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ABSTRACT. We consider the construction of finite automata from their corresponding regular ex-
pressions by a series of digraph-transformations along the expression’s structure. Each intermediate
graph represents an extended finite automaton accepting the same language. The character of our
construction allows a fine-grained analysis of the emerging automaton’s size, eventually leading to
an optimality result.

1 Introduction

Regular expressions provide a description of regular languages in a manner convenient for

the human reader. On the machine level, however, the most appropriate representation

is arguably that of finite automata. Thus, considerable effort has been put into ways of

constructing automata describing the same language as a given expression. All algorithms

known to the authors work by either incorporating the expression’s syntactic structure into

the state graph of the emerging automaton [OF61, Kle65, Tho68, SSS88, IY03] or by look-

ing for first-time occurrences of symbols in subexpressions [Glu61, MY60, BS86]. The first

kind of construction generally results in an NFA with ǫ-transitions (ǫNFA, for short), the

latter produces no such transitions and may even provide a DFA. An exhaustive overview

is given in [Wat94].

Our construction yields an ǫNFA. No tight bound for the size of such an automaton rep-

resenting a given expression has been published yet. Ilie & Yu [IY03] came pretty close,

proving a lower bound of 4
3 times the size of a given expression while constructing an ǫNFA

smaller than 3
2 times the expression length. We close this gap by raising the lower bound

and giving a construction reaching that bound in the worst case. Note, however, that plenty

of definitions of the sizes of automata and regular expressions are afloat, some of which are

compared in [EKSW05]. For comparability, we stick by the definition given in [IY03].

The algorithm presented in this paper is basically an extension to the one given in [OF61],

which is, together with a variation of Thompson’s algorithm in [Wat94], the only top-down

algorithm among a variety of bottom-up procedures. It turns out that the top-down char-

acter is very helpful in the analysis, since it allows systematic construction of an expression

yielding the worst ratio of automaton-to-expression sizes. This construction relies on ex-

tremal combinatorial arguments for inferring structural properties of a worst-case input. To

our knowledge this is a novel approach to this kind of problem.
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2 Preliminaries

Enclosing braces for singleton sets will be omitted. Let A be a finite set of symbols, called

alphabet, the elements of A∪ǫ will be called literals. The set of regular expressions over A,
denoted Reg(A), is the closure ofA∪ǫ under product •, sum + and Kleene-star ∗. Operator

precedence is ∗, •,+. Wewill casually speak of expressions only. In the following, α and β will

always be expressions. The regular language expressed by α is denoted L(α). We will call α

and β equivalent, denoted α≡β, if L(α)=L(β). The number of products (sums, stars) in α will

be denoted |α|• (|α|+, |α|∗). Likewise, the number of literals in α, counted with multiplicity,

will be denoted |α|A. The size of an expression is defined as |α|:=|α|•+|α|++|α|∗+|α|A. We

call α complex, if |α| ≥ 2. The set of subexpressions of α will be denoted sub(α).

Both iterated products and sums will be denoted as is common in arithmetic, defining

n

∏
i=1

αi := α1 • α2 • . . . • αn and
n

∑
i=1

αi := α1 + α2 + . . . + αn

Each αi as above will be called an operand to the product or sum. An iterated product (sum)

which is not operand to a product (sum) itself, will be called maximal. If all operands in a

maximal product (sum) are starred, it will be called star-maximal.

An extended finite automaton, short EFA, is a 5-tuple E=(Q,A, δ, q0, F), where q0∈Q, F⊆Q,

and δ⊂Q×Reg(A)×Q. This renders conventional FAs a special case of EFAs. An EFA is

called normalized, if |F|=1. A pair (q,w) ∈ Q×A∗ is called configuration of E, valid changes in

E’s configuration are denoted by ⊢, writing (q, vw) ⊢ (q′,w) if (q, α, q′)∈δ and v∈L(α). The
language accepted by E is L(E)={w|(q0,w) ⊢∗ (q f , ǫ), q f ∈ F}, where ⊢∗ is the reflexive-

transitive closure of ⊢.

The class of regular languages is not extended by allowing regular expressions as labels in

automata, see [Woo87] for a proper introduction. The size of an EFA E is |E|:=|Q|+|δ|. The
sets of transitions leaving and reaching some q∈Q are given by q+:=δ∩(q×Reg(A)×Q) and
q−:=δ∩(Q×Reg(A)×q), respectively. A set of transitions γ = {(qi, αi, qi+1)|1≤i≤n−1} ∪
(qn, αn, q1) is called cycle.

