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Abstract

We consider the class of constant depth AND/OR circuits augmented with a layer of modular
counting gates at the bottom layer, i.e AC0◦MODm circuits. We show that the following holds
for several types of gates G: by adding a gate of type G at the output, it is possible to obtain an
equivalent probabilistic depth 2 circuit of quasipolynomial size consisting of a gate of type G at
the output and a layer of modular counting gates, i.e G ◦MODm circuits. The types of gates G
we consider are modular counting gates and threshold-style gates. For all of these, strong lower
bounds are known for (deterministic) G ◦MODm circuits.

1 Introduction

A long standing problem in Boolean circuit complexity is to understand the computational power
of constant depth AND/OR circuits augmented with modular counting (MODm) gates, i.e ACC0

circuits. One approach would be to consider restrictions on the occurrences of the MODm gates.
Restricting circuit to contain MODm gates only at the layer below the output or to only contain
few MODm gates have successfully resulted in lower bounds [9, 12, 21]. We believe that proving
lower bounds for ACC0 circuits containing MODm only in a single layer would be an important
next step towards understanding ACC0 circuits. The restriction we will study in this work is even
stricter: we require that all MODm gates occur at the bottom layer. This still gives a class of
circuits for which no strong lower bounds are known. In fact, no good lower bounds are known for
depth 3 ACC0 circuits and this is true even when the MODm gates can occur only at the bottom
layer.

More precisely, while strong lower bounds are known for AND◦OR◦MODm circuits, no strong
lower bounds are known for OR ◦AND ◦MODm circuits. We remark that for these statements
the precise definition of MODm gates is crucial1. Grolmusz proved that MAJ ◦ OR ◦ MODm

circuits require size 2Ω(n) to compute the inner product modulo 2 function IP2. For the same class
of circuits, Beigel and Maciel [4] proved that MODq requires size 2Ω(n), when q - m, and that IPp
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1Two definitions are commonly used in the literature, one being the complement of the other. This also means
that the lower bounds we review below are stated differently than their original statement.
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requires size 2Ω(
√

n). They also manage to show that MAJ ◦AND ◦MODpk circuits require size
2Ω(n) to compute the MODq function, but only when p is a prime not dividing q. Also, Jukna uses
graph complexity [14] to derive lower bounds for AND ◦OR ◦MOD2 circuits; this lower bound is
easily extended to AND ◦OR ◦MODm circuits.

One of the strongest lower bounds obtained in Boolean circuit complexity is the lower bound
for AC0[pk] circuits by Razborov [16] and Smolensky [17]. This result is proved in two steps. First
a depth reduction is invoked, resulting in probabilistic MODp ◦ANDlogO(1) n circuits. Then a lower
bound for these are derived from counting arguments. Depth reduction results for the entire class
ACC0 obtained by Yao [22] and Beigel and Tarui [6] gave hope that a similar two step approach
could be used to obtain lower bounds for ACC0. Indeed by results of H̊astad and Goldmann [13]
it is then sufficient to obtain strong lower bounds for multiparty communication complexity for
logO(1) n players in the “number on the forehead” model, but such a result currently seems out of
reach.

We believe that it should be explored if a two step approach using depth reduction can be
employed for subclasses of ACC0. Indeed, the depth reduction by Beigel and Tarui results in a class
that is arguably too powerful. They show that any ACC0 circuit is simulated by a deterministic
SYM ◦ ANDlogO(1) circuit. Beigel, Tarui and Toda proved that this latter class of circuits can
even simulate probabilistic EMAJ ◦ACC0 circuits [7].

In this paper we derive a number of depth reduction results for AC0 ◦ MODm circuits. Let
G denote a class of modular counting gates (modulo a prime p), exact threshold gates, majority
gates or threshold gates, i.e MODp, ETHR, MAJ or THR gates. Then by adding a gate of type G
at the output of the AC0 ◦MODm circuit allows one to obtain a depth reduction to probabilistic
G ◦MODm circuits.

For each of these classes strong lower bounds are known for deterministic circuits. For MODp ◦
MODm circuits lower bounds was obtained by Barrington, Straubing and Thérien [3] (See also
[2, 18, 11, 15]). Lower bounds for MAJ ◦ MODm circuits was obtained by Goldmann [10] and
finally lower bounds for THR ◦MODm circuits was obtained by Krause and Pudlák [15].

Our depth reduction reduction proof will use two ingredients. First, as previous results of this
kind we will use constructions of probabilistic polynomials. Secondly we will use representations of
Boolean function as Fourier sums. We will present these in Section 2 and Section 3, respectively.
Finally in Section 4 we combine these to obtain our main results. In the remainder of this section
we briefly review the necessary circuit definitions.

1.1 Constant Depth Circuits

We consider circuits built from families of unbounded fanin gates. Inputs are allowed to be Boolean
variables and their negations as well as the constants 0 and 1. In addition to AND, OR and NOT
we consider MODm gates and threshold style gates. Let x1, . . . , xn be n Boolean inputs. For a
positive integer m, let MODm be the function that outputs 1 if and only if

∑n
i=1 xi 6≡ 0 (mod m).

The majority function, MAJ, is 1 if and only if
∑n

i=1 xi ≥ n
2 . Similarly, the exact majority function,

EMAJ, is 1 if and only if
∑n

i=1 xi = n
2 . Let w ∈ Rn and let t be any real number. The threshold

function with weights w and threshold t, THRw,t is 1 if and only if
∑n

i=1 wixi ≥ t. Similarly, the
exact threshold function with weights w and threshold t, ETHRw,t is 1 if and only if

∑n
i=1 wixi = t.

Let AND and OR denote the families of unbounded fanin AND and OR gates. Let MODm,
EMAJ, MAJ, ETHR, THR denote the families of MODm, EMAJ, MAJ, ETHRw,t and THRw,t
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gates, for arbitrary w and t. If G is a family of boolean gates and C is a family of circuits we let
G ◦ C denote the class of circuits consisting of a G gate taking circuits from C as inputs.

AC0 is the class of functions computed by constant depth circuits built from AND, OR and
NOT gates. AC0[m] is the class of functions computed by constant depth circuits built from AND,
OR and MODm gates. ACC0 is the union of the classes AC0[m].

2 Probabilistic Polynomials

Razborov [16] and Smolensky [17] (cf. [1]) gave a simple construction of probabilistic polynomials
over Zp computing the OR function.

Theorem 1 (Razborov, Smolensky) For any prime p and any ε > 0 there is a family of poly-
nomials over Zp of degree O(log(1

ε )) that probabilistically compute the OR function with one-sided
positive error at most ε.

This also gives a family of low degree polynomials that probabilistically compute the AND function
with small one-sided negative error.

Fermat’s little theorem gives a polynomial over Zp of constant degree p − 1, computing the
MODp function and the following extension gives the same for the MODpk function (see e.g [6] for
a proof).

Lemma 2 Let q = pk for a prime p. Then the MODq function is computed by polynomial over Zp

of degree q − 1.

Combining Theorem 1 and Lemma 2 and composing polynomials then gives the following.

Theorem 3 (Razborov, Smolensky) Let q = pk for a prime p. Let C be a depth d AC0[q]
circuit of size S and let ε > 0. Then there is a family of probabilistic polynomials of degree
O(log(S

ε )d) that compute the output of C with error at most ε.

Based on a theorem by Valiant and Vazirani [20], Beigel et al. [5] and Tarui [19] gave probabilistic
polynomials over the integers computing the OR function, thereby generalizing Theorem 1, albeit
at the expense of a slightly larger degree. As with Theorem 1 it also gives probabilistic polynomials
computing the AND function.

Theorem 4 (Beigel et al., Tarui) For any ε > 0 there is a family of polynomials over Z of
degree O(log(1

ε ) log n) and having coefficients of absolute value 2O(log( 1
ε
) log(n)) that probabilistically

compute the OR function with one-sided positive error at most ε.

Let P (x) denote a polynomial from this family. Tarui2 considered the family of polynomials given
by Q(x) = 1− (x1 + · · ·+xn +1)(P (x)−1)2 he obtained a family of polynomials computing the OR
function with zero-sided error. With these polynomials Tarui obtained probabilistic polynomials
computing the output of AC0 circuits with zero-sided error as well. Beigel et al. subsequently gave
a simpler construction for obtaining this, that we will review next.

2Tarui actually stated his results in terms of the NOR function making the polynomials slightly different.
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Theorem 5 (Tarui) Let C be a depth d AC0 circuit of size S and let ε > 0. Then there is a
family of polynomials over Z of degree O((log(S

ε ) log(S))d) and having coefficients of absolute value
2O((log(S

ε
) log(S))d) that compute the output of C with zero-sided error at most ε.

Proof (Beigel et al.) By composing the polynomials given by Theorem 4 we get a family
of polynomials of degree O((log(S

ε ) log(S))d) and having coefficients of absolute value at most
2O((log(S

ε
) log(S))d) that probabilistically compute the output of C with error at most ε. Let F

denote a member of this family. Let g be any gate of C taking inputs g1, . . . , gm. Let Pg denote a
member of the family of polynomials computing g in variables y1, . . . , ym. If g is an OR gate define
Eg by Eg(y) = (y1+ · · ·+ym)(P (y)−1). We then have that Eg(y) = 0 if and only if Pg(y) = OR(y).
When g is an AND gate then similarly we define Eg(y) = (y1 + · · ·+ yn −n)P (y) and we have that
Eg(y) = 0 if and only if Pg(y) = AND(y).

Now, define E(x) =
∑

g∈C(Eg(x))2. Then E(x) = 0 whenever all gates in C are computed
correctly. Then finally we have that the family of polynomials given

G(x) = F (x)− ((F (x))2 + 1)E(x)

compute the output of C with zero-sided error at most ε.
Clearly these polynomials are of degree O((log(S

ε ) log(S))d) and have coefficients of absolute
value 2O((log(S

ε
) log(S))d) as well. �

3 Fourier Sum Representation

In this section we will derive representations of circuits of the form G ◦ANDd ◦MODm for several
choices of a family of Boolean gates G by Fourier sums over a field with an mth root of unity.
Conversely we will derive G ◦ MODm circuits computing the Boolean functions represented by
such representations. Combining these two types of results then implies that the layer of ANDd

gates can be eliminated.
When G is a family of modular counting gates the appropriate setting will be Fourier sums over

a finite field. When G is a family of threshold style gates the appropriate setting will instead be
Fourier sums over complex number fields.

3.1 Modular counting gates

Representations of MODp ◦ ANDd ◦ MODm circuits by Fourier sums over a finite field was
introduced in the work of Barrington, Straubing and Thérien [3] and is made entirely explicit by
Barrington and Straubing [2] and further results were obtained by Straubing and Thérien [18]. All
these works actually consider depth d + 1 (MODpk)d ◦MODm circuits, which are converted into
MODp ◦ANDO(d) ◦MODm circuits as the first step in constructing the representation. We will
next review these results.

Let m be a positive integer and let p be a prime that does not divide m. Choose k such that m
divides pk−1. Then the finite field F = GF(pk) contains an m’th root of unity ω. We will consider
expressions in variables x1, . . . , xn of the form

S∑
i=1

ciω
ai,1x1+...ai,nxn .
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where ci are elements of F and ai,j are elements of Zm. We will call that a Fourier sum over F
of size S. We say such an expression E(x) computes a Boolean function f if E(x) = f(x) for all
x ∈ {0, 1}n and we say E(x) represents a Boolean function f if E(x) ∈ Zp for all x and moreover
E(x) = 0 if and only if f(x) = 0 for all x ∈ {0, 1}n.

When x1, . . . , xn are variables from Zm then these expressions can in fact be viewed as Fourier
transforms of functions f : (Zm)n → F , thereby justifying our terminology. For details about this
we refer to the works of Barrington et al. [3, 2, 18]. We have the following.

Lemma 6 A MODm gate can be computed by a Fourier sum of size 2|F |−1.

Proof A MODm gate with inputs x1, . . . , xn can be computed by the expression

(ωx1+···+xn − 1)|F |−1

since

(ωa − 1)|F |−1 =

{
0 if a ≡ 0 (mod m)
1 if a 6≡ 0 (mod m)

thereby giving a Fourier sum of size 2|F |−1. �

Then taking sums of these expressions shows that a MODp ◦MODm circuit of size S can be
computed by a Fourier sum of size at most S2(|F |−1)(p−1). But at the expense of increasing the size
of the circuit we can even introduce small fanin AND gates as a middle layer.

Proposition 7 (Barrington et al.) Let p be a prime not dividing m. For any MODp ◦ANDd ◦
MODm circuit of size S there is a Fourier sum representing the output of the circuit of size at
most S2d(|F |−1).

Proof We interpret the top two layers of the circuit as a polynomial over Zp in S variables with
at most S terms and of degree d. Express each MODm gate of the circuit as a Fourier sum of
size 2|F |−1. Substituting these for the variables in the polynomial and expanding then yields the
required Fourier sum representing the output of the circuit of size at most S2d(|F |−1). �

Proposition 8 (Straubing and Thérien) Suppose a Boolean function f can be represented by
a Fourier sum of size S. Then f is computed by a MODp ◦MODm circuit of size m(p− 1)S.

Proof The field F is a vector space over Zp. We can thus pick a basis v1, . . . , vk of F where we
can choose v1 = 1. Let π1 : F → Zp be the projection of an element of F onto the first coordinate
in the basis v1, . . . , vk. By linearity we have

π1(
S∑

i=1

ωai,1x1+...ai,nxn) ≡
S∑

i=1

π1(ωai,1x1+...ai,nxn) (mod p) .

Thus to compute the sum we can compute each term π1(ωai,1x1+...ai,nxn) individually. For every
0 < a < m we will have (a(p − 1) mod p) copies of a MODm gate that evaluate to 1 if ai,1x1 +
· · ·+ ai,nxn 6≡ a (mod m). Furthermore we feed a copies of the constant 1. The sum of these will
be a mod p when the term has value a and will be 0 otherwise. Thus taking the sum for every a
gives m(p− 1) MODm gates that compute the given term. �
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Combining Proposition 7 and Proposition 8 we obtain the following somewhat surprising result,
showing that a middle layer of small fanin AND gates can be absorbed at the cost of a reasonable
increase of the size of the circuit.

Theorem 9 (Straubing and Thérien) Let p be a prime not dividing m. Then any function
computed by a MODp ◦ ANDd ◦ MODm circuit of size S is also computed by a MODp ◦ MODm

circuit of size S2O(d).

3.2 Threshold style gates

It was suggested by Barrington and Straubing [2] to use Fourier representations over the complex
numbers to study THR ◦MODm circuits. The case of m = 2 is known as polynomial threshold
functions [8] and these circuits are precisely representations by the sign of a Fourier sum. We
will derive representations for G ◦ANDd ◦MODm circuits when G is a family of threshold, exact
threshold or majority gates.

Let m be a positive integer and let ω = e
2πi
m be an m’th root of unity. Similarly to the previous

section we consider expressions in variables x1, . . . , xn of the form

S∑
i=1

ciω
ai,1x1+...ai,nxn ,

where ci complex numbers and ai,j are elements of Zm. We will call that a Fourier sum over C of
size S and we will call the numbers ci the coefficients. We say such an expression E(x) computes a
Boolean f if E(x) = f(x) for all x ∈ {0, 1}n. We say that E(x) sign represents a Boolean function
f if E(x) ∈ R \ {0} for all x ∈ {0, 1}n and moreover E(x) > 0 if and only if f(x) = 1 for all
x ∈ {0, 1}n. Finally we say that E(x) equality represents a Boolean function f if E(x) ∈ R for all
x ∈ {0, 1}n and moreover E(x) = 0 if and only f(x) = 1 for all x ∈ {0, 1}n.

As the previous case of finite fields, when x1, . . . , xn are variables from Zm then these expressions
can be viewed as Fourier transforms of functions f : (Zm)n → C.

Lemma 10 A MODm gate can be computed by a Fourier sum of size m + 1 where the coefficients
are either 1 or 1

m .

Proof A MODm gate with inputs x1, . . . , xn can be computed by the expression

1− 1
m

m−1∑
b=0

ωb(x1+···+xn)

since
m−1∑
b=0

ωba =

{
m if a ≡ 0 (mod m)
0 if a 6≡ 0 (mod m)

.

thereby giving a Fourier sum of size m + 1. �

With this we can now derive Fourier sum representations of different classes of circuits. First
we consider circuits with a threshold gate at the output.
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Proposition 11 For any THR ◦ANDd ◦MODm circuit of size S there is a Fourier sum of size
at most S(m + 1)d + 1 sign representing the output of the circuit.

Proof We will assume that the threshold value of the output gate is 0. This can then afterward be
corrected by increasing the size of the obtained Fourier sum by 1. We interpret the top two layers
of the circuit as a polynomial over R in S variables with at most S terms and of degree d. Express
each MODm gate of the circuit as a Fourier sum of size m + 1. Substituting these for the variables
in the polynomial yields the required Fourier sum sign representing the output of the circuit of size
at most S(m + 1)d. �

With the same proof but switching to equality representation we obtain the same with an exact
threshold gate at the output.

Proposition 12 For any ETHR ◦ ANDd ◦ MODm circuit of size S there is a Fourier sum of
size at most S(m + 1)d + 1 equality representing the output of the circuit.

With a majority gate at the output, we observe that the proof of Proposition 11 gives a Fourier
sum where all coefficients are of the form 1

mi for i ∈ {0, . . . , d}, by Lemma 10. Then since all
coefficients of the polynomial given by the top two layers are 1, multiplying by md yields a Fourier
sign representation as stated below.

Proposition 13 For any MAJ ◦ ANDd ◦ MODm circuit of size S there is a Fourier sum with
integer coefficients of total absolute value at most S((m + 1)dmd + 1) sign representing the output
of the circuit.

Proposition 14 Suppose a Boolean function f can be sign represented by a Fourier sum over C
of size S. Then f is computed by a THR ◦MODm circuit of size mS.

Proof By linearity we have

Re(
S∑

i=1

ciω
ai,1x1+...ai,nxn) =

S∑
i=1

Re(ciω
ai,1x1+...ai,nxn) .

Thus to compute the sum we can compute each term Re(ciω
ai,1x1+...ai,nxn) individually. For every

0 < a < m we will have a MODm gate that evaluate to 1 if ai,1x1 + . . . ai,nxn 6≡ 0 (mod m). This
MODm gate is given the coefficient −Re(ciω

a) and we add Re(ciω
a) to the threshold value of the

output gate, which effectively makes the MODm gate contribute the correct value to the sum. �

With the same proof we obtain a similar result for equality representation.

Proposition 15 Suppose a Boolean function f can be equality represented by a Fourier sum over
C of size S. Then f is computed by a ETHR ◦MODm circuit of size mS.

To be able to compute sign representations with bounded integer coefficients we will need
a slightly more involved approach, since we will only be able to compute the sum with limited
precision.

We consider the cyclotomic field Q(ω). Let ω1, . . . , ωφ(m) be the conjugates of ω, where φ is
Euler’s totient function. Let z = g(ω) where g ∈ Q[X]. The norm N(z) is then given by

N(z) =
φ(m)∏
i=1

g(ωi) .
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It is well known that the norm has the property that N(z) ∈ Q and N(z) = 0 if and only if z = 0.
Furthermore, when g ∈ Z[X] we have that N(z) ∈ Z.

Proposition 16 Let z ∈ Q(ω) be nonzero and assume z = g(ω), where g(X) ∈ Z[X] have integer
coefficients of total absolute value at most M . Then we have

|z| ≥ 1
Mφ(m)−1

.

Proof Since g(X) ∈ Z[X] we have that N(z) ∈ Z. Furthermore since the coefficients of g are of
total absolute value at most M we have |g(ωi)| ≤ M for all i. Thus we have

1 ≤ |N(z)| ≤

∣∣∣∣∣∣
φ(m)∏
i=1

g(ωi)

∣∣∣∣∣∣ =
φ(m)∏
i=1

|g(ωi)| ≤ |g(ω)|Mφ(m)−1

from which the result follows. �

Corollary 17 Let z ∈ Q(ω) be such that Re(z) 6= 0 and assume z = g(ω), where g(X) ∈ Z[X]
have integer coefficients of total absolute value at most M . Then we have

|Re(z)| ≥ 1
2(2M)φ(m)−1

.

Proof Since Re(z) = 1
2(z + z̄) Proposition 16 gives

|z + z̄| ≥ 1
(2M)φ(m)−1

from which the result follows. �

Proposition 18 Suppose a Boolean function f can be sign represented by a Fourier sum over C of
size S with integer coefficients of absolute value at most M . Then f is computed by a MAJ◦MODm

circuit of size 4mS(2M)φ(m).

Proof We will construct a THR ◦ MODm circuit and carefully track the size of the integer
coefficients. Following the proof of Proposition 14 we derive

Re(
S∑

i=1

ciω
ai,1x1+...ai,nxn) =

S∑
i=1

Re(ciω
ai,1x1+...ai,nxn) .

Now from Corollary 17 the absolute value of the left-hand side is at least 1
2(2M)φ(m)−1 . We will

approximate each term Re(ciω
ai,1x1+...ai,nxn) individually. Let x be arbitrary and define ai =

ai,1x1 + . . . ai,nxn. For every 0 ≤ a < m define

ĉi,a = b4S(2M)φ(m)−1 Re(ciω
a)c .
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We then have that ∣∣∣∣∣4S(2M)φ(m)−1 Re(
S∑

i=1

ciω
ai)−

S∑
i=1

ĉi,a

∣∣∣∣∣ ≤ S .

Since we also have that ∣∣∣∣∣4S(2M)φ(m)−1 Re(
S∑

i=1

ciω
ai)

∣∣∣∣∣ ≥ 2S ,

the approximation has the correct sign. We can now conclude as in the proof of Proposition 14. For
every 0 < a < m we will have a MODm gate that evaluate to 1 if ai,1x1 + . . . ai,nxn 6≡ 0 (mod m).
This MODm gate is given the coefficient −ĉi,a and we add ĉi,a to the threshold value of the output
gate. The total absolute value of the coefficients is bounded by m4S(2M)φ(m)−1M and the size of
the resulting MAJ ◦MODm circuit is then at most 4mS(2M)φ(m). �

As the case of modular counting gates we obtain that a middle layer of AND gates can be
absorbed at the a reasonable increase in the size of the circuit by combining the results above.

Theorem 19 Any THR◦ANDd◦MODm circuit of size S is computed by THR◦MODm circuit
of size S2O(d). Any ETHR ◦ANDd ◦MODm circuit of size S is computed by ETHR ◦MODm

circuit of size S2O(d). Any MAJ◦ANDd◦MODm circuit of size S is computed by MAJ◦MODm

circuit of size SO(1)2O(d).

4 Depth Reduction for Circuits

In this section we will combine the results about probabilistic polynomials with the Fourier sum
representations to derive the stated depth reduction result for circuits with a single layer of MODm

gates.

Theorem 20 Let ε > 0. Then any depth h + 1 AC0[p] ◦MODm circuit of size S is computed by
a probabilistic MODp ◦MODm circuit of size 2O(log(S) log(S

ε
)h) with error at most ε.

Proof Let C be a depth h + 1 AC0[p] ◦MODm circuit of size S. We first use Theorem 3 on the
AC0[p] circuit given by the top h layers of C. This gives a probabilistic MODp ◦ANDd circuit of
size Sd, where d = O(log(S

ε )h), which in turn gives a probabilistic MODp◦ANDd◦MODm circuit
of size Sd computing C with error at most ε. Then Theorem 9 gives a probabilistic MODp◦MODm

circuit of size Sd2O(d) = 2O(log(S)d). �

Theorem 21 Let ε > 0. Then any depth h+2 THR◦AC0 ◦MODm circuit of size S is computed
by a probabilistic THR ◦MODm circuit of size 2O(log(S)h+1 log(S

ε
)h) with one-sided error at most ε.

Proof Let C be a depth h + 2 THR ◦AC0 ◦MODm circuit of size S, and let C1, . . . , CS be the
AC0 ◦MODm subcircuits that feed the output gate. We first use Theorem 5 on the top d layers
of C1, . . . , CS . This gives probabilistic integer polynomials of degree d = O((log(S

ε ) log(S))h) with
one-sided error ε/S, and we feed all terms of Ci to output gate, with weight given by the product of
the coefficient of the term and the weight of Ci, for all i. This gives a probabilistic THR ◦ANDd

circuit for the first d + 1 layers of C with one-sided error ε of size Sd+1, and thus a probabilistic
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THR ◦ANDd ◦MODm circuit for C. Finally Theorem 19 gives a THR ◦MODm circuit of size
Sd+12O(d) = 2O(log(S)d). �

With a similar proofs we also obtain.

Theorem 22 Let ε > 0. Then any depth h+2 ETHR◦AC0◦MODm circuit of size S is computed
by a probabilistic ETHR ◦ MODm circuit of size 2O(log(S)h+1 log(S

ε
)h) with error at most ε. And

any depth h + 1 AC0 ◦MODm circuit of size S is computed by a probabilistic ETHR ◦MODm

circuit of size 2O(log(S)h+1 log(S
ε
)h) with one-sided error at most ε.

Theorem 23 Let ε > 0. Then any depth h+2 MAJ◦AC0 ◦MODm circuit of size S is computed
by a probabilistic MAJ ◦MODm circuit of size 2O(log(S)h+1 log(S

ε
)h) with one-sided error at most ε.
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