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A POLYNOMIAL KERNEL FOR MULTICUT IN TREESNICOLAS BOUSQUET 1 AND JEAN DALIGAULT 2 AND STÉPHAN THOMASSÉ 2 ANDANDERS YEO 3

1 ENS Cahan, 61, avenue du Président Wilson, 94235 Cahan edex - FraneE-mail address: nbousque�dptinfo.ens-ahan.fr
2 Université Montpellier II - CNRS, LIRMM, 161 rue Ada 34392 Montpellier Cedex 5 - FraneE-mail address: daligault�lirmm.frE-mail address: thomasse�lirmm.fr
3 Royal Holloway, University of London, Egham Hill, EGHAM, TW20 0EX - UKE-mail address: anders�s.rhul.a.ukAbstrat. The MULTICUT IN TREES problem onsists in deiding, given a tree, a setof requests (i.e. paths in the tree) and an integer k, whether there exists a set of k edgesutting all the requests. This problem was shown to be FPT by Guo and Niedermeyer in[10℄. They also provided an exponential kernel. They asked whether this problem has apolynomial kernel. This question was also raised by Fellows in [1℄.We show that MULTICUT IN TREES has a polynomial kernel.1. IntrodutionAn e�ient way of dealing with NP-hard problems is to identify a parameter whihontains its omputational hardness. For instane, instead of asking for a minimum vertexover in a graph - a lassial NP-hard optimization question - one an ask for an algorithmwhih would deide, in O(f(k).nd) time for some �xed d, if a graph of size n has a vertexover of size at most k. If suh an algorithm exists, the problem is alled �xed-parametertratable, or FPT for short. An extensive litterature is devoted to FPT, the reader is invitedto read [4℄, [7℄ and [12℄.Kernelization is a natural way of proving that a problem is FPT. Formally, a kernel-ization algorithm reeives as input an instane (I, k) of the parameterized problem, andoutputs, in polynomial time in the size of the instane, another instane (I ′, k′) suh that

• k′ ≤ k,
• the size of I ′ only depends of k,
• the instanes (I, k) and (I ′, k′) are both true or both false.Part of this researh was supported by Alliane Projet "Partitions de graphes orientés". Part of thisresearh was supported by ANR Projet GRAAL.
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184 N. BOUSQUET, J. DALIGAULT, S. THOMASSÉ, AND A. YEOThe redued instane (I ′, k′) is alled a kernel. The existene of a kernelization algo-rithm learly implies the FPT harater of the problem sine one an kernelize the instane,and then solve the redued instane G′, k′ using brute fore, hene giving an O(f(k) + nd)algorithm. A lassial result asserts that being FPT is indeed equivalent to having kerneliza-tion. The drawbak of this result is that the size of the redued instane G′ is not neessarilysmall with respet to k. A muh more onstrained ondition is to be able to redue to aninstane of polynomial size in terms of k. Consequently, in the zoology of parameterizedproblems, the �rst distintion is done between three lasses: W[1℄-hard, FPT, polykernel.A kernelization algorithm an be used as a preproessing step to redue the size of theinstane before applying an algorithm. Being able to ensure that this kernel has atuallypolynomial size in k enhanes the overall speed of the algorithm. See [11℄ for a reent reviewon kernalization.The existene of a polynomial kernel an be a subtle issue. A reent result by Fernau etal [6℄ shows that Rooted k-Leaf Outbranhing has a ubi kernel while k-Leaf Outbranhingdoes not, unless polynomial hierarhy ollapses to third level, using a breakthrough lowerbound result by Bodlaender and al [5℄.In the (unweighted) MULTICUT IN TREES problem, we onsider a tree T together witha set P of pairs of distint nodes of T , alled requests. Hene, a request an also be seen asa presribed path joining these two nodes. We will often identify the request and its path.A multiut of (T, P ) is a set S of edges of T whih interset every request in P , i.e. everypath orresponding to a request ontains an edge of S.Problem 1.1. MULTICUT IN TREES:Input: A tree T = (V,E), a set of requests P , an integer k.Output: TRUE if there is a multiut of size at most k, otherwise FALSE.Note that a more general presentation of this problem is to assign weights to edges, andask for a multiut of minimal weight. Our tehnique does not seem to generalize to theweighted ase.This problem appears in network issues (routing, teleommuniation, ...). See [3℄ for asurvey on multiommodity �ow problems and multiut problems. It was shown in [8℄ thatMULTICUT IN TREES is NP-omplete, and its assoiated deision problem is MaxSNP-hardand has a fator-2 polynomial time approximation algorithm.This problem is known to be FPT, see [9℄ or [10℄ for a branhing algorithm and anexponential kernel. The existene of a polynomial kernel was asked in [1℄. We verify thatMULTICUT IN TREES has indeed an O(k6) kernel. Our redution is very muh inspiredfrom [9℄ and [10℄. In the next setion, we �rst illustrate our tehniques when the tree T is aaterpillar. In Setion 3 we extend the proof to general trees.2. A polynomial kernel for aterpillarsA node of T whih is not a leaf is an internal node. The internal tree of T is the treerestrited to its internal nodes. We say that T is a aterpillar if its internal tree is a path. Weonsider the restrition of the MULTICUT IN TREES problem to aterpillars, as it ontainsthe ore of our proof in the general ase.