Let A be a FA generated from α by some algorithm C. We call |A|
|α|

the conversion-ratio of C

with respect to α. The maximal conversion-ratio of C with respect to any expression, will

simply be called conversion-ratio of C. An expression reaching this bound is said to be

worst-case.

3 A Lower Bound

First we improve on a lower bound for any construction of FAs from expressions, given

by Ilie & Yu in [IY03], by a slight variation of their argument. To this end, a property of

digraphs is shown, in which we refer to both vertices and arcs as elements.

PROPOSITION 1. Consider a digraph (V, A). Let L,R be nonempty, disjoint subsets of V
such that
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1. there is a path from each l ∈ L to each r ∈ R,
2. there is no path connecting any two vertices l, l′ ∈ L or any r, r′ ∈ R.

Then at least min{|L||R|, |L|+|R|+1} elements are necessary to realize these paths.

PROOF. Two cases need to be considered:

1. There is no vertex on any path connecting l with r. This can only be realized with

|L||R| arcs, by pairwise connections.

2. There is at least one vertex b on a path connecting lb∈Lwith rb∈R, this path contains at

least 3 elements. To connect lb with the vertices of R\rb at least |R|−1 further arcs are

necessary. An additional |L|−1 arcs are leaving the vertices of L\lb. These numbers

total to |L|+|R|+1.

Next we show the actual lower bound. Both states and transitions of an FA A will be called

elements, the number of elements is simply |A|.

THEOREM 2. Let xi,j be distinct literals, consider the expression

α =
n

∏
i=1

(x∗2i−1,1 + x∗2i−1,2)(x
∗
2i,1 + x∗2i,2 + x∗2i,3)

= (x∗1,1+x∗1,2)(x
∗
2,1+x∗2,2+x∗2,3) . . . (x

∗
2n−1,1+x∗2n−1,2)(x

∗
2n,1+x∗2n,2+x∗2n,3)

Any normalized automaton A satisfying L(A) = L(α) has at least size 22n + 1.

PROOF. In A, each xi,j is read on some cycle γi,j comprising at least one transition in-

cident to a state qi,j, i.e., 2 elements. The γi,j are disjoint, since literals of the same factor

occur mutually exclusive and literals of different factors are ordered by α. Thus 5n cycles,

accounting for at least 10n elements, are required. As for the connectivity of cycles, no path

may lead from γi,j to γi,k, if j 6= k, however, there need to be paths from γi,j to γi+1,k. This

carries over to the connectivity of the qi,j, thus each two sets of states qi,j and qi+1,j′ satisfy

the conditions given in Prop. 1. Since one of the sets contains 2, the other one 3 states, by

Prop. 1 at least 6 Elements are needed to ensure connectivity. As there are 2n−1 such pairs,

12n−6 elements are needed to connect them. This totals to 22n−6 elements, additionally, 2

states and 5 transitions are necessary to ensure a normalized FA.

For the following, note that α from Thm. 2 has size 15n− 1.

COROLLARY 3. The conversion-ratio of any algorithm converting expressions to normal-
ized FAs is bounded from below by

|A|

|α|
≥

22n + 1

15n− 1
>

22

15
+

1

|α|
= 1.46̄+

1

|α|

4 Construction

The idea is to expand an initial EFA according to the structure of the expression, by introduc-

ing as few states and transitions as possible, while decomposing transition labels. Certain

substructures in the expanded automata will be replaced by smaller equivalents. This is

done until an ǫNFA emerges, i.e., there are no more complex labels.
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DEFINITION 4.[Expansion] Let E = (Q,A, δ, q0, F) be an EFA with a complex labeled tran-
sition t. We call an EFA E′ = (Q′,A, δ′, q0, F) the expansion of E, if it is derived from E

according to the label of t as follows:
- if t = (p, αβ, q) then Q′ = Q∪̇p′, δ′ = δ \ t ∪ {(p, α, p′), (p′, β, q)}
- if t = (p, α + β, q) then Q′ = Q, δ′ = δ \ t ∪ {(p, α, q), (p, β, q)}
- if t = (p, α∗, q), we distinguish several cases
∗0: if p = q, replace α∗ with α,

let Q′ = Q, δ′ = δ \ t ∪ (q, α, q)
∗1: if |p+| = |q−| = 1, merge q into p:

let Q′ = Q \ q, δ′ = δ \ (q+ ∪ q−) ∪ {(p,γ, r)|(q,γ, r) ∈ δ} ