
Foundations of Software Technology and Theoretical Computer Science (Bangalore) 2008.
Editors: R. Hariharan, M. Mukund, V. Vinay; pp 244-255

The Complexity of Tree Transducer
Output Languages

Kazuhiro Inaba1 and Sebastian Maneth2,3

1 The University of Tokyo, kinaba@is.s.u-tokyo.ac.jp

2 National ICT Australia, sebastian.maneth@nicta.com.au

3 University of New South Wales, Sydney

ABSTRACT. Two complexity results are shown for the output languages generated by compositions
of macro tree transducers. They are in NSPACE(n) and hence are context-sensitive, and the class is
NP-complete.

1 Introduction

Macro tree transducers (mtts) [12, 14] are a finite-state machine model of tree-to-tree trans-

lations. They are motivated by syntax-directed semantics of programming languages and

recently have been applied to XML transformations and query languages [18, 21]. Mtts are a

combination of top-down tree transducersandmacro grammars [13]. They process the input

tree top-down while accumulating several output trees using their context parameters. Se-

quential composition of mtts gives rise to a powerful hierarchy (the “mtt-hierarchy”) of tree

translations which contains most known classes of tree translations such as those realized

by attribute grammars, by MSO-definable tree translations [5], or by pebble tree transduc-

ers [20]. Consider the range, or output language, of a tree translation; it is a set of trees. If we

apply “yield” to these trees, i.e., concatenate their leaf symbols from left to right, we obtain

a string language. The string languages obtained in this way from the mtt-hierarchy form

a large class (containing for instance the IO- and OI-hierarchies [6]) with good properties,

such as being a full AFL and having decidable membership, emptiness, and finiteness [7].

In this paper we study the complexity of the output (string or tree) languages of the

mtt-hierarchy. Note that we do not explicitly distinguish between string or tree output lan-

guages here, because the translation “yield” which turns a tree into its frontier string (seen

as a monadic tree) is a particular simple macro tree translation itself and hence the cor-

responding classes have the same complexity. Small subclasses of our class of languages

considered here are the IO-macro languages (or, equivalently, the yields of context-free-

tree languages under IO-derivation) and the string languages generated by attribute gram-

mars. Both of these classes are LOG(CFL)-complete by [2] and [10], respectively. Another

subclass of our class is that of OI-macro languages, which are equivalent to the indexed

languages [1], by [13]. This class is known to be NP-complete [22]. Hence, our class is

NP-hard too (even already at level 2). Our first main result is that output languages of

the mtt-hierarchy are NP-complete; thus, the complexity remains in NP when going from
c© K. Inaba and S. Maneth; licensed under Creative Commons License-NC-ND

FSTTCS 2008
IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science
http://drops.dagstuhl.de/opus/volltexte/2008/1757

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62913743?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

K. INABA AND S. MANETH FSTTCS 2008 245

indexed languages to the full mtt-hierarchy. In terms of space complexity, languages gen-

erated by compositions of top-down tree transducers (mtts without context parameters) are

known to be in DSPACE(n) [3]. This result was generalized in [17] to compositions of to-

tal deterministic mtts. Our second main result is that output languages of the mtt-hierarchy

(generated by compositions of nondeterministic mtts) with regular tree languages as inputs

are in NSPACE(n) and thus are context-sensitive. The approach of our proof can be seen as

a generalization of the proofs in [3] and [17]; moreover, we make essential use of the idea

of compressed representation of backtracking information, used by Aho in [1] for showing

that the indexed languages are in NSPACE(n).

We first solve the “translation membership” problem for a single mtt M. That is, we

show that, given trees s and t, we can determine whether or not the pair (s, t) is in M’s

translation, in linear space and polynomial time with respect to |s|+ |t| on a nondetermin-

istic Turing Machine (|s| denotes the size of the tree s). The challenge here is the space

complexity; we use a compressed representation of M’s output trees for input s, inspired

by [19], and then check if t is contained using a recursive procedure in which nodes needed

for backtracking are compressed using a trie, similar to Aho’s compression of index strings

in [1]. Then, we generalize these results from one mtt to compositions of mtts. Here, the

challenge is the existence of intermediate trees. Consider the composition τ of two transla-

tions realized by mtts: τ1 followed by τ2. To check (s, t) ∈ τ, we nondeterministically guess

an intermediate tree u, and check whether (s, u) ∈ τ1 and (u, t) ∈ τ2. From the complexity

result of single mtts, we know that this can be done in O(|s| + |u| + |t|) space. This can,

however, be much larger thanO(|s|+ |t|); the size |u| of the intermediate tree u can actually

be double-exponentially larger than |s| and |t|. The basic idea to prove the linear size com-

plexity for compositions of mtts is to bound the sizes of all such intermediate input trees.

This is achieved by putting the mtts in certain normal forms such that they do not delete

much of their input, in the sense that every output tree t has a corresponding input tree of

size only linearly larger than |t|. Although our approach is similar to [17], the existence of

context parameters and nondeterminism together adds new challenges in every step of the

proof. For example, consider the mtt Mdexp with the following three rules r0, r1, and r2:

〈q0, a(x)〉 → 〈q, x〉(〈q, x〉(e)) (r0) 〈q, e〉(y)→ +(b(y, y), c(y, y)) (r2)

〈q, a(x)〉(y)→ 〈q, x〉(〈q, x〉(y)) (r1)

Here, + denotes a nondeterministic choice; e.g., when the state q reads an input node la-

beled e, it generates an output node labeled either b or c. This mtt takes a tree of form

a(a(· · · a(e) · · ·)) as input (with n occurrences of a) and generates a full binary tree of height

2n (note that, without parameters, the height growth can only be linear) with each non-leaf

node arbitrarily labeled either b or c. Therefore, the size of the set of possible output trees is

22
2n

. To decide whether (s, t) ∈ τMdexp
for given trees s and t, we essentially have to find the

correct choice among the triple exponentially many candidates. To address the issue, we (1)

instead of solving the membership problem for all mtts, only deal with mtts in the above

mentioned non-deleting normal form, and which are linear with respect to the input vari-

ables, and (2) exploit the compressed representation of outputs of mtts [19] for manipulating

the output set.

246 THE COMPLEXITY OF TREE TRANSDUCER OUTPUT LANGUAGES

2 Preliminaries

The notation used in this paper will be the same as that used in [17], except that we denote

the sequential composition by the operator ; instead of ◦, and the label of a tree node by

label(t, ν) instead of t[ν]. We denote by pos(t) ⊆ N
∗ the set of nodes of a tree t.

Amacro tree transducer (mtt) M is a tuple (Q,Σ,∆, q0,R), where Q is the ranked alphabet

of states, Σ and ∆ are the input and output alphabets, q0 ∈ Q(0) is the initial state, and R is

the finite set of rules of the form 〈q, σ(x1, . . . , xk)〉(y1, . . . , ym) → r where q ∈ Q(m), σ ∈ Σ(k),

and r is a tree in T∆∪(Q×Xk)∪Ym
. Rules of such form are called 〈q, σ〉-rules, and the set of

right-hand sides of all 〈q, σ〉-rules is denoted by Rq,σ. We always assume Σ(0) and ∆(0) (and

thus, TΣ and T∆) are non-empty. The rules of M are used as term rewriting rules in the

usual way. We denote by⇒M the derivation relation of M on T(Q×TΣ)∪∆, and by u↓M the set

{t ∈ T∆ | u⇒
∗
M t}. Note that “state-calls” 〈q, xi〉 can be nested and therefore different orders

of evaluation yield different trees. Unless otherwise specified, we assume the outside-in (OI)

derivation in which we always rewrite the outermost (= top-most) state calls. By Corollary

3.13 of [12], this order of evaluation yields the same set of output trees as the unrestricted

order, i.e., the case where no restriction is imposed on the order of evaluation. The translation

realized by M is the relation τM = {(s, t) ∈ TΣ × T∆ | t ∈ 〈q0, s〉↓M}. We denote by MT the

class of translations realized by mtts. An mtt is called a top-down tree transducer (tt) if all

its states are of rank 0; the corresponding class of translations is denoted by T. We call an

mtt deterministic (total, respectively) if for every 〈q, σ〉 ∈ Q× Σ, the number |Rq,σ| of rules
is at most (at least) one; the corresponding classes of translations are denoted by prefix D

(t). An mtt is linear (denoted by prefix L) if in every right-hand side of its rules each input

variable xi ∈ X occurs at most once. The same notation is used for tts; for instance, DtT

denotes the class of translations realized by total deterministic tts.

For a technical reason, we define a slight extension of mtts. We fix the set of choice

nodes C = {θ(0),+(2)} and assume it to be disjoint with other alphabet. An mtt with choice

and failure (mttcf) M is a tuple (Q,Σ,∆, q0,R) defined as for normal mtts, except that the

right-hand sides of rules are trees in T∆∪(Q×Xk)∪Ym∪C. The derivation relations (⇒M and

↓M) and the realized translation (τM) are defined similarly as for mtts, with two additional

rewrite rules: +(t1, t2) ⇒M t1 and +(t1, t2) ⇒M t2. Thus, + denotes nondeterministic

choice and θ denotes failure (because there is no rule for it). Again, we assume the outside-

in evaluation order. For a right-hand side r of an mttcf, we say a position ν ∈ pos(r) is

top-level if for all proper prefixes ν′ of ν, label(r, ν′) ∈ ∆ ∪ C. We say an mttcf is canonical

if for every right-hand side r and for every top-level position ν ∈ pos(r), label(r, ν) /∈ C.

The idea of the choice and failure nodes comes from [12]. There they show that any MT

generating trees in T∆ can be regarded as a DtMT generating “choice trees” in T∆∪C; a choice

tree each of the choice trees denotes the set of possible output trees by interpreting θ as the

empty set and +(c1, c2) as the union of the sets denoted by c1 and c2.

3 Complexity of a Single MTT

In this section we show that for any canonical mttcf M having properties called path-linear

and non-erasing, there is a nondeterministic Turing Machine that decides whether a given

K. INABA AND S. MANETH FSTTCS 2008 247

pair (s, t) of trees is in τM in O(|s| + |t|) space and in polynomial time with respect to

|s| + |t|. Thus, this “translation membership” problem is in NSPACE(n) and NP. Two

previous works on the same membership problem for restricted classes of macro tree trans-

ducers – for total deterministic mtts [17] and for nondeterministic mtts without parame-

ters (top-down tree transducers) [3] – both give DSPACE(n) algorithms. First let us briefly

explain where the difficulty arises in our case, i.e., with nondeterminism and parameters.

For total deterministic mtts, the DSPACE(n) complexity is proved via a reduction to the

case of linear total deterministic mtts, and then to attribute grammars (which are deter-

ministic by default), whose output languages are LOG(CFL)-complete and therefore have

DSPACE(log(n)2)membership test[10]. For nondeterministic tts, the complexity is achieved

by a straightforward backtracking-based algorithm; given the input tree s and the output

tree t, it generates each possible output of s by simulating the recursive execution of state

calls, while comparing with t. The following two facts imply the DSPACE(n) complexity:

(1) the depth of the recursion is at most the height of s, and (2) to backtrack we only need to

remember for each state call the rule that was applied (which requires constant space). Note

that neither (1) nor (2) hold for mtts; the recursion depth can be exponential and the actual

parameters passed to each state call must also be remembered for backtracking.

Here we concentrate on a restricted class of mttcfs, namely, canonical, non-erasing, and

path-linear mttcfs, which is exactly the class of mttcfs needed later in Section 4, to obtain

the complexity result for the output languages of the mtt-hierarchy. For a canonical mtt,

we define a right-hand side of a rule to be non-erasing if it is not in Y. A canonical mttcf is

non-erasing if the right-hand sides of all its rules are non-erasing. An mttcf is path-linear if a

subtree of the form 〈q, xi〉(· · · 〈p, xj〉(· · ·) · · ·) in its rules implies i 6= j.

