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ABSTRACT. For a given (terminating) term rewriting system one can often estimate its derivational
complexity indirectly by looking at the proof method that established termination. In this spirit we
investigate two instances of the interpretation method: matrix interpretations and context dependent
interpretations. We introduce a subclass of matrix interpretations, denoted as triangular matrix in-
terpretations, which induce polynomial derivational complexity and establish tight correspondence
results between a subclass of context dependent interpretations and restricted triangular matrix in-
terpretations. The thus obtained new results are easy to implement and considerably extend the
analytic power of existing results. We provide ample numerical data for assessing the viability of the
method.

1 Introduction

Term rewriting is a conceptually simple but Turing-complete model of computation. The

foundation of rewriting is equational logic and term rewrite systems are conceivable as sets

of directed equations. This orientation of equations naturally gives rise to computations,

where a term is rewritten by successively replacing subterms by equal terms until no fur-

ther reduction is possible. Such a sequence of rewrite steps is also called a derivation. In

order to assess the complexity of a (terminating) term rewrite system (TRS for short) it is

natural to look at the maximal length of derivations, as suggested by Hofbauer and Laute-

mann in [10]. More precisely, the derivational complexity function with respect to a (terminat-

ing) TRS R relates the length of a longest derivation sequence to the size of the initial term.

Observe that the derivational complexity function is conceivable as a measure of proof com-

plexity. Suppose an equational theory is representable as a convergent (i.e. a confluent and

terminating) TRS, then rewriting to normal form induces an effective procedure to decide

whether two terms are equal over a given equational theory. Thus the derivational com-

plexity with respect to a convergent TRS essentially amounts to the proof complexity of this

proof of identity.

For a given terminating TRS one can often estimate its derivational complexity indi-

rectly by looking at the proof method that established termination. For example polynomial
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interpretations induce double-exponential derivational complexity (see [10], but also com-

pare [8, 19, 9, 14, 7, 5, 12] for the derivational complexity induced by other termination

techniques). The following example illustrates the situation.

Example 1 ([9]). Consider the following TRS R over the signature F = {◦, c}.

(x ◦ y) ◦ z → x ◦ (y ◦ z) .

It is easy to see that the polynomial interpretation A on the carrier N − {0} given through

the interpretation functions ◦A(n, m) = 2n + m and cA = 1, is compatible with R. Now,

consider the (ground) terms (tn)n∈N, defined as t0 := c and tn+1 = tn ◦ c. Note that the

evaluation [tn]A of tn with respect to the algebra A is exponential in n. Hence the maximal

length of a derivation starting from tn is (at most) exponential in n.

However the upper bound given in Example 1 is not optimal: The derivation length

can be easily seen to be bounded quadratically in n. This overestimation is typical for poly-

nomial interpretations. Hofbauer introduced context dependent interpretations as a remedy,

cf. [9]. These interpretations extend traditional interpretations by introducing an additional

parameter. The parameter changes in the course of evaluating a term, which makes the

interpretation dependent on the context. With respect to Example 1 an interpretation can

be found that estimates the derivation length optimally, compare [9]. Recently the first and

second author introduced a technique to automatically search for context dependent inter-

pretations, cf. [15]. This was achieved by delineating two subclasses of context dependent

interpretations that made automation possible. However, up to now, we couldn’t handle

the TRS in Example 1 automatically.

In this paper we introduce an (easily automatable) technique to overcome this obstacle.

We restrict matrix interpretations for terms (see [5], but compare also [11]) in such a way that

we only employ matrices of particular simple form in the interpretation functions. Such in-

terpretations (called triangular matrix interpretations) induce at most polynomial derivational

complexity, where the degree of the polynomial depends on the dimension of the matrix.

Moreover, we identify a subclass of context dependent interpretations and a subclass

of (two-dimensional) matrix interpretations which correspond to each other with respect to

orientability: For any context dependent interpretation C from this class that is compatible

with a TRS R there exists a matrix interpretation A compatible with R and vice versa.

This theoretical result is interesting in its own right as it links two different termination

techniques, which were previously conceived as incomparable.

The obtained new techniques are easy to implement and considerably extend the ana-

lytic power of existing results. We provide ample numerical data for assessing the viability

of the method. In particular, we want to emphasise that Example 1 can be handled fully

automatically and the resulting estimation on the derivational complexity is optimal.

The remainder of this paper is organised as follows. In the next section we recall basic

notions. Section 3 introduces triangular matrix interpretations, while in Section 4 we recall

context dependent interpretations and state the correspondence result mentioned above. In

Section 5 we provide the experimental data for our implementation. Finally in Section 6 we

conclude and mention possible future work.
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2 Preliminaries

We assume familiarity with term rewriting [2, 18] but briefly review basic concepts and

notations. Let V denote a countably infinite set of variables and F a signature. The set of

terms over F and V is denoted by T (F ,V). Var(t) denotes the set of variables occurring in

a term t and the size |t| of a term is defined as the number of symbols in t, i.e., for example

the size of the term f(a, x) is 3. The depth dp(t) of a term t is defined as follows: (i) dp(t) := 0,

if t is a variable or a constant and (ii) dp( f (t1, . . . , tn)) := 1 + max{dp(ti) | 1 6 i 6 n}.

A term rewrite system (TRS for short) R over T (F ,V) is a finite set of rewrite rules l → r,

such that l /∈ V and Var(l) ⊇ Var(r). A relation on T (F ,V) is a rewrite relation if it is

compatible with F -operations and closed under substitutions. The smallest rewrite relation

that contains R is denoted by →R. The transitive and reflexive closure of →R is denoted by

→∗
R. We simply write → for →R if R is clear from context. A term s ∈ T (F ,V) is called a

normal form if there is no t ∈ T (F ,V) such that s → t.

A TRS is called confluent if for all s, t1, t2 ∈ T (F ,V) with s →∗ t1 and s →∗ t2 there

exists a term t3 such that t1 →∗ t3 and t2 →∗ t3. We call a TRS terminating if no infinite

rewrite sequence exists. Let s and t be terms. If exactly n steps are performed to rewrite s to

t we write s →n t. The derivation length of a terminating term t with respect to a TRS R is

defined as: dl(s,→R) = max{n | ∃t s →n
R t}. The derivational complexity (with respect to R)

is defined as follows:

dcR(n) = max{dl(t,→R) | |t| 6 n} .

We sometimes say the derivational complexity of R is linear, quadratic, or polynomial if

dcR(n) is bounded linearly, quadratically, or polynomially in n, respectively.

A proper order is a transitive and irreflexive relation. A proper order ≻ is well-founded if

there is no infinite decreasing sequence t1 ≻ t2 ≻ t3 · · · . A well-founded proper order that

is also a rewrite relation is called a reduction order. We say a reduction order ≻ and a TRS R
are compatible if R ⊆ ≻. It is well-known that a TRS is terminating if and only if there exists

a compatible reduction order. An F -algebra A consists of a carrier set A and a collection

of interpretations fA for each function symbol in F . A well-founded and monotone algebra

(WMA for short) is a pair (A,≻), where A is an algebra and ≻ is a well-founded proper

order on A such that every fA is monotone in all arguments. An assignment α : V → A

is a function mapping variables to elements in the carrier. Let [α]A(·) denote the usual

evaluation function associated with A. A WMA naturally induces a proper order ≻A on

terms: s ≻A t if [α]A(s) ≻ [α]A(t) for all assignments α : V → A.

3 Matrix Interpretations That Induce Polynomial
Derivational Complexity

In this section we introduce a specific form of matrix interpretations, called triangular ma-

trix interpretations, which induce a polynomial upper bound on the derivational complexity.

This contrasts with general matrix interpretations, which yield an exponential upper bound,

cf. [5]. Hence the introduced restriction defines a strict subclass of those TRSs that admit a

matrix interpretation.
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We start by recalling the concept of matrix interpretations (see [5] but compare also [11]).