A POLYNOMIAL KERNEL FOR MULTICUT IN TREES 185Let us give some general de�nitions whih will apply both for the aterpillar ase andfor the general ase.We say that two nodes x and y are R-neighbors if there exists a request xy. A leaf xand an internal node y are quasi-R-neighbors if there exists a request xy, or a request xz,where z is a leaf rooted at y. An internal node with no leaf attahed to it is an inner node.If x is a leaf, we denote by e(x) and all the edge of x the edge adjaent to x. A group ofleaves is the set of leaves onneted to the same internal node. A group request is a request
xy where x and y belong to the same group. A leaf whih is an endpoint of a group requestis a bad leaf. A leaf to leaf request is a request between two leaves. An internal request isa request between two internal nodes. A request between an internal node and a leaf is amixed-request. Two requests are disjoint if their edge sets are disjoint. Two requests x1y1and x2y2 are endpoint-disjoint if x1, y1, x2, y2 are pairwise di�erent.The internal path of a request is the intersetion between the path of the request andthe internal tree. The ommon fator of two requests is the intersetion of their paths. Arequest R1 dominates a request R2 if the internal path of R1 ontains the internal path of
R2. Contrating an edge e in (T, P ) means ontrating e in T , and transforming eah requestof the form (e1, . . . , et, e, et+1, . . . , el) in P into (e1, . . . , et, et+1, . . . , el). Deleting an edge emeans ontrating e in T and removing every request ontaining e from P .Two requests of length at least 2 from a given leaf x have the same diretion if theseond edge of their path starting at x is the same. Two requests from an internal node xhave the same diretion if the �rst edge of their paths (starting at x) is the same. All therequests from x have the same diretion if they pairwise have the same diretion.In the following, our instane T is assumed to be a aterpillar. We all the two extrem-ities of the internal path the left end and the right end of T . The path between a node xand the right (resp. left) end will be alled right and left relatively to x.Let T ′ be the internal tree of the aterpillar T . The following �ve sets partition T :

• The set I1 of leaves of T ′.
• The set I2 of degree two nodes of T ′.
• The set L1 of leaves rooted at I1.
• The set L′

2 of bad leaves rooted at I2.
• The set L2 of the other leaves rooted at I2.The wingspan W of a leaf x is the path between the losest quasi-R-neighbor on theright of x and the losest quasi-R-neighbor on the left of x (if no suh neighbor exists, wetake the father f(x) of x by onvention). The size of a wingspan is the number of L2-leavespending from it. The subaterpillar of the wingspan W onsists in W and the leaves rootedat W . The wingspan W dominates a request yz if both y and z belong to the subaterpillarof W .The usual way of exhibiting a kernel is to de�ne a set of redution rules. These rulesshould be safe, meaning that after applying a rule, the truth value of the problem onthe instane does not hange. Moreover the repeated appliation of the rules should takepolynomial time. Finally, after iterating these rules on an instane, we want the reduedinstane to be of polynomial size in k.The redution rules. We apply the following redution rules to an instane:(0) Unit Request: if a request R has length one, i.e. R = e for some edge e of T , thenwe delete e and derease k by one.



186 N. BOUSQUET, J. DALIGAULT, S. THOMASSÉ, AND A. YEO(1) Disjoint Requests: if there are k+1 disjoint requests in P , then we return a triviallyfalse instane.(2) Unique Diretion: if all the requests starting at a leaf x have the same diretion, thenontrat e(x). If all the requests starting at an inner node x have the same diretion,then ontrat the edge e adjaent to x whih does not belong to any request startingat x.(3) Inlusion: if a request R is inluded in another request R′, then delete R′ from theset of requests.(4) Common Fator: let R be a request. If k + 1 requests R1, . . . , Rk+1 di�erent from
R but interseting R are suh that for every i 6= j, the ommon fator of Ri and Rjis a subset of R, then delete R from the set of requests.(5) Dominating Wingspan: if x is an L2-leaf with a wingspan dominating at least k + 1endpoint-disjoint leaf to leaf or mixed requests, then ontrat e(x).Eah iteration of the redution onsists in applying the �rst appliable rule, in the aboveorder.Lemma 2.1. Rules Unit Request, Disjoint Requests, Unique Diretion, Inlusion, CommonFator and Dominating Wingspan are safe.Proof. (0) Rule Unit Request is obvious.(1) Rule Disjoint Requests is obvious.(2) For Rule Unique Diretion, assume �rst that all the requests from a leaf x have thesame diretion, and that a multiut ontains e(x). Let e′ be the seond ommonedge of all these paths. As e′ uts all the requests ut by e(x), if e(x) is in a solution
S then S\{e(x)} ∪ {e′} is also a solution. So we an ontrat e(x). Now, assumethat all the requests from an inner node x go to the right. If a solution S ontainsthe edge e adjaent to x on the left then S\{e} ∪ {e′}, where e′ is the right edgeadjaent to x, is a solution sine a request going through e also goes through e′.(3) For Rule Inlusion, observe that an edge utting R also uts all the paths ontaining
R.(4) If there is a multiut of k edges, then one of these edges must interset two requestsamong the k+1 mentioned in Rule Common Fator. This edge lies in the intersetionof two paths, hene in R, so request R is ut in any multiut of P \ {R}.(5) Let x be an L2-leaf with a wingspan W dominating k +1 endpoint-disjoint requests.If a multiut of size k exists, it ontains an edge e whih uts two of these requests.As the requests are endpoint-disjoint, their intersetion is inluded in the internaltree, hene in W . Assume, for example, that e is on the left of the leaf x. Then allthe requests from x whih go to the left go through e, and moreover x has no grouprequest. Thus, if a solution exists, there is a solution without e(x), sine e(x) anbe replaed by the edge e′ whih is on the right of the neighbor of x.Lemma 2.2. Deiding whether a rule applies and applying it takes polynomial time.Proof. Denote by n the number of nodes in T and by r the number of requests, whih is

O(n2).(0) The appliation of Rule Unit Request takes time O(r).(1) The maximum edge-disjoint paths problem in trees is polynomial, see [8℄, thus RuleDisjoint Requests is polynomial.



A POLYNOMIAL KERNEL FOR MULTICUT IN TREES 187(2) Rule Unique Diretion an be applied in time O(rn2).(3) Rule Inlusion an be applied in time O(r2).(4) For the running time of Rule Common Fator, onsider a request R. Informally, weare looking for a large enough set of requests whih interset R, possibly leaving itat one or two plaes, suh that the edges through whih they leave are all distint.More formally, let Z be the set of edges not in R but sharing a vertex with someedge in R. Let Y be the set of edges e in Z suh that there exists a request startingat a node in R and going through e. We an assume without any loss that onerequest per suh edge e is hosen. Let G be the graph whih verties are Z − Y andwhih edges are the pairs (e, e′) suh that there exists a request going through both
e and e′. There exist k + 1 paths as in Rule Common Fator if and only if G has amathing of size at least k + 1 − |Y |. As the mathing problem is polynomial, theappliation of Rule Common Fator takes polynomial time.(5) Let W be a wingspan, let G be the graph whih verties are the leaves pending from
W and where two leaves are adjaent if there is a request between them. There exist
k + 1 endpoint-disjoint requests dominated by W if and only if G has a mathing ofsize k + 1, thus Rule Dominating Wingspan is polynomial.Lemma 2.3. The redution proess has a polynomial number of iterations.Proof. Eah rule dereases the sum of the lengths of the requests, whih is initially less thanthe number of requests times the number of nodes.In the following we onsider an instane in whih none of these rules an be applied,and prove that suh a redued instane has polynomial size in k.Let us introdue two graphs theoreti lemmas whih are used in our proof.Lemma 2.4. Let G be an undireted graph having m edges, of maximal positive degree ∆.Then G has a mathing of size ⌊ m

2∆−1⌋.Proof. Suh a mathing an be obtained by a greedy algorithm, as taking an edge uv in themathing forbids the edges adjaent to u and those adjaent to v (there are at most 2∆− 1suh edges, inluding uv).Lemma 2.5. Let H be an undireted graph on n verties, of maximal degree ∆. Then Hhas an independent set of size ⌊ n
∆+1⌋.Proof. Suh an independent set an be obtained by a greedy algorithm, as taking a vertex

u in the independent set forbids the verties adjaent to u.Theorem 2.6. The MULTICUT IN CATERPILLARS problem has a kernel of size O(k5).The rest of this setion is dediated to the proof of the theorem.Observation 2.7. A node has at most k + 1 R-neighbors in eah diretion.Proof. If a node x has k + 2 R-neighbors in, say, the right diretion, then Rule CommonFator applies to any longest right request of x.



188 N. BOUSQUET, J. DALIGAULT, S. THOMASSÉ, AND A. YEOClaim 1. There are at most 2(k + 1)(2k + 1) − 1 bad leaves.Proof. A bad leaf is onneted to at most k+1 leaves of some given group, by Rule CommonFator. Let G be the undireted graph whose verties are the bad leaves of T and wherethere is an edge between two leaves if there is a group request between them. The minimaldegree in G is at least 1, and the maximal degree is at most k + 1. If there are at least
2(k + 1)(2k + 1) bad leaves then there are at least (k + 1)(2k + 1) edges in G. Thus byLemma 2.4 there exist a mathing of size k+1 whih implies the existene of k+1 endpoint-disjoint (thus disjoint) group requests. In this ase, Rule Disjoint Requests would apply.Claim 2. A wingspan has size at most 2(k + 1)(4k + 3) − 1.Proof. Let W be a wingspan. As Rule Dominating Wingspan does not apply, W does notdominate k + 1 endpoint-disjoint requests. Let W ′ be the set of leaves pending from W .Let G be the undireted graph whih verties are the leaves in W ′ and the nodes in W . Foreah leaf to leaf request zy suh that z and y are in W ′, reate an edge zy in G. For eahmixed-request zy suh that z is in W ′ and y in W , reate an edge zy in G. Finding k + 1endpoint-disjoint requests is equivalent to �nding a mathing of size k + 1 in G. The degreeof a vertex u in G is at most 2k+2 beause there are at most k+1 requests in eah diretionfor u in T (by Observation 2.7). Moreover, if u orresponds to a node of W ′, the degree of
u is at least one. Indeed, sine the wingspan of x is maximal, eah L2-leaf pending from Wmust have a request dominated by W .If there are 2(k + 1)(4k + 3) L2-leaves in W ′, then G ontains at least (k + 1)(4k + 3)edges, and so G has a mathing of size k + 1 by Lemma 2.4, whih in turn means theexistene of k + 1 endpoint-disjoint requests.Claim 3. There are O(k3) L2-leaves.Proof. Let x be a L2-leaf of wingspan W . By the previous laim, there are less than 2(k +
1)(4k + 3) leaves pending from W . At most 2(k + 1)(4k + 3) L2-leaves not pending from
W have wingspans interseting W for eah diretion, as the furthest leaf (on the right)of wingspan interseting W has a wingspan whih dominates all other leaves of wingspaninterseting W from the right. Let H be the auxillary graph on L2, where two L2-leaves areadjaent if their wingspans intertset. H has maximum degree less than 6(k + 1)(4k + 3)by the above disussion. By Lemma 2.5, if T has at least 6(k + 1)(k + 2)(4k + 3) verties,then H has a stable set of size k + 1. Thus T would have k + 1 disjoint wingspans, and thus
k + 1 disjoint requests, a ontradition.Claim 4. There are O(k5) I2-nodes.Proof. By Claim 3, there are O(k3) I2-nodes with leaves. Let us bound the number of innernodes. Let I ′ be the set of inner nodes in T . Consider the graph G on the set of verties I ′where there is an edge xy if xy is a request in T .Beause of Rule Inlusion, eah inner node has degree at most two in G (one in eahdiretion). Thus G is a disjoint union of paths, alled request paths. The length of a requestpath is at most k by Rule Disjoint Requests. A node with degree 1 in G is an extremal innernode.Eah extremal inner node must be an R-neighbor in T of a leaf or of an internal nodewith a leaf (otherwise it would be redued by Rule Unique Diretion). Denote by X the setof leaves and internal nodes with a leaf attahed to it. Eah node in X has O(k) R-neighborsamong the inner nodes, and |X| = O(k3), so there are O(k4) inner nodes with a neighbor in