Making MTTCFs Total Deterministic Let M be a canonical, non-erasing, and path-

linear mttcf. It is easy to see that we can always construct a total deterministic mttcf M′

equivalent to M by simply taking 〈q, σ(· · ·)〉(· · ·)→+(r1, · · ·,+(rn, θ)· · ·) for {r1, . . . , rn} =
Rq,σ. Then, M′ = (Q,Σ,∆, q0,R

′) can be seen as a total deterministic mtt N = (Q,Σ,∆ ∪
C, q0,R

′) whose outputs are the choice trees denoting sets of output trees of M. The canon-

icity and the non-erasure of M implies that in any right-hand side r ∈ R′ and every position

ν ∈ pos(r) with label(ν) ∈ Y, there exists a proper prefix ν′ of ν with label(ν′) 6= +. Path-

linearity is preserved from M to M′.

Compressed Representation Our approach is to represent the output choice tree

τN(s) in a compact (linear size) structure, and then compare it to the given output tree t.

Given a total deterministic mtt N and an input tree s ∈ TΣ, we can, in time O(|s|), calcu-
late a straight-line context-free tree grammar (or SLG, a context-free tree grammar that has

no recursion and generates exactly one output) of size O(|s|) that generates τN(s), using
the idea of [19]. Rather than repeating the full construction of [19], we here give a direct

representation of the nodes of τN(s).

Let N be a total, deterministic, non-erasing, and path-linear mtt with output alphabet

∆ ∪ C and let s be an input tree. Let E = {(r, ν) | q ∈ Q, σ ∈ Σ, r ∈ Rq,σ, ν ∈ pos(r)}. For
a list e = (r0, ν0) . . . (rn, νn) of elements of E, we define orig(e) (the origin of e) as ǫ.i0 . . . ik−1
where k is the smallest index satisfying label(rk, νk) /∈ Q × X (or, let k = n + 1 when all

labels are in Q× X) and ij is the number such that 〈q, xij〉 = label(rj, νj) for some q. We call e

248 THE COMPLEXITY OF TREE TRANSDUCER OUTPUT LANGUAGES

well-formed if label(ri, νi) ∈ Q× X for every i < n, label(rn, νn) ∈ ∆ ∪ C, and orig(e) ∈ pos(s).
Intuitively, e is a partial derivation or a “call stack” of the mtt N. Each node of τN(s) can

be represented by a well-formed list, which can be stored in O(|s|) space because its length
is at most 1 + (height of s) and the size of each element depends only on the size of the

fixed mtt, not on |s|. Note that e can represent many nodes in τN(s) if the mtt is non-

linear in the parameters. For instance, for Mdexp from the Introduction and the input tree

s3 = a(a(a(e))), the list (r0, ǫ.1)(r1, ǫ.1)(r1, ǫ.1)(r2, ǫ.1) represents all b-nodes at depth 16 of

the tree τMdexp
(s3), of which there are 28 many. The label c-label(e) of the node represented

by e is label(rn, νn). The operation c-child(e, i) which calculates the representation of the i-

th child of the node represented by e is defined in terms of the following three operations.

For a well-formed list e = (r0, ν0) . . . (rn, νn) with rank(c-label(e)) = m, we define downi(e)
for 1 ≤ i ≤ m as (r0, ν0) . . . (rn, νn.i). For e = (r0, ν0) . . . (rn, νn) such that label(rn, νn) =
yi ∈ Y, we define pop(e) = (r0, ν0) . . . (rn−1, νn−1.i). For a list e = (r0, ν0) . . . (rn, νn) where

label(rn, νn) = 〈q, xj〉 ∈ Q× X, we define expand(e) = (r0, ν0) . . . (rn, νn)(rn+1, ǫ) where rn+1

is the right-hand side of the unique 〈q, label(s, orig(e))〉-rule. Then, the operation c-child(e, i)
is realized by the following algorithm: first apply downi to e, then repeatedly apply pop as

long as possible, and then repeatedly apply expand as long as possible. The non-erasure of

N ensures that this yields a well-formed list; in the last step, when expand cannot be applied

to e = . . . (rn, νn), label(rn, νn) is obviously not in Q × X and by non-erasure is not in Y,

hence it is in ∆ ∪ C. Since the length of a well-formed list is bounded by |s| and pop (and

expand, respectively) always decreases (increases) the length of the list by one, each of them

are executed at most |s| times in the calculation of c-child. Hence, c-child runs in polynomial

time with respect to |s|. Similarly, the representation of the root of τN(s) is obtained in

polynomial time by repeatedly applying expand as long as possible to e0 = (r0, ǫ) where

r0 denotes the right-hand side of the unique 〈q0, label(s, ǫ)〉-rule. Note that a similar list

representation is used in the proof of Theorem 3 in [4].

MATCH (e, v)
1: while label(e) = + do
2: e← c-child(e, k) where k = 1 or 2,

nondeterministically chosen
3: if c-label(e) 6= label(v) then
4: return false
5: else if rank(label(v)) = 0 then
6: return true
7: else
8: for i = 1 to rank(label(v)) do
9: if not MATCH(c-child(e, i), child(v, i)) then
10: return false
11: return true

Figure 1: Matching Algorithm

Matching Algorithm with NP Time Com-

plexity Let t ∈ T∆. Figure 1 shows the non-

deterministic algorithm MATCH that decides,

given a well-formed list e and a node v of

t, whether the set of trees represented by the

choice tree at e contains the subtree of t rooted

at v. The operations c-label and c-child are de-

fined as above. The operations label, rank, and

child are basic tree operations, assumed to run in

polynomial time with respect to |t|. If we apply

MATCH to the representations of the root nodes

of τN(s) and v = ǫ, we can decide whether

(s, t) ∈ τM. Since this is the standard top-down recursive comparison of two trees, the

correctness of the algorithm should be clear.

In each nondeterministic computation, MATCH is called once for each node of t. In

each call, the while-loop iterates at most c|s| times for a constant c. This is due to non-

erasure, i.e., for every Y-node in right-hand sides there exists a non-+ ancestor node. If we

once expand a list for obtaining c-child, we never see Y-nodes in right-hand sides (thus never

K. INABA AND S. MANETH FSTTCS 2008 249

pop) before seeing some ∆-node. Thus, during the while-loop, the sequence of applied op-

erations must be: first pop’s and down’s are applied, and then expand is applied (if any), and

after that no pop is applied, i.e., the only operations applied are expand or down. In other

words, it has to be in the regular set (pop|down)∗(expand|down)∗. However, since the length

of a well-formed list is at most |s|, we can continuously pop without expanding at most |s|
times, and the same for expand without popping. Also, the numbers of continuous down’s

are bounded by the height of the right-hand sides of the rules of N. Thus, the loop ter-

minates after at most 2 · (1 + the maximum height of right-hand sides of N) · |s| iterations.
Altogether, the total running time is polynomial in |s|+ |t|.

Linear Space Complexity The MATCH algorithm takes O((|s|+ log |t|)|t|) space if

naively implemented, because in the worst case the depth of recursion isO(|t|) and we have

to remember e (which costsO(|s|) space) and v (O(log(|t|)) space at least, depending on the

tree node representation) in each step of the recursion. However, note that the lists of nodes

share common prefixes! Suppose the root node is represented by (r0, ν0)(r1, ν1)(r2, ν2)(r3, ν3)
and its child node is obtained by applying down1, pop, and expand. Then the child node is of

the form (r0, ν0)(r1, ν1)(r2, ν
′
2)(r

′
3, ν
′
3), which shares the first two elements with the root node

representation. We show that if we store lists of nodes with common prefixes maximally

shared, then, in the case of path-linear mtts, their space consumption becomes O(|s|+ |t|).
The idea of sharing lists resembles the proof of context-sensitivity of indexed languages [1].

We encode a list of well-formed lists as a tree, written in parenthesized notation on the

tape. For example, the list of three lists [ρ1ρ2ρ3, ρ1ρ2ρ4, ρ1ρ5ρ6] is encoded as ρ1(ρ2(ρ3, ρ4),
ρ5(ρ6)). Since the number of parentheses is≤ 2n and that of commas is≤ nwhere n denotes

the number of nodes, the size of this representation is O(n). When the function MATCH is

recursively called, we add the current e to the end of the list. The addition is represented as

an addition to the rightmost path. As an example, let e = ρ1ρ5ρ7ρ8. The common prefix ρ1ρ5
with the current rightmost path ρ1ρ5ρ6 is shared, and the suffix ρ7ρ8 is added as the right-

most child of the ρ5-node. Then, we have a new tree ρ1(ρ2(ρ3, ρ4), ρ5(ρ6, ρ7(ρ8))). Removal

of the last list, which happens when MATCH returns, is the reverse operation of addition;

the rightmost leaf and its ancestors that have only one descendant leaf are removed. Note

that, since by definition a well-formed list cannot be a prefix of any other well-formed lists,

each well-formed list always corresponds to a leaf node of the tree. It is straightforward to

implement these two operations in linear space and in polynomial time.

Let us consider what happens if we apply this encoding to the output of a path-linear

mtt. In the algorithm MATCH we only proceed downwards in the trees, i.e., the parameter

e′ to the recursive calls is always obtained by applying c-child several times to the previous

parameter e. Thus, the lists [e0, e1, . . . , en] of node representations we have to store during

the recursive computation always satisfy the relation ej ∈ c-child+(ei) for every i < j. Let

e = (r0, ν0) . . . (rm, νm) and e′ = (r′0, ν
′
0) . . . (r

′
m, ν

′
m) be proper prefixes of different elements

in the same list satisfying the condition (here we assume that e is taken from the element

preceding the one where e′ is taken). Then, orig(e) = orig(e′) only if e = e′. This can be

proved by contradiction. Suppose orig(e) = orig(e′) and e 6= e′, and the j-th elements are

the first difference between e and e′. Recall that e′ is a prefix of a well-formed list obtained

by repeatedly applying c-child to another well-formed list, of which e is a prefix. Then it

250 THE COMPLEXITY OF TREE TRANSDUCER OUTPUT LANGUAGES

must be the case that rj = r′j (by definition of expand, rj and r′j are uniquely determined from

(r0, ν0) . . . (rj−1, νj−1) and (r′0, ν
′
0) . . . (r

′
j−1, ν

′
j−1), which are equal) and νj is a proper prefix of

ν′j . However, due to path-linearity, the input variable at νj and ν′j must be different, which

contradicts orig(e) = orig(e′). Therefore, we can associate a unique node in pos(s) with

each proper prefix of the lists, which means that the number of distinct proper prefixes is

at most |s|. Similarly, it can be shown that adding only to the rightmost path is sufficient

for maximally sharing all common prefixes. Suppose not, then there must be in the list

three nodes of the forms e1 = e.(r, ν).e′1, e2 = e.(r, ν′).e′2, and e3 = e.(r, ν).e′3 with ν 6= ν′ in

this order. Note that if this happened, then the prefix e.(r, ν) would not be shared by the

rightmost addition. However, e2 ∈ c-child+(e1) implies that ν is a proper prefix of ν′, and

by e3 ∈ c-child+(e2), ν′ is a proper prefix of ν, which is a contradiction. Hence, the number

of nodes except leaves in the tree encoding equals the number of distinct proper prefixes,

which is at most |s|. We can bound the number of leaves by |t|, the maximum depth of

the recursion. So, the size of the tree encoding of a list of nodes is O(|s| + |t|). We can

easily remember the whole list of v’s in O(|t|) space. Since in the lists [v1, . . . , vn], vi+1 is

always a child node of vi, we only need to remember the child number for each node. For

example, the list [ǫ, ǫ.2, ǫ.2.1] can be encoded as [ǫ, 2, 1]. Thus, we only need ≤ height(t)
many numbers, each of which is between 1 and the maximal rank of symbols in ∆, which is

a constant.