Let F denote a signature. We fix a dimension d ∈ N and use the set N
d as the carrier of an

algebra A, together with the following extension of the natural order > on N:

(x1, x2, . . . , xd) > (y1, y2, . . . , yd) :⇐⇒ x1 > y1 ∧ x2 > y2 ∧ . . . ∧ xd > yd .

For each n-ary function symbol f , we choose as an interpretation a linear function of the

following shape:

fA : (N
d)n → N

d : (~v1, . . . ,~vn) 7→ F1~v1 + . . . + Fn~vn + ~f ,

where~v1, . . . ,~vn are (column) vectors of variables, F1, . . . , Fn are matrices (each of size d× d),

and ~f is a vector over N. Moreover, for any i (1 6 i 6 n) the top left entry (Fi)1,1 is positive.

It is easy to see that the algebra forms a well-founded monotone algebra.

The following lemma states how compatibility of a matrix interpretation A with a given

rewrite system can be easily verified (compare [5, Lemma 4]).

LEMMA 2. Let A be a matrix interpretation and let R be a TRS. Let l → r ∈ R, let k

denote the number of variables in l (and r) and let α be an assignment. Then there exist

matrices L1, . . . , Lk, R1, . . . , Rk and vectors~l,~r such that [α]A(l) = ∑
k
i=1 Li~xi +~l and [α]A(r) =

∑
k
i=1 Ri~xi +~r. Moreover l >A r if and only if~l > ~r and Li > Ri for all 1 6 i 6 k. (Here >

refers to the point-wise extension of the standard order on natural numbers to matrices.)

We are now going to restrict the shape of the matrices, in order to obtain better bounds

on derivational complexities.

DEFINITION 3. An upper triangular matrix is a matrix M in N
d×d such that for all d > i >

j > 1, we have Mi,j = 0, and for all d > i > 1, we have Mi,i 6 1.

We say that a TRS R admits a triangular matrix interpretation (TMI for short) if R is

compatible with a matrix interpretation A and all matrices employed in A are of upper

triangular form.

Example 4 (continued from Example 1). We define a triangular matrix interpretation A, as

follows:

◦A(~x,~y) =

(

1 1

0 1

)

·~x +

(

1 0

0 1

)

·~y +

(

0

1

)

It is easy to see that A is compatible with R, i.e., [α]A((x ◦ y) ◦ z) > [α]A(x ◦ (y ◦ z)) holds

for all assignments α.

LEMMA 5. Let M be an upper triangular matrix in N
d×d and n ∈ N. Then all entries of

Mn are polynomially bounded in n. More precisely, if i > j then (Mn)i,j = 0, otherwise
(Mn)i,j 6 (j − i)!(an)j−i, where a = max{Mi,j | 1 6 i, j 6 d}.

PROOF. The case i > j is easy to see. In the other case, we have j > i. Then the lemma

follows by a straightforward induction on j − i.

Due to Lemma 5, for any finite subset M ⊆ N
d×d of upper triangular matrices, there

is a polynomial p of degree d − 1 such that for each sequence M1 ∈ M, . . . , Mn ∈ M, and
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for each i, j, it holds that (M1 · . . . · Mn)i,j 6 p(n). Such products occur when computing

values of matrix interpretations on (ground) terms: For example, let A denote a matrix

interpretation, α an arbitrary assignment and t = f(g(a, b), c). Then

[α]A(t) = F1G1~a + F1G2
~b + F1~g + F2~c + ~f .

Clearly the length of each product is at most the depth of the term, which is smaller or equal

to its size. Hence the entries in each product are polynomially bounded (with degree d − 1)

in the size of t. The number of products equals the number of subterms of t, which is exactly

the size of t. Therefore, the entries in [α]A(t) are bounded by a polynomial of degree d in

the size of t. This observation leads us directly to the main result of this section.

THEOREM 6. If a TRS R admits a triangular matrix interpretation A of dimension d, then
the derivational complexity of R is bounded by a polynomial of degree d.

PROOF. Any k-step derivation s →k
R t implies [α]A(s) >k [α]A(t), referring to the k-th

iterate of the relation > on N
d defined earlier. This implies [α]A(s)1 ≥ k + [α]A(t)1 ≥ k.

So the top entry in [α]A(s) bounds the length of any derivation starting at s. In conjunction

with the above observation, this suffices to prove the theorem.

Example 7. It is easy to see that the derivational complexity of the following TRS R1 =
{a(b(x)) → b(a(x)), c(a(x)) → b(c(x)), c(b(x)) → a(c(x)))} is (at least) cubic. The follow-

ing TMI A is compatible with R1.

aA(~x) =





1 0 1

0 1 1

0 0 1



~x +





0

0

1



 bA(~x) =





1 0 0

0 1 1

0 0 1



~x +





0

0

1





cA(~x) =





1 1 3

0 1 0

0 0 1



~x +





1

0

0





Applying Theorem 6 we conclude that the derivational complexity function with respect to

R1 is cubic.

Despite Example 7 the criterion is in general not complete. There exist TRSs of poly-

nomial derivational complexity that do not admit a compatible TMI. One such example

can be found in [5]: R2 = {f(a, b) → f(b, b), f(b, a) → f(a, a)}. Then R2 has linear

derivational complexity, but in fact no compatible matrix interpretation can exist, cf. [5].

Even if there is a compatible matrix interpretation and the complexity of the system is

polynomial, it might be lacking a triangular interpretation. Consider the following TRS:

R3 = {a(a(x)) → b(c(x)), b(b(x)) → a(c(x)), c(c(x)) → a(b(x))}, a straightforward adap-

tion of the string rewrite system z086 introduced by Zantema as TRS. We conjecture that

R3 admits at most polynomial derivational complexity and is not compatible with a trian-

gular matrix interpretation. (This is related to the open problem number 105 in the RTA list

of open problems, see http://rtaloop.pps.jussieu.fr/.)

We conclude this section by considering the following example, that can be handled

automatically by TMIs, but not with any other known method. (See Section 5 for further

details about the implementation.)
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Example 8. Consider the TRS R4 with the following rewrite rules, which is example 4.30

from [17]:

f(nil) → nil g(nil) → nil

f(nil ◦ y) → nil ◦ f(y) g(x ◦ nil) → g(x) ◦ nil

f((x ◦ y) ◦ z) → f(x ◦ (y ◦ z)) g(x ◦ (y ◦ z)) → g((x ◦ y) ◦ z)

It is not difficult to check that the following TMI A of dimension 4 is compatible with R4.

◦A(~x,~y) =









1 0 0 0

0 1 0 0

0 0 0 1

0 0 0 1









·~x +









1 0 0 0

0 0 0 1

0 0 1 0

0 0 0 1









·~y +









0

0

0

1









nilA =









0

1

1

1









fA(~x) =









1 0 1 0

0 0 0 1

0 0 1 0

0 0 0 1









·~x +









0

1

0

0









gA(~x) =









1 1 0 0

0 0 0 1

0 0 0 1

0 0 0 1









·~x +









1

0

1

0









Due to Theorem 6 we conclude that dcR4
can be asymptotically bounded by a polynomial

of degree 4. Notice that this bound is not optimal, as it is easy to see that the derivational

complexity is quadratic.

4 Context Dependent Interpretations and Matrices

In this section, we show a tight correspondence between (triangular) matrix interpretations

as introduced in Section 3 and context dependent interpretations, see [9]. More precisely we

define a subclass of context dependent interpretations such that any such interpretation C
gives rise to a restricted TMI A and vice versa. Moreover C is compatible with a TRS R if

and only if A is compatible with R.

We recall context dependent interpretations. For that we follow the presentation in [15]

in a simplified form. See [9, 15] for motivating examples and intuitions behind the defini-

tions. A context dependent F -algebra (CDA for short) C is a family of F -algebras over the reals.

A CDA C associates to each function symbol f ∈ F of arity n, a collection of n + 1 mappings

fC : R
+ × (R

+
0 )n → R

+
0 and f i

C : R
+ → R

+ for all 1 6 i 6 n. As usual fC is called the inter-

pretation function, while the mappings f i
C are called the parameter functions. In addition C is

equipped with a set {>∆| ∆ ∈ R
+} of strict orders, where we define: z >∆ z′ if and only if

z − z′ > ∆. Let C be a CDA and let a ∆-assignment denote a mapping α : R
+ ×V → R

+
0 . We

define a mapping [α, ∆]C from the set of terms into the set R
+
0 of non-negative reals:

[α, ∆]C (t) :=

{

α(∆, t) if t ∈ V

fC(∆, [α, f 1
C (∆)]C (t1), . . . , [α, f n

C (∆)]C(tn)) if t = f (t1, . . . , tn) .

We fix some notational conventions: Due to the special role of the additional variable

∆, we often write fC [∆](z1, . . . , zn) instead of fC(∆, z1, . . . , zn). If t is a ground term, we

sometimes write [∆]C (t) instead of [α, ∆]C (t). We say that a CDA C is ∆-monotone if for all
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∆ ∈ R
+ and for all a1, . . . , an, b ∈ R

+
0 with ai > f i

C(∆) b for some i ∈ {1, . . . , n}, we have

fC [∆](a1, . . . , ai, . . . , an) >∆ fC [∆](a1, . . . , b, . . . , an). A CDA C and a TRS R are compatible if

for every rewrite rule l → r ∈ R, every ∆ ∈ R
+, and any ∆-assignment α: [α, ∆](l) >∆

[α, ∆](r) holds.

DEFINITION 9. A ∆2-interpretation is a CDA C with interpretation functions and parameter
functions of the following form:

fC(∆, z1, . . . , zn) =
n

∑
i=1

a( f ,i)zi +
n

∑
i=1

b( f ,i)zi∆ + g f + h f ∆ (†)

f i
C(∆) =

c( f ,i) + d( f ,i)∆

a( f ,i) + b( f ,i)∆
, (‡)

where a( f ,i) > 0 or b( f ,i) > 0 (for each f ∈ F , 1 6 i 6 n) and the occurring coefficients are
natural numbers.

The following lemma is a direct consequence of the definitions.

LEMMA 10. Let C denote a ∆2-interpretation. If for all f ∈ F , 1 6 i 6 n in (‡), we have

d( f ,i) > 1, then C is ∆-monotone.

In [15] two (strict) subclasses of ∆2-interpretations were studied: ∆-linear interpreta-

tions and ∆-restricted interpretations. A ∆-linear interpretation is a ∆2-interpretation, where

for the parameter functions as presented in (‡) we have c( f ,i) = 0 and d( f ,i) = 1 for all f ∈ F ,

1 6 i 6 n, and a ∆-restricted interpretation is a ∆-linear interpretation with the additional re-

quirement that a( f ,i) ∈ {0, 1}.

Example 11 (continued from Example 1). Consider the following ∆-linear interpretation C:

◦C [∆](x, y) = (1 + ∆)x + y + 1 ◦1
C (∆) =

∆

1 + ∆
◦2
C (∆) = ∆

For all ground terms r, s, t, we have [∆]C ((r ◦ s) ◦ t) − [∆]C (r ◦ (s ◦ t)) > ∆. This is shown

in [9, Lemma 3] by an inductive argument. However, this argument is not well-suited for

automation: The implementation described in [15] doesn’t find this interpretation.

Example 12 (continued from Example 11). The ∆-linear interpretation C is also a ∆-restricted

interpretation. Due to [15, Theorem 29] we conclude quadratic derivational complexity for

R. Note that this upper bound is optimal.

It seems worthy of note, that the matrix interpretation A employed in Example 4 is

obtained fully automatically, while the context dependent interpretation C is obtained by

hand. On the other hand A and C use exactly the same coefficients. We exploit this obser-

vation below.

DEFINITION 13. Let C be a CDA and let A be a matrix interpretation over two dimensions.

We say the ∆-assignment α : R
+ × V → R

+
0 and the assignment α

′ : V → N
2 are corre-

sponding if for all variables x and all ∆ ∈ R
+: α(∆, x) = a + b∆ if and only if α

′(x) =

(

b

a

)

.

We arrive at the main lemma of this section, whose technical, but not difficult proof has

been omitted due to space restrictions.
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LEMMA 14. Let C denote a ∆2-interpretation:

fC(∆, z1, . . . , zn) =
n

∑
i=1

a( f ,i)zi +
n

∑
i=1

b( f ,i)zi∆ + g f + h f ∆

f i
C(∆) =

c( f ,i) + d( f ,i)∆

a( f ,i) + b( f ,i)∆
,

and let A denote a matrix interpretation of the following form:

fA(x1, . . . , xn) =
(

n

∑
i=1

(

d( f ,i) b( f ,i)

c( f ,i) a( f ,i)

)

· xi

)

+

(

h f

g f

)

,

where d( f ,i) > 1, and either a( f ,i) > 0 or b( f ,i) > 0 for all f ∈ F and 1 6 i 6 n. Then for any
term t

[α, ∆]C (t) = s1 + s2∆ ⇐⇒ [α′]A(t) =

(

s2

s1

)

,

whenever α and α
′ are corresponding.

We say a matrix interpretation A corresponds to a ∆2-interpretation C, if A and C are

defined as in Lemma 14.

Example 15. Consider the triangular matrix interpretation A introduced in Example 4 and

the ∆-restricted interpretation C from Example 11. Then it is easy to see that A and C are

corresponding.

THEOREM 16. Let R be a TRS and let C be a ∆2-interpretation such that R is compatible with
C. Then there exists a corresponding matrix interpretation A (of dimension 2) compatible

with R.

PROOF. Let α : V → N
2 be arbitrary, but fixed. To prove the theorem, it suffices to verify

that for any rule l → r ∈ R: [α]A(l) > [α]A(r) holds, where A is the matrix interpretation

constructed in Lemma 14. To apply Lemma 14, we choose a ∆-assignment α
′ : R

+ ×V → R
+
0

that corresponds to α. For every l → r ∈ R, for every ∆ ∈ R
+, and every α

′ : R
+ ×V → R

+
0 ,

we have
(

[α′, ∆]C (l) − [α′, ∆]C(r)
)

= a + b∆. Here we make use of the fact that for any term

t: [α′, ∆]C(t) = c + d∆. This follows from an inductive argument employing the assumed

form of the assignment α
′. Moreover, as a + b∆ > ∆, we conclude a > 0 and b > 1. Thus an

application of Lemma 14 yields

(

[α]A(l) − [α]A(r)
)

=

(

b

a

)

>

(

1

0

)

,

from which compatibility with A directly follows.

An easy consequence of Theorem 16 in conjunction with Theorem 6 is that ∆2-inter-

pretations induce at most exponential derivational complexity. In particular, we obtain the

following corollary. (A direct proof of this result, i.e., a proof that argues only about context

dependent interpretations, can be found in [15].)
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COROLLARY 17. Let R be a TRS and let C denote a ∆-linear interpretation compatible with
R. Then R is terminating and dcR(n) = 2O(n). Moreover, if C is a ∆-restricted interpretation,
then dcR(n) = O(n2). Observe that the bounds are tight, i.e., we can find TRSs R that fulfill

these requirements, such that dcR is an exponential or quadratic function, respectively.

Theorem 16 raises the question, whether the other direction may hold for ∆2-inter-

pretations: Given a matrix interpretation, compatible with R, does there exist a ∆2-inter-

pretation that is compatible with R? Recall that a CDA C is compatible with a TRS R, if

for every l → r ∈ R, for every ∆ ∈ R
+, and every α : R

+ × V → R
+
0 , we have [α, ∆]C (l) −

[α, ∆]C (r) > ∆. The next example shows that this definition of compatibility is too general

in this context.

Example 18 (continued from Example 4). The ∆-restricted interpretation C is not compatible

with R as defined above, i.e. we do not have [α, ∆]C ((x ◦ y) ◦ z)− [α, ∆]C (x ◦ (y ◦ z)) > ∆ for

arbitrary assignments α. To construct a counter-example we set α(∆, x) := ∆2, and α(∆, u)
is arbitrary for u 6= x. Following the proof of Lemma 3 in [9], we obtain

[α, ∆]C ((x ◦ y) ◦ z) − [α, ∆]C (x ◦ (y ◦ z)) = (1 + 2∆)[α,
∆

1 + 2∆
]C(x)+

+∆ − (1 + ∆)[α,
∆

1 + ∆
]C(x) = ∆ +

∆2

1 + 2∆
−

∆2

1 + ∆
6> ∆ .

This violates the compatibility condition.

Example 18 motivates the next definition.

DEFINITION 19. We say a ∆-assignment α : ∆ × V → R
+
0 is linear, if there exist natural

numbers a and b, such that α(∆, x) = a + b∆.

Example 20 (continued from Example 18). For any linear ∆-assignment α, we have [α, ∆]C ((x ◦
y) ◦ z) − [α, ∆]C (x ◦ (y ◦ z)) > ∆. This can be seen by just applying a linear ∆-assignment

of the following parametric form: α(∆, x) = x1 + x2∆, α(∆, y) = y1 + y2∆, and α(∆, z) =
z1 + z2∆.

LEMMA 21. Let σ be a ground substitution and let C be a ∆2-interpretation. Then there
exists a linear ∆-assignment α such that [∆]C (tσ) = [α, ∆]C (t) for all ∆ ∈ R

+ and terms t.

PROOF. We set α(∆, x) = [∆]C (xσ) for any x ∈ dom(σ) and α(∆, x) = 0 otherwise. The

fact that [∆]C (xσ) has a linear shape can be shown by an easy induction on xσ.

By now, the following main result of this section, is an easy consequence of Lemma 14,

Theorem 16 and Lemma 21.

THEOREM 22. Let A be a monotone matrix interpretation of dimension 2 such that no zero
column occurs in any matrix, let C be the corresponding ∆2-interpretation and let R be a
TRS. Then A is compatible with R if and only if for all linear ∆-assignments α, all ∆ ∈ R

+

and all rules l → r ∈ R, we have [α, ∆]C (l) >∆ [α, ∆]C (r).

Note that the restriction on zero columns expressed in the assumptions of the theorem

appears to be negligible, if we consider the automation of the introduced techniques. This

is the subject of the next section.
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Table 1: Termination Methods as Complexity Analysers

BOUNDS CDI TMI TMI+BOUNDS

dimension 2 3 4 5 3

# successes 125 85 143 158 154 156 216

avg. success time 0.68 3.84 0.19 1.33 0.56 2.39 8.65

# timeouts 328 272 66 224 237 244 237

5 Experiments

We have implemented the methods described in this paper, and tested their viability to

analyse polynomial derivational complexity on version 4.0 of the Termination Problem Data

Base (TPDB for short), which is used in the annual RTA termination competition. (Available

at http://www.lri.fr/~marche/tpdb/, but we also included the secret systems from

the competition 2007.) This database contains a total of 1381 TRSs, 957 of which are known

to be terminating. Arguably, the TPDB is an imperfect choice as it has been designed to test

the strength of termination provers in rewriting, not as a testbed to analyse feasible bounds

on the derivational complexity of TRSs. Examples such as TRS encodings of the Ackermann

function and the Hydra Battle reinforce this point. On the other hand, the TPDB is the only

relatively large collection of TRSs that is publicly available.

