk literals, D∗
A(x) contains a disjunct

satisfiable under L, if and only if DA(x) contains a disjunct satisfiable under L.
(2) D∗

A(x) can be computed in time polynomial in |A|.
Proof. Let A = (A,R1, . . . , Rt) be a finite structure of type (r1, . . . , rt), let x ∈ Acx , and
let DA(x) be a set of disjuncts according to Definition 4.5. From the Sunflower Corollary we
can derive a polynomial-time algorithm that computes a set D∗

A(x) by successively shrinking
sunflowers. We start by setting D∗

A(x) = DA(x) and apply the following step while the
cardinality of D∗

A(x) is greater than (sk + 1)s · s! · s.
We compute a sunflower of cardinality sk+ 2, say F = {f1, . . . , fsk+2}, in time polyno-

mial in |D∗
A(x)| (Sunflower Corollary). We delete a disjunct of F , say fsk+2, from D∗

A(x).
Let O and P be copies of D∗

A before respectively after deleting fsk+2. Observe that F ′ =
F \ {fsk+2} is a sunflower of cardinality sk + 1 in P . Let L be a partial assignment of at
most sk literals and assume that no disjunct in P is satisfiable under L. This means that for
each disjunct of P there is a literal in L that contradicts it, i.e. a literal that is the negation
of a literal in the disjunct. We focus on the sunflower F ′ in P . There must be a literal
in L, say l, that contradicts at least two disjuncts of F ′, say f and f ′, since |F ′| = sk + 1
and |L| ≤ sk. Therefore l is the negation of a literal in the intersection of f and f ′, i.e. the
core of F ′. Thus l contradicts also fsk+2 and we conclude that no disjunct in O = P∪{fsk+2}
is satisfiable under the partial assignment L. The reverse argument holds since all disjuncts
of P are contained in O. Thus each step maintains the desired property (1).



610 S. KRATSCH

At the end D∗
A(x) contains no more than (sk+ 1)s · s! · s ∈ O(ks) disjuncts. For each x

this takes time polynomial in the size of the input since the cardinality of DA(x) is bounded
by a polynomial in the input size and a disjunct is deleted in each step.

Lemma 4.10. Let D′
A(x) be a subset of DA(x) such that D∗

A(x) ⊆ D′
A(x) ⊆ DA(x). For

any partial assignment L of at most sk literals it holds that DA(x) contains a disjunct
satisfiable under L if and only if D′

A(x) contains a disjunct satisfiable under L.

Proof. Let L be a partial assignment of at most sk literals. If DA(x) contains a disjunct
satisfiable under L, then, by Proposition 4.9, this holds also for D∗

A(x). For D∗
A(x) and D′

A
this holds since D∗

A(x) ⊆ D′
A(x). The same is true for D′

A(x) and DA(x).

Theorem 4.11. Let Q ∈ MAX NP. The standard parameterization p-Q of Q admits a
polynomial kernelization.

Proof. The proof is organized in three parts. First, given an instance (A, k) of p-Q, we
construct an instance (A′, k) of p-Q in time polynomial in the size of (A, k). In the second
part, we prove that (A, k) and (A′, k) are equivalent. In the third part, we conclude the
proof by showing that the size of (A′, k) is bounded by a polynomial in k.
(I.) Let (A, k) be an instance of p-Q. We use the sets DA(x) and D∗

A(x) according to
Definition 4.5 and Proposition 4.9. Recall that DA(x) is the set of all disjuncts of ψx,y(S)
for y ∈ YA(x). Thus, for each disjunct d ∈ D∗

A(x) ⊆ DA(x), we can select a yd ∈ YA(x)
such that d is a disjunct of ψx,yd

(S). Let Y ′
A(x) ⊆ YA(x) be the set of these selected

tuples yd. Let D′
A(x) be the set of all disjuncts of ψx,y(S) for y ∈ Y ′

A(x). Since D∗
A(x)

contains some disjuncts of ψx,y(S) for y ∈ Y ′
A(x) andDA(x) contains all disjuncts of ψx,y(S)

for y ∈ YA(x) ⊇ Y ′
A(x), we have that D∗

A(x) ⊆ D′
A(x) ⊆ DA(x).

For each x this takes time O(|D∗
A(x)| · |Y ∗

A(x)|) ⊆ O(ks · |A|cy). Computing Y ′
A(x) for

all x ∈ Acx takes time O(|A|cx · ks · |A|cy), i.e. time polynomial in the size of (A, k) since k
is never larger than |A|cx .4

Let A′ ⊆ A be the set of all components of x ∈ XA and y ∈ Y ′
A(x) for all x ∈ XA. This

ensures that XA ⊆ (A′)cx and Y ′
A(x) ⊆ (A′)cy for all x ∈ XA. Let R′

i be the restriction
of Ri to A′ and let A′ = (A′, R′

1, . . . , R
′
t).