THEOREM 1. Let M be a canonical, non-erasing, and path-linear mttcf. There effectively
exists a nondeterministic Turing Machine which, given any s and t as input, determines
whether (s, t) ∈ τM in O(|s|+ |t|) space and in polynomial time with respect to |s|+ |t|.

4 Complexity of Compositions of MTTs

As explained in the Introduction, the key idea for obtaining linear-size complexity for com-

positions of mtts is to bound the size of all intermediate input trees, and this is achieved

by putting the mtts into “non-deleting” forms. In the same way as for total deterministic

mtts [17], we classify the “deletion” in mtts into three categories – erasing, input-deletion, and

skipping (a similar classification without erasing, which is a specific use of parameters, is

also used in the case of nondeterministic tts [3]). The resolution of each kind of deletion,

however, requires several new techniques and considerations compared to previous work,

due to the interaction of nondeterminism and parameters. In the rest of this paper, we first

explain how we eliminate each kind of deletion, and then show the main results.

Erasing We first consider “erasing” rules – rules of the form 〈q, σ(· · ·)〉(y1, . . . , ym)→
yi, as defined in Section 3. An application of such a rule consumes one input σ-node without

producing any new output symbols; hence it is deleting a part of the input. Note that if the

rank of σ is non-zero, then a rule as above is at the same time also input-deleting, which

is handled in Section 4. In the case of total deterministic mtts, “non-erasing” is a normal

form, i.e., for every total deterministic mtt there is an equivalent one without erasing rules.

Unfortunately, we could not find such a normal form for nondeterministic mtts with OI se-

mantics. Note that for OI context-free tree grammars (essentially mtts without input: think

of 〈q, xi〉 as a nonterminal Nq, or equivalently, think of macro grammars [13] or indexed

K. INABA AND S. MANETH FSTTCS 2008 251

grammars [1], with trees instead of strings in right-hand sides), it has been shown [16] that

there is no non-erasing normal form. The problems is, that “inline expansion”, as used to

obtain non-erasing total deterministic mtts, generates copies of evaluated trees, which may

not correctly model the OI semantics of the original transducer. Therefore, we move from

normal mtts tomtts with choice and failure. The example above can be represented by anmttcf

rule 〈q1, a(x1, x2)〉 → 〈q2, x1〉(+(B,+(C, A(B, C)))), for instance. We will show that every mtt

can be simulated by a non-erasing mttcf.

LEMMA 2. Let M be a mtt. There effectively exists a linear tt E and a canonical mttcf M′

such that M′ is non-erasing and τE ; τM′ = τM. Path-linearity is preserved from M to M′.

PROOF. The idea is, we first predict all erasing beforehand and annotate each input node

by the information of erasing, by using a preprocessing linear tt. Then we replace all erasing

state calls (e.g., 〈q, x1〉(u1) with the rule 〈q, . . .〉(y1) → y1) in the right-hand sides of rules

with the result of the erasing call (e.g., u1). Note that we have to deal with nondeterminism.

Suppose we have two rules 〈q, σ〉(y1, y2) → y1 and 〈q, σ〉(y1, y2) → y2 and a state call

〈q, x1〉(u1, u2) in a right-hand side. In order to preserve the nondeterminism, we replace the

state call by +(u1, u2).

Let M = (Q,Σ,∆, q0,R). We define E to be a nondeterministic linear tt with the set

of states P = [Q → 2{1,...,n}] ∪ {p0} (functions from Q to 2{1,...,n} where n is the maxi-

mum rank of the states of Q, and one distinct state p0, which is the initial state), the in-

put alphabet Σ, the output alphabet Σp = {(σ, p1, . . . , pk)
(k) | σ(k) ∈ Σ, pi ∈ P}, and the

following rules for every σ(k) ∈ Σ and p1, . . . , pk ∈ [Q → 2{1,...,n}]: 〈p, σ(x1, . . . , xk)〉 →
(σ, p1, . . . , pk)(〈p1, x1〉, . . . , 〈pk, xk〉) where p ∈ {p0, (q 7→

⋃
{ f (r) | 〈q, . . .〉(. . .) → r ∈ R})}

with f recursively defined as follows: f (yi) = {i}, f (δ(. . .)) = ∅, and f (〈q′, xj〉(r1, . . . , rm))

=
⋃
{ f (ri) | i ∈ pj(q

′)}. The transducer E modifies the label σ(k) of each input node into the

form (σ(k), p1, . . . , pk). The annotated information pi intuitively means “if a state q of M is

applied to the i-th child of the node, it will erase and return directly the e-th parameter for

e ∈ pi(q)”. If pi(q) = ∅ then no erasing will happen. The rule of E is naturally understood

if it is read from right to left, as a bottom-up translation. Formally speaking, the following

claim holds. It is easily proved by induction on the structure of s.

Claim: (1) For each s ∈ TΣ and q ∈ Q(m), there is a unique p ∈ P \ {p0} such that 〈p, s〉↓E 6=
∅, and e ∈ p(q) if and only if ye ∈ 〈q, s〉(y1, . . . , ym)↓M. (2) Let us denote by [s] such p

determined by s. The output s′ ∈ τE(s) is unique. For b ∈ pos(s) = pos(s′), label(s′, b) =
(label(s, b), [s|b.1], . . . , [s|b.k]) where s|ν is the subtree of s rooted at the node ν.