A POLYNOMIAL KERNEL FOR MULTICUT IN TREES 189
X (in partiular, at most O(k4) extremal inner nodes). Eah extremal inner node belongsto a unique request path of size at most k. Moreover eah inner node with no neighbor in
X must belong to a request path. So there are O(k5) inner nodes in T .There are O(k3) leaves and O(k5) internal nodes in a redued instane. Thus theMULTICUT IN CATERPILLARS problem has a kernel of size O(k5).3. General TreesShould no onfusion arise, we retain the terminology of the previous setion.Let (T , P , k) be an instane. Let T ′ be the tree obtained from T by deleting the leaves.We partition the set of nodes of T into the following seven sets:

• The set I1 of leaves in T ′.
• The set I2 of degree 2 nodes in T ′.
• The set I3 of the other nodes in T ′.
• The set L1 of leaves rooted at I1.
• The set L2 of leaves rooted at I2, endpoint of no group request.
• The set L′

2 of leaves rooted at I2, endpoint of at least one group request.
• The set L3 of leaves rooted at I3.We also denote by I the set of internal nodes of T , and by L the set of leaves of T .We need a few tehnial de�nitions. A aterpillar of T is a maximal onneted ompo-nent of T − I3 − L3. The bakbone of a aterpillar is the set of internal nodes of T in thisaterpillar. A aterpillar C is non-trivial if the set of internal nodes in C seen as a aterpillarhas size at least two. The extremities of a non-trivial aterpillar C are the two nodes of Cwhih are I2 or I1-nodes of T and beome I1-nodes in C. A minimal request of a node x is arequest having x as an endpoint and whih internal path is minimal for inlusion among allinternal paths of requests with x as an endpoint. If several requests have the same internalpaths, we arbitrarily distinguish one as minimal and will not onsider the others as minimal.If xy is a minimal request of x then y is alled a losest R-neighbor of x.Let x and y be nodes in T . If z lies on the path between x and y, or is a leaf rooted atthe path between x and y, we say that z lies toward y from x (and we do not write "from

x" should no onfusion arise).Assume x is an L2-leaf of a aterpillar C (that is, an L2-leaf of T whih belongs to C).Let f(x) be the node from whih x is pending. Let Gr(x) be the group of leaves pendingfrom f(x). Let A(x) and B(x) be the two onneted omponents of T −{f(x)}−Gr(x). Let
a(x) (resp. b(x)) be the extremity of C in A(x) (resp. B(x)). If A(x) (resp. B(x)) ontainsno extremity of C, that is if f(x) is an extremity of C, then we de�ne a(x) = f(x) (resp.
b(x) = f(x)). A wingspan W of x is formed by the restrition to internal nodes of the unionof two requests between x and two of its losest R-neighbors lying respetively in A(x) and
B(x). Observe that x an have several wingspans. The subaterpillar of the wingspan Wonsists in W and the leaves rooted at W .An L2-leaf x overs a aterpillar C if either x /∈ C and there is a request starting at xand going through the whole bakbone of C, or if x ∈ C and there are two minimal requestsstarting at x whih together over the whole bakbone of C.We apply the following redution rules to an instane: Rules (0), (1), (2), (3), and (4)are stated in the previous setion. Rule Dominating Wingspan is split for onveniene intotwo rules, one similar to the aterpillar ase and a more general one, as follows:



190 N. BOUSQUET, J. DALIGAULT, S. THOMASSÉ, AND A. YEO(5a) Bidimensional Dominating Wingspan: if x is an L2-leaf of a aterpillar C with awingspan W suh that W ∩ C dominates at least k + 1 endpoint-disjoint requests,then we ontrat e(x).(5b) Generalized Dominating Wingspan: assume that x is an L2-leaf of the aterpillar C,and that x overs C. Assume that for every losest neighbor z of x in A(x), thereexist k + 1 endpoint-disjoint requests between a node lying toward b(x) from x anda node toward z from a(x). Then we ontrat e(x).Eah iteration of the redution onsists in applying the �rst appliable rule, in the aboveorder.Lemma 3.1. Rules (5a) and (5b) are safe.Proof. Safeness of Rule Bidimensional Dominating Wingspan follows from the safeness proofof Rule Dominating Wingspan in the previous setion.Assume Rule Generalized Dominating Wingspan an be applied to x. Let z1, . . . , zlbe the losest R-neighbors of x in A(x). For every i ∈ {1, . . . , l}, beause of the k + 1endpoint-disjoint requests mentionned in the rule, any k-multiut ontains an edge in thepath between zi and b(x). Assume that a k-multiut S ontains an edge e′′ between x and
b(x). Let e′ be the edge adjaent to e(x) in the path between x and a(x). If S ontains
e(x), then S − {e(x)} ∪ {e′} is also a k-multiut. Indeed, any request x, u with u ∈ A(x) isut by e′, and any request x, v with v ∈ B(x) is ut by e′′. Assume now that a k-multiut Sontains no edge between x and b(x), then for every i ∈ {1, . . . , l}, S must ontain an edge
ei in the path between zi and f(x). Let e′ be the edge adjaent to e(x) in the path between
x and b(x). If S ontains e(x), then S − {e(x)} ∪ {e′} is a k-multiut. Indeed, any request
x, u with u ∈ A(x) is ut by an edge ei, and any request x, v with v ∈ B(x) is ut by e′.Proposition 3.2. The repeated appliation of these rules on the instane until none an beapplied takes polynomial time.Proof. The proof of the �rst �ve ases was made for general trees in the previous setion.The polynomiality of Rule Bidimensional Dominating Wingspan follows from the proof ofRule Dominating Wingspan's polynomiality in the previous setion. Deiding whether thereexist k + 1 endpoint-disjoint requests between presribed areas an still be expressed asa mathing problem as in Rule Dominating Wingspan's proof, so the appliation of RuleGeneralized Dominating Wingspan also takes polynomial time.Theorem 3.3. The number of nodes in a redued instane is O(k6).The rest of this setion is devoted to the proof of this theorem.Claim 5. |I1| = O(k)Proof. There are at most k groups of leaves with a group request, by the k + 1 disjointrequests rule. Every group of L1-leaves has a group request, otherwise any leaf of this groupwould be deleted by Rule Unique Diretion. Every I1-node has at least one L1-leaf pendingfrom it, thus |I1| ≤ k.Claim 6. |I3| = O(k)Proof. In a tree, there are at most as many nodes of degree at least 3 as the number ofleaves, so |I3| ≤ |I1| ≤ k.



A POLYNOMIAL KERNEL FOR MULTICUT IN TREES 191Claim 7. |L1| = O(k2) and |L′

2| = O(k2)Proof. Eah leaf in L1 is a bad leaf by Rule Unique Diretion, and eah leaf in L′

2 is badby de�nition. As in Claim 1 there are at most 2(k + 1)(2k + 1) − 1 bad leaves in T . Thus
|L1 ∪ L′

2| = O(k2)We now show that:
• |L3| = O(k4)
• |L2| = O(k4)
• |I2| = O(k6)Claim 8. The number of requests from a node x to a group of leaves is at most k + 1.Proof. Otherwise Rule Common Fator would apply to these requests.Claim 9. The number of requests from a node x to all the L2-leaves in a given aterpillar