(II.) We will now prove that optQ(A) ≥ k if and only if optQ(A′) ≥ k, i.e. that (A, k)
and (A′, k) are equivalent. Assume that optQ(A) ≥ k and let S = (S1, . . . , Su) such
that |{x : (A,S) |= (∃y) : ψ(x,y,S)}| ≥ k. This implies that there must exist tu-
ples x1, . . . ,xk ∈ Acx and y1, . . . ,yk ∈ Acy such that S satisfies ψxi,yi

(S) for i = 1, . . . , k.
Thus S must satisfy at least one disjunct in each ψxi,yi

(S) since these formulas are in
disjunctive normal form. Accordingly let d1, . . . , dk be disjuncts such that S satisfies the
disjunct di in ψxi,yi

(S) for i = 1, . . . , k. We show that there exists S ′ such that:

|{x : (A′,S ′) |= (∃y) : ψ(x,y,S ′)}| ≥ k.

For p = 1, . . . , k we apply the following step: If yp ∈ Y ′
A(xp) then do nothing. Oth-

erwise consider the partial assignment L consisting of the at most sk literals of the dis-
juncts d1, . . . , dk. The set DA(xp) contains a disjunct that is satisfiable under L, namely dp.
By Lemma 4.10, it follows that D′

A(xp) also contains a disjunct satisfiable under L, say d′p.
Let y′

p ∈ Y ′
A(xp) such that d′p is a disjunct of ψxp,y′

p
(S). Such a y′

p can be found by selection

of D′
A(xp). Change S in the following way to satisfy the disjunct d′p. For each literal of d′p

of the form Si(z) add z to the relation Si. Similarly for each literal of the form ¬Si(z)

4That is, (A, k) is a no-instance if k > |A|cx since k exceeds the number of tuples x ∈ Acx .



POLYNOMIAL KERNELIZATIONS 611

remove z from Si. This does not change the fact that S satisfies the disjunct di in ψxi,yi
(S)

for i = 1, . . . , k since, by selection, d′p is satisfiable under L. Then we replace yp by y′
p

and dp by d′p. Thus we maintain that S satisfies di in ψxi,yi
(S) for i = 1, . . . , k.

After these steps we obtain S as well as tuples x1, . . . ,xk, y1, . . . ,yk with yi ∈ Y ′
A(xi),

and disjuncts d1, . . . , dk such that S satisfies di in ψxi,yi
(S) for i = 1, . . . , k. Let S ′ be the

restriction of S to A′. Then we have that (A′,S ′) |= ψxi,yi
(S ′) for i = 1, . . . , k since A′ is

defined to contain the components of tuples x ∈ XA and of all tuples y ∈ Y ′
A(x) for x ∈ XA.

Hence xi ∈ {x : (A′,S ′) |= (∃y) : ψ(x,y,S ′)} for i = 1, . . . , k. Thus optQ(A′) ≥ k.
For the reverse direction assume that optQ(A′) ≥ k. Since A′ ⊆ A it follows that

{x : (A′,S ′) |= (∃y) : ψ(x,y,S ′)} ⊆ {x : (A,S ′) |= (∃y) : ψ(x,y,S ′)}.
Thus |{x : (A,S ′) |= (∃y) : ψ(x,y,S ′)}| ≥ k, implying that optQ(A) ≥ k. There-
fore optQ(A) ≥ k if and only if optQ(A′) ≥ k. Hence (A, k) and (A′, k) are equivalent
instances of p-Q.
(III.) We conclude the proof by providing an upper bound on the size of (A′, k) that is
polynomial in k. For the sets Y ′

A(x) we selected one tuple y for each disjunct in D∗
A(x).

Thus |Y ′
A(x)| ≤ |D∗(x)| ∈ O(ks) for all x ∈ XA. The set A′ contains the components of

tuples x ∈ XA and of all tuples y ∈ Y ′
A(x) for x ∈ XA. Thus

|A′| ≤ cx · |XA| + cy ·
∑

x∈XA
|Y ′

A(x)|
≤ cx · |XA| + cy · |XA| ·O(ks)
< cx · k · 2s + cy · k · 2s ·O(ks) = O(ks+1).

For each relation R′
i we have |R′

i| ≤ |A′|ri ∈ O(k(s+1)ri). Thus the size of (A′, k) is

bounded by O(k(s+1)m), where m is the largest arity of a relation Ri.

Remark 4.12. For MAX SNP one can prove a stronger result that essentially relies on
Lemma 4.4. That way one obtains bounds for the sizes of A′ and (A′, k) of O(k) and O(km)
respectively.

5. Conclusion

We have constructively established that the standard parameterizations of problems
in MIN F

+Π1 and MAX NP admit polynomial kernelizations. Thus a strong relation be-
tween constant-factor approximability and polynomial kernelizability has been showed for
two large classes of problems. It remains an open problem to give a more general result
that covers all known examples (e.g. Feedback Vertex Set). It might be profitable to
consider closures of MAX SNP under reductions that preserve constant-factor approxima-
bility. Khanna et al. [16] proved that APX and APX-PB are the closures of MAX SNP

under PTAS-preserving reductions and E-reductions, respectively. Since both classes con-
tain Bin Packing which does not admit a polynomial kernelization, this leads to the
question whether polynomial kernelizability or fixed-parameter tractability are maintained
under restricted versions of these reductions.