Then, let M′ = (Q,Σp,∆, q0,R
′) with R′ = {〈q, (σ, p1, . . . , pk)(x1, . . . , xk)〉(y1, . . . , ym)→

r′ | r ∈ Rq,σ, r
′ ∈ ne(r), r′ /∈ Y} where the set ne(r) is defined inductively by ne(r) = {yj}

if r = yj and ne(r) = {δ(r′1, . . . , r
′
l) | r

′
i ∈ ne(ri)} if r = δ(r1, . . . , rl), and ne(r) =

⋃
{ne(ri) |

i ∈ pj(q
′)} ∪ {〈q′, xj〉(nep(r1), . . . , nep(rl))} if r = 〈q′, xj〉(r1, . . . , rl), and nep defined as fol-

lows: nep(yj) = yj, nep(δ(r1, . . . , rl)) = δ(nep(r1), . . . , nep(rl)), and nep(〈q′, xj〉(r1, . . . , rl))=
+(u1,+(u2, . . . ,+(uz, θ)· · ·)) where {u1, . . . , uz} = ne(〈q′, xj〉(r1, . . . , rl)). The correctness of

this construction is proved by induction on the structure of the input tree s.

Input-Deletion The second kind of deletion we investigate is “input-deletion”. For

instance, if there is the rule 〈q0, a(x1, x2)〉 → A(〈q0, x2〉) for the initial state q0 and the input

252 THE COMPLEXITY OF TREE TRANSDUCER OUTPUT LANGUAGES

is of the form a(t1, t2), then the subtree t1 is never used for the output calculation. Although

total deterministic mtts can be made nondeleting (i.e., to always traverse all subtrees of ev-

ery input tree) by preprocessing with a deleting linear tt [17], it becomes more difficult for

nondeterministic mtts. The point is, under nondeterminism, we cannot argue the input-

deleting property of each transducer. Rather, we can only argue whether each computation is

input-deleting or not. This is a weaker version of the nondeletion condition used for total

deterministic mtts, but it is sufficient for our purpose.

In order to speakmore formally, here we define the notion of computation tree (following

the method of [3], but extending it to deal with accumulating parameters). For any finite

set P, we define the ranked alphabet P = {p(1) | p ∈ P}. Let M = (Q,Σ,∆, q0,R) be an

mttcf and s ∈ TΣ. The set COMP(M, s) is the set of trees comp〈q0, ǫ〉↓ ⊆ T∆∪pos(s) called

computation trees (or sometimes, simply computations). The derivation comp〈q0, ǫ〉↓ is carried
out under the following set of rewriting rules with outside-in derivation: +(u1, u2) → u1,

+(u1, u2) → u2, and comp〈q, ν〉(~y) → fν(r) for q ∈ Q, ν ∈ pos(s), r ∈ Rq,label(s,p) where

fν is inductively defined as fν(yi) = yi, fν(δ(r1, . . . , rk)) = ν(δ(fν(r1), · · · , fν(rk)), and
fν(〈q′, xj〉(r1, . . . , rk)) = comp〈q′, ν.j〉(fν(r1), · · · , fν(rk))). Intuitively, COMP(M, s) is the set
of trees 〈q0, s〉↓ where the parent of each ∆-node is a monadic node labeled by the posi-

tion in the input tree s that generated the ∆-node. For example, the output tree ǫ(α(ǫ.1(β),
ǫ.2(γ(ǫ(δ))))) means that the α and δ nodes are generated at the root node of the input tree,

and the β and γ nodes are generated at the first and the second child of the root node, re-

spectively. Let delpos be the translation that removes all ν ∈ pos(s) nodes. It is easily proved

by induction on the number of derivation steps that delpos(COMP(M, s)) = 〈q0, s〉↓M, i.e., if

we remove all pos(s) nodes from a computation tree, we obtain an output tree of the original

mtt.

We say that a computation tree u is non-input-deleting if for every leaf position ν ∈
pos(s), there is at least one node in u labeled by ν. Note that the rewriting rules of comp

corresponding to erasing rules do not generate any pos(s) node. Thus, non-input-deletion

implies that not only some state is applied to every leaf, but also a non-erasing rule of some

state must be applied.

LEMMA 3. Let M be a canonical non-erasing mttcf. There effectively exists a linear tt I

and a canonical non-erasing mttcf M′ such that τM = τI ; τM′ , and for every input-output
pair (s, t) ∈ τM, there exists a tree s′ and a computation tree u ∈ COMP(M′, s′) such that
(s, s′) ∈ τI , t = delpos(u), and u is non-input-deleting. Also, M′ is path-linear if M is.

PROOF. Let M = (Q,Σ,∆, q0,R). We define I as ({d},Σ,Σ′, d,U) where Σ′ = {(σ, i1, . . . ,

im)(m) | σ(k) ∈ Σ, 1 ≤ i1 < · · · < im ≤ k} andU = {〈d, σ(x1, . . . , xk)〉→ (σ, i1, . . . , im)(〈d, xi1〉,
. . . , 〈d, xim〉) | (σ, i1, . . . , im) ∈ Σ′}. The transducer I reads the input and nondeterministi-

cally deletes subtrees while encoding the numbers of the non-deleted subtrees in the current

label. We define the mttcf M′ as (Q,Σ′,∆, q0,R
′) where

R′ = {〈q, (σ, i1, . . . , im)(x1, . . . , xm)〉(~y)→ r′

| r ∈ Rq,σ such that for all top-level calls 〈q′, xp〉 in r, p ∈ {i1, . . . , im}, and r′ is obtained

by replacing 〈q′, xij〉 in r with 〈q′, xj〉 and 〈q
′, xp〉 with θ for p /∈ {i1, . . . , im}}.

K. INABA AND S. MANETH FSTTCS 2008 253

The transducer M′ has basically the same rules as M, except that state calls on ‘deleted’

children are replaced by θ (or, if it is at the top-level then the rule is removed, to preserve

canonicity). It should be easy to see that M′ is canonical and non-erasing, and preserves

the path-linearity of M. The correctness of the construction is proved by taking as s′ the

minimal substructure of s that contains all nodes used for calculating t.