C is at most 2k + 2 if x ∈ C and k + 1 if x /∈ C.Proof. Otherwise there would be at least k + 2 requests sharing the same diretion between
x and leaves in this aterpillar, and Rule Common Fator would apply to these requests.Claim 10. There are at most (2k + 1)(k + 2) − 1 requests between two groups of leaves.Proof. Let G be the bipartite graph whih verties are the leaves of the two groups Y and
Z, and where a leaf in Y and a leaf in Z are adjaent if there is a request between them.The maximum degree in G is at most k + 1 by Claim 8, thus if there are (2k + 1)(k + 2)requests between Y and Z, then by Lemma 2.4 there would be a mathing of size k+2 in G.Thus there would be k + 2 endpoint disjoint requests between Y and Z, and Rule CommonFator would apply.Claim 11. The number of requests between a group of leaves E and the nodes in a givenaterpillar C is at most 2(2k + 1)(k + 2) − 2.Proof. Assume by ontradition that there are at least 2(2k + 1)(k + 2) − 1 suh requests.Let f be the node in whih the leaves of E are rooted. If f belongs to C, then C − f hastwo onneted omponents. Among these two omponents, we selet the omponent C ′ inwhih there is the largest number of requests from E. If f does not belong to C, then welet C ′ = C. There are at least (2k + 1)(k + 2) requests between C ′ and E. Consider theundireted (bipartite) graph G whih verties are the leaves of E and the nodes of C ′, andwhere there is an edge between a leaf from E and node from C if there is a request betweenthem. This graph has maximum degree k +1 by Rule Common Fator, thus by Lemma 2.4,
G has a mathing of size k + 2. Thus there would be k + 2 endpoint disjoint requests, andRule Common Fator would apply to them.Claim 12. There are at most 2k − 1 aterpillars in T .Proof. There are at most 2k nodes in I1 ∪ I3. Let us all them separating nodes. Let rbe one of these separating nodes. Let us onsider r as the root of T . Eah aterpillaris adjaent to exatly two separating nodes. Let us assoiate to eah aterpillar of T itsadjaent separating node further away from the root r. This mapping is a bijetion, and noaterpillar is mapped on r, thus there are at most 2k − 1 aterpillars.
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|L3| = O(k4)Proof. We have that |I3| = O(k) by Claim 6. Let X be an L3-group rooted in y ∈ I3.Beause of Rule Disjoint Requests, at most (2k + 1)(k + 1) − 1 leaves in X are endpointsof group requests (by Lemma 2.4 on the usual auxilliary request graph on X). Eah leafof X must be the endpoint of at least one request, so let us ount the maximal numberof requests ontributed by eah type of nodes. By Claim 10, and as there are at most kgroups of L1-leaves and k groups of L3-leaves, at most k((2k + 1)(k + 2) − 1) leaves of Xhave a request toward an L1-leaf or an L3-leaf. There are at most 2k − 1 aterpillars in Tby Claim 12, and leaves in X have in total at most 2(2k + 1)(k + 2) − 2 R-neighbors inany aterpillar by Claim 11. Thus O(k3) leaves in X are endpoints of a request toward aaterpillar node, and I3 nodes an ontribute for at most O(k2) requests, so |X| = O(k3).This gives |L3| = O(k4).Claim 14.
|L2| = O(k4)Proof. Assume by ontradition that |L2| ≥ 3(2k − 1)(k + 1)(k + 1)(4k + 3). Let C be aaterpillar of T ontaining the maximum number of L2-leaves. By Claim 12, there are atmost 2k − 1 aterpillars in T , thus C ontains at least 3(k + 1)(k + 1)(4k + 3) L2-leaves.Assume �rst that C is not overed. We obtain a ontradition as in the aterpillarase. Consider x to be the L2-leaf having a wingspan whih intersetion W̃ with C hasmaximal size. Let C ′ be the subaterpillar of bakbone W̃ . Then C ′ ontains at least
(k + 1)(4k + 3) L2-leaves, otherwise one would �nd k + 1 disjoint wingspans by taking W̃ ,then a W̃1 disjoint from W̃ , then a W̃2 disjoint from W̃ and W̃1, . . . , and �nally a W̃kdisjoint from W̃ , W̃1, . . . , ˜Wk−1, as in Claim 3. Note that the aterpillars W,W1, . . . ,Wkare disjoint, as their intersetions W̃ , W̃1, . . . , W̃k with C are disjoint and non-empty. Thusthere would be k + 1 disjoint requests, a ontradition. Sine W̃ is maximal, eah L2-leaf yin C ′ is the endpoint of a request r ⊆ C ′. The existene of (k +1)(4k +3) suh leaves meansthere are at least k+1 endpoint-disjoint requests dominated by W̃ , by Lemma 2.4 applied tothe usual auxiliary request graph G on the L2-leaves of C ′ (note that the maximum degreeof G is at most 2k + 2). Whih means Rule (5a) should apply, a ontradition.Assume now that C is overed by some L2-leaf x. If more than (k+1)(4k+3) L2-leavesin C do not dominate C, then some wingspan of x dominates (k + 1)(4k + 3) requests,and thus dominates at least k + 1 endpoint-disjoint requests, by the usual appliation ofLemma 2.4. So Rule Bidimensional Dominating Wingspan should apply, a ontradition.So at least 3(k + 1)(k + 1)(4k + 3) − (k + 1)(4k + 3) L2-leaves in C over C, let X be theset of these leaves. Let d1, . . . , dj be the I1-nodes in A(x). Note that j ≤ k.For suh an I1-node di and a leaf x ∈ X having at least one quasi-R-neighbor lyingtoward di, let us denote by rn(x, i) the losest quasi-R-neighbor of x toward di. Let RN(i)be the set of all nodes rn(x, i) for leaves x ∈ X having at least one quasi-R-neighbor lyingtoward di. Note that the nodes of RN(i) lie on the segment [a(x), di]. Denote by xi