Acknowledgement

We would like to thank Iyad Kanj for pointing out Bin Packing as an example that
is constant-factor approximable but does not admit a polynomial kernelization.



612 S. KRATSCH

References

[1] Faisal N. Abu-Khzam. Kernelization algorithms for d-hitting set problems. In Frank K. H. A. Dehne,
Jörg-Rüdiger Sack, and Norbert Zeh, editors, WADS, volume 4619 of LNCS, pages 434–445. Springer,
2007.

[2] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof verification
and the hardness of approximation problems. J. ACM, 45(3):501–555, 1998.

[3] Vineet Bafna, Piotr Berman, and Toshihiro Fujito. A 2-approximation algorithm for the undirected
feedback vertex set problem. SIAM J. Discrete Math., 12(3):289–297, 1999.

[4] Hans L. Bodlaender. A cubic kernel for feedback vertex set. In Wolfgang Thomas and Pascal Weil,
editors, STACS, volume 4393 of LNCS, pages 320–331. Springer, 2007.

[5] Hans L. Bodlaender, Rodney G. Downey, Michael R. Fellows, and Danny Hermelin. On problems
without polynomial kernels (extended abstract). In Luca Aceto, Ivan Damg̊ard, Leslie Ann Goldberg,
Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz, editors, ICALP (1), volume 5125
of LNCS, pages 563–574. Springer, 2008.

[6] Liming Cai and Jianer Chen. On fixed-parameter tractability and approximability of NP optimization
problems. J. Comput. Syst. Sci., 54(3):465–474, 1997.

[7] Liming Cai and Xiuzhen Huang. Fixed-parameter approximation: Conceptual framework and approx-
imability results. In Hans L. Bodlaender and Michael A. Langston, editors, IWPEC, volume 4169 of
Lecture Notes in Computer Science, pages 96–108. Springer, 2006.

[8] Jianer Chen, Iyad A. Kanj, and Weijia Jia. Vertex cover: Further observations and further improve-
ments. J. Algorithms, 41(2):280–301, 2001.

[9] Rod G. Downey and M. R. Fellows. Parameterized Complexity (Monographs in Computer Science).
Springer, November 1998.

[10] Paul Erdős and Richard Rado. Intersection theorems for systems of sets. J. London Math. Soc., 35:85–90,
1960.

[11] Ronald Fagin. Generalized first-order spectra and polynomial-time recognizable sets. In Complexity of
Computation, volume 7 of SIAM-AMS Proceedings, pages 43–73, SIAM, Philadelphia, PA, 1974.

[12] Uriel Feige, MohammadTaghi Hajiaghayi, and James R. Lee. Improved approximation algorithms for
minimum weight vertex separators. SIAM J. Comput., 38(2):629–657, 2008.

[13] J. Flum and M. Grohe. Parameterized Complexity Theory (Texts in Theoretical Computer Science. An
EATCS Series). Springer, March 2006.

[14] Lance Fortnow and Rahul Santhanam. Infeasibility of instance compression and succinct PCPs for NP.
In Richard E. Ladner and Cynthia Dwork, editors, STOC, pages 133–142. ACM, 2008.

[15] Eran Halperin. Improved approximation algorithms for the vertex cover problem in graphs and hyper-
graphs. SIAM J. Comput., 31(5):1608–1623, 2002.

[16] Sanjeev Khanna, Rajeev Motwani, Madhu Sudan, and Umesh V. Vazirani. On syntactic versus compu-
tational views of approximability. SIAM J. Comput., 28(1):164–191, 1998.

[17] Phokion G. Kolaitis and Madhukar N. Thakur. Logical definability of NP optimization problems. Inf.
Comput., 115(2):321–353, 1994.

[18] Phokion G. Kolaitis and Madhukar N. Thakur. Approximation properties of NP minimization classes.
J. Comput. Syst. Sci., 50(3):391–411, 1995.

[19] Assaf Natanzon, Ron Shamir, and Roded Sharan. A polynomial approximation algorithm for the min-
imum fill-in problem. SIAM J. Comput., 30(4):1067–1079, 2000.

[20] Rolf Niedermeier. Invitation to Fixed Parameter Algorithms (Oxford Lecture Series in Mathematics and
Its Applications). Oxford University Press, USA, March 2006.

[21] Naomi Nishimura, Prabhakar Ragde, and Dimitrios M. Thilikos. Smaller kernels for hitting set problems
of constant arity. In Rodney G. Downey, Michael R. Fellows, and Frank K. H. A. Dehne, editors, IWPEC,
volume 3162 of LNCS, pages 121–126. Springer, 2004.

[22] Christos H. Papadimitriou. Computational Complexity. Addison Wesley, November 1993.
[23] Christos H. Papadimitriou and Mihalis Yannakakis. Optimization, approximation, and complexity

classes. J. Comput. Syst. Sci., 43(3):425–440, 1991.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.