Skipping The third and last kind of deletion is “skipping”. A computation tree u is

skipping if there is a node ν ∈ pos(s) labeled by a rank-1 symbol such that no node in u is

labeled ν. For a canonical, non-erasing, and path-linear mttcf, skipping is caused by either

one of the following two forms of rules. One type is of the form 〈q, σ(x1)〉(y1, . . . , ym) →
〈q′, x1〉(u1, . . . , uv) where ui ∈ TY∪C, and such rules are called skipping. The others are

rules which are not skipping but are of the form 〈q, σ(x1)〉(y1, . . . , ym)→ 〈q′, x1〉(u1, . . . , uv)
where ui ∈ T∆∪Y∪C, and such rules are called quasi-skipping. Note that, since the mttcf is

path-linear, there are no nested state calls in right-hand sides of rules for input symbols of

rank 1. Also note that if the root node of the right-hand side of a rule is not a state call, then

it must be a ∆-node since the mttcf is canonical and non-erasing. So an application of such

a rule generates a ∆-node and thus a ν ∈ pos(s) node for the current input node. Therefore,
it is sufficient to consider only skipping and quasi-skipping rules.

Quasi-skipping rules may cause skipping computations due to parameter deletion: for

example, consider the quasi-skipping rule 〈q, σ(x1)〉(y1) → 〈q
′, x1〉(δ(y1)); if there is a q′-

rule with a right-hand side not using y1, then the σ-node may be skipped. For total deter-

ministic mtts [17], there is a “parameter non-deleting” normal form, i.e., every total deter-

ministic mtt is equivalent to one that uses all parameters in the right-hand sides of its rules,

and thus only skipping rules (without choice nodes) were considered there. Unfortunately,

as for non-erasure, we could not find such a normal form for nondeterministic mtts. Instead,

we add some auxiliary skipping rules to mttcfs, so that we only need to consider skipping

rules. Note that quasi-skipping rules cause skipping computations only when parameters

are deleted. The idea is, if a parameter in some rule is never used for a computation, then re-

placing the parameter by a failure symbol θ does not change the translation, and moreover,

such replacement changes a quasi-skipping rule into a skipping rule.

LEMMA 4. Let M be an canonical, non-erasing, and path-linear mttcf. There effectively ex-
ists a linear tt S and a canonical, non-erasing, and path-linearmttcfM′ such that (1) τS ; τM′ =
τM and (2) for every input tree s and non-input-deleting computation tree u ∈ COMP(M, s),
there exists a tree s′ and a computation tree u′ such that s′ ∈ τS(s), u

′ ∈ COMP(M′, s′),
delpos(u′) = delpos(u), and u′ is both non-input-deleting and non-skipping.

PROOF. First, we construct a new set R of skipping rules from quasi-skipping rules of M,

by replacing all ∆ nodes in each quasi-skipping rule by the failure symbol θ. We then prove

that adding rules in R to M does not change the translation, and moreover, the addition

implies that all skipping computations of M have a derivation that does not apply quasi-

skipping rules to skipped nodes. Thus we may assume that all skipping computations are

caused by skipping rules, and hence we can straightforwardly extend the proofs for total

deterministic mtts [17] and nondeterministic tts [3].

254 THE COMPLEXITY OF TREE TRANSDUCER OUTPUT LANGUAGES

LEMMA 5. Let M = (Q,Σ,∆, q0,R) be an mttcf, s an input tree, and u a non-input-deleting,
non-skipping computation tree in COMP(M, s) with delpos(u) = t. Then |s| ≤ 2|t|.

PROOF. Since u is non-input-deleting and non-skipping, for all nodes ν ∈ pos(s) of rank

zero or one, there exists a node labeled ν in u, and by definition of computation trees, its

child node is labeled by a symbol in ∆. Thus, leaves(s) + rank1nodes(s) ≤ |t| where leaves(s)
is the number of leaf nodes of s and rank1nodes(s) is the number of nodes of s labeled by

rank-1 symbols. Since |s| ≤ 2× leaves(s) + rank1nodes(s) (this holds for any tree s), we have

|s| ≤ 2|t| as desired.

Main Results

LEMMA 6. LetK ∈ {NSPACE(n), NP} and F a class ofK languages effectively closed under
LT. Then LMT(F) and T(F) are also in K.

PROOF. Let M be a linear mtt or a tt. Note that in both cases, M is path-linear. First, we

make it non-erasing; by Lemma 2, there exist a linear tt E and a canonical, non-erasing, and

path-linear mttcf M1 such that τE ; τM1
= τM. Next, we make each computation non-input-

deleting; by Lemma 3, there exist a linear tt I and a canonical, non-erasing, and path-linear

mttcf M2 such that τI ; τM2
= τM1

. For every (s1, t) ∈ τM1
, there is an intermediate tree s2 and

a non-input-deleting computation u ∈ COMP(M2, s2) such that (s1, s2) ∈ τI and delpos(u) =
t. Then, we make each computation non-skipping; by Lemma 4, there exist a linear tt S and

a canonical, non-erasing, and path-linear mttcf M3 such that τS ; τM3
= τM2

. For every non-

input-deleting computation u ∈ COMP(M2, s2), there is an intermediate tree s3 and a non-

input-deleting, non-skipping computation u′ ∈ COMP(M3, s3) such that (s2, s3) ∈ τS and

delpos(u′) = delpos(u). Altogether, we have τE ; τI ; τS ; τM3
= τM, and for every (s, t) ∈ τM

there exists a tree s3 such that (s, s3) ∈ τE ; τI ; τS and a non-input-deleting, non-skipping

computation u′ ∈ COMP(M3, s3) such that delpos(u′) = t. By Lemma 5, |s3| ≤ 2|t|.
Let L be a language in F. To checkwhether t ∈ τM(L), we nondeterministically generate

every tree s′ of size |s′| ≤ 2|t| and for each of them, test whether (s′, t) ∈ τM3
and s′ ∈

(τE ; τI ; τS)(L). By Theorem 1, the former test can be done nondeterministically in O(|s′|+
|t|) = O(|t|) space and polynomial time with respect to |t|. By the assumption that F is

closed under LT, the language (τE ; τI ; τS)(L) is also inK. Thus the latter test is in complexity

K with respect to |s′| = O(|t|).