1, . . . , x
i
tthe leaves in X having at least one quasi-R-neighbor lying toward di, ordered aording tothe distane between a(x) and rn(x, i), from losest to furthest. If t ≥ (k + 1)(4k + 3),denote by Xi the set {xi

1, . . . , x
i
(k+1)(4k+3)}.When less than (k +1)(4k +3) L2-leaves in X have a quasi-R-neighbor toward di, mark

di as invalid, and proeed. Note that at least one di must be valid, as |X| > k(k+1)(4k+3).



A POLYNOMIAL KERNEL FOR MULTICUT IN TREES 193Now we have a list of at most k sets (the sets Xi for di valid) of size (k+1)(4k+3). Theunion X ′ of these is of size at most k(k +1)(4k +3) < |X|. Thus there exists an L2-leaf z in
X − X ′. Consider the losest quasi-R-neighbor ni of z toward a valid di. There are either
(k+1)(4k+3) L2-leaves of Xi between z and a(x) or (k+1)(4k+3) L2-leaves of Xi between zand b(x). Thus there are k + 1 endpoint-disjoint requests either between the subaterpillarsspanned by the segments ]z, a(x)[ and ]a(x), ni[ or between the subaterpillars spanned bythe segments ]b(x), z[ and ]a(x), ni[, by Lemma 2.4 on the usual auxiliary request graph. Inthe former ase Rule Common Fator applies, in the latter Rule Generalized DominatingWingspan applies.Claim 15.
|I2| = O(k6)Proof. There are O(k4) internal nodes with leaves in T , by Claim 14. It remains to boundthe ardinal of the set Z of inner nodes in I2.Let r be an I1-node of T , we now onsider r as the root of T . Let u be a node of Z.Let C(u) be the aterpillar ontaining u, denote by a(u) and b(u) its extremities, with b(u)an anestor of a(u) with respet to r. Let A(u) be the onneted omponent of T − {u}ontaining a(u). If the node u has an R-neighbor in A(u), selet suh node v(u). Note that uis on the path bewteen v(u) and r. Thus, by Rule Inlusion, v(u) 6= v(u′) whenever u 6= u′.Let G be the graph with vertex set Z, and with edge set {(u, v(u))|u ∈ Z}. This graph Gis a disjoint union of paths. By Rule Disjoint Requests, paths in G have length at most k.Verties u in G whih have no R-neighbor in A(u) must be adjaent in T to some node notin Z, by Rule Unique Diretion. There are O(k4) nodes not in Z, eah of whih an haveat most k R-neighbors in Z. Indeed, a vertex annot have two di�erent R-neighbors in thesame diretion, by Rule Inlusion. Thus there are O(k5) verties u without R-neighbor in
A(u) in G, whih gives that there are O(k6) verties in G, whih �nally means that thereare O(k6) inner nodes in T . �This onludes the proof of the theorem.4. ConlusionWe have shown that the (unweighted) MULTICUT IN TREES problem admits a polyno-mial kernel. This kernelization algorithm, or just some partiular sequene using some ofthe redution rules presented above, an be used as a preproessing or in-proesssing stepin a pratial algorithm.This analysis might not be tight, so one an hope to improve this O(k6) bound retainingthe same set of redution rules. New redution rules might be needed to derease this boundeven further.Our tehnique does not seem to generalize to the weighted version of MULTICUT INTREES. Thus deiding whether the Weighted MULTICUT IN TREES problem admits a poly-nomial kernel is still open.It is not known whether the general Multiut in Graphs problem is FPT with respetto this parameter k, even for graphs of bounded treewidth. If it turned out to be true, thenthe question of the existene of a polynomial kernel for Multiut in Graphs would rise.Among the most notorious open problems on polynomial kernelization stand DiretedFeedbak Vertex Set and Clique Cover. Direted Feedbak Vertex Set onsists in deidingwhether a graph admits k verties whih removal makes the graph ayli. This problem
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