We briefly sketch our implementation: Similar to [3], we build a set of Diophantine

constraints which express all necessary restrictions on the matrix interpretation. Then, we

put a finite upper bound on the variables in the constraints and encode these constraints

as a problem of propositional logic (see [6] but also [5]). We give the final SAT problem to

MiniSAT [4] and use a satisfying assignment to construct a suitable matrix interpretation,

where we use the fact that all matrix products are upper triangular, so values for entries

below the main diagonal can be ignored.

In order to compare ∆-restricted interpretations (referred to by CDI) and triangular ma-

trix interpretations (TMI) to other results, we compared them to the implementation of the

match-bound technique (BOUNDS for short) as in [13]: Linear TRSs are tested for match-

boundedness, non-linear, but non-duplicating TRSs are tested for match-raise-boundedness.

It is not difficult to see that this technique implies linear derivational complexity. Last, we

tested the union of the two strongest methods (BOUNDS and TMI for dimension 3) by using

half of the time on TMI and the rest on BOUNDS. For both CDI and TMI, we restricted all

coefficients to at most 15 (allowing us to use at most 4 bits to encode each coefficient).

All tests were executed single-threaded on a server equipped with 8 AMD Opteron™

2.8 GHz dual core processors with 64GB of RAM. We used a timeout of 60 seconds for each

TRS. The results of the tests are shown in Table 1 (see

http://cl-informatik.uibk.ac.at/users/aschnabl/experiments/08msw/
for the full experimental evidence). The times given in the table are seconds. (In examples

for which the according method was neither successful nor had a timeout, the proof attempt

was given up before the timeout.)

As we can see, triangular matrix interpretations are clearly the most powerful method

for proving polynomial derivational complexity of rewriting on our testbed. As suggested
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by our results in Section 4, the systems that can be handled by ∆-restricted interpretations

are a strict subset of the problems solved by TMI with matrices of dimension 2. We want to

note that out of the latter 143 systems, 140 can still be handled with the restriction on zero

columns in Theorem 22. In total, TMIs of dimensions 2 to 5 are successful in 162 instances.

It is worthy of note that “full” matrix interpretations (for dimensions 2 to 5 and coef-

ficients at most 15) can handle (only) 222 TRSs. Hence a clear majority of those systems

that can in principle shown to be terminating with matrix interpretations have polynomial

derivational complexity.

6 Conclusion

In this paper we studied the complexity of rewrite systems R as expressed by the deriva-

tional complexity function dcR. The following diagram provides a condensed view of the

studied classes of matrix and context dependent interpretations, where the right column

gives the induced derivational complexity. (The arrows depict set inclusions and the dashed

arrows refer to the additional restriction on the zero columns.)

exponentialmatrix

polynomial

matrix (dim. 2)

TMI

quadraticTMI (dim. 2)

∆2-int.
Thm 16

Thm 22

∆-restricted
Thm 16

Thm 22

We emphasise the pictured correspondence result: Consider ∆2-interpretations and tri-

angular matrix interpretations of dimension 2, where no zero columns occur, then these

interpretations are equivalent for orientability. This correspondence sheds light on the ex-

pressivity of matrix interpretations and (significantly) extends the class of rewrite systems

whose compatibility with context dependent interpretations can be shown automatically.

As witnessed by Example 1, it is sometimes possible to automatically obtain a context-

dependent interpretation via the correspondence result, where the direct approach fails. The

mentioned techniques have been implemented and the experimental data clearly shows that

triangular matrix interpretations extend the power of previously known methods to auto-

matically analyse polynomial derivational complexity. In particular, the TMI method is the

only known automatic method to prove polynomial complexity for Example 1, 7, and 8.

In concluding, we note that matrix interpretations for termination of string rewriting

systems are also known as N-rational series in the theory of weighted (tree) automata, and

they have been investigated in connection with the growth of DT0L systems (see [16]). It

remains to connect this knowledge to the present application. Other directions for research

are concerned with extending the presented direct termination techniques with transfor-

mation techniques like the dependency pair method [1] or with multi-step termination proofs as

invoked in [5]. Although these extensions are necessary to increase the power of the studied

techniques further, already simple examples show the challenging nature of this endeavour,

compare [5].
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