Note that, for T, the result is known to hold also forK = DSPACE(n) (Theorem 1 of [3]).

LEMMA 7. LetK ∈ {NSPACE(n), NP} and F a class ofK languages effectively closed under
LT. Then MT(F) is also in K and effectively closed under LT.

PROOF. The closure under LT immediately follows from the following known results:

MT = DtMT ;T (Corollary 6.12 of [12]), T ; LT = DtQREL ; T (Lemma 2.11 of [9]), and

DtMT ;DtQREL⊆ DtMT (Lemma 11 of [11]). By Lemma 2.11 of [9] and Theorem 2.9 of [8],

T ; LT ⊆ LT ; T, which implies that T(F) is also closed under LT. By the decomposition

MT = DtT ; LMT (page 138 of [12]), MT(F) ⊆ LMT(T(F)). By applying Lemma 6 twice,

LMT(T(F)) is in K.

By REGT, we denote the class of regular tree languages [15].

K. INABA AND S. MANETH FSTTCS 2008 255

THEOREM 8. MT∗(REGT) ⊆ NSPACE(n) ∩NP-complete.

PROOF. The class REGT is closed under LT (Propositions 16.5 and 20.2 of [15]) and is in

NSPACE(n) ∩ NP (see, e.g., [15]). By induction on k ≥ 1 it follows from Lemma 7 that

MTk(REGT) is in NSPACE(n) and NP. As noted in the Introduction, NP-hardness follows

from [22] and the fact that the indexed languages, which are equivalent to the yields of

context-free-tree languages under OI-derivation, are in MT2(REGT).

Although we only have considered outside-in evaluation order up to here, the previous

result holds for compositions of mtts in inside-out evaluation order. This is because MT∗IO =
MT∗ by Theorem 7.3 of [12], where MTIO denotes the class of translations realized by mtts

in inside-out evaluation order. The yield translation, which translates a tree into its string of

leaf labels from left to right (seen as a monadic tree), is in DtMT. Therefore the output string

languages yield(MT∗(REGT)) of mtts are also in the same complexity class as Theorem 8.

Especially, this class contains the IO- and OI- hierarchies [6]. Note that the IO-hierarchy is

in DtMT∗(REGT) and hence in DSPACE(n) by Corollary 17 of [17]. The first level of the

OI-hierarchy are the indexed languages [13] which are NP-complete [22].

COROLLARY 9. The OI-hierarchy is in NSPACE(n) ∩NP-complete.

Thanks This work was partly supported by the Japan Society for the Promotion of Science.

References
[1] A. V. Aho. Indexed grammars—an extension of context-free grammars. J. ACM, 15:647–671, 1968.
[2] P. R. J. Asveld. Time and space complexity of inside-out macro languages. Int. J. Comp. Math., 10:3–14,

1981.
[3] B. S. Baker. Generalized syntax directed translation, tree transducers, and linear space. SIAM J. Comp.,

7:376–391, 1978.
[4] G. Busatto, M. Lohrey, and S. Maneth. Efficient memory representation of XML document trees. Inf. Syst.,

33:456–474, 2008.
[5] B. Courcelle. Monadic second-order definable graph transductions: A survey. TCS, 126:53–75, 1994.
[6] W. Damm. The IO- and OI-hierarchies. TCS, 20:95–207, 1982.
[7] F. Drewes and J. Engelfriet. Decidability of the finiteness of ranges of tree transductions. Inf. and Comp.,

145:1–50, 1998.
[8] J. Engelfriet. Bottom-up and top-down tree transformations – a comparison. Math. Sys. Th., 9:198–231,

1975.
[9] J. Engelfriet. Top-down tree transducers with regular look-ahead. Math. Sys. Th., 10:289–303, 1977.
[10] J. Engelfriet. The complexity of languages generated by attribute grammars. SIAM J. Comp., 15:70–86, 1986.
[11] J. Engelfriet and S. Maneth. Output string languages of compositions of deterministic macro tree trans-

ducers. J. Comp. Sys. Sci., 64:350–395, 2002.
[12] J. Engelfriet and H. Vogler. Macro tree transducers. J. Comp. Sys. Sci., 31:71–146, 1985.
[13] M. J. Fischer. Grammars with Macro-Like Productions. PhD thesis, Harvard University, Cambridge, 1968.
[14] Z. Fülöp and H. Vogler. Syntax-Directed Semantics: Formal Models Based on Tree Transducers. Springer-Verlag,

1998.
[15] F. Gécseg and M. Steinby. Tree languages. In G. Rozenberg and A. Salomaa, editors, Handbook of Formal

Languages, Vol 3: Beyond Words, pages 1–68. Springer-Verlag, 1997.
[16] B. Leguy. Grammars without erasing rules. the OI case. In Trees in Algebra and Programming, 1981.
[17] S. Maneth. The complexity of compositions of deterministic tree transducers. In FSTTCS, 2002.
[18] S. Maneth, A. Berlea, T. Perst, and H. Seidl. XML type checking with macro tree transducers. In PODS,

2005.
[19] S. Maneth and G. Busatto. Tree transducers and tree compressions. In FoSSaCS, 2004.
[20] T. Milo, D. Suciu, and V. Vianu. Typechecking for XML transformers. In PODS, 2000.
[21] T. Perst and H. Seidl. Macro forest transducers. Information Processing Letters, 89:141–149, 2004.
[22] W. C. Rounds. Complexity of recognition in intermediate-level languages. In FOCS, 1973.

This work is licensed under the Creative Commons Attribution-
NonCommercial-No Derivative Works 3.0 License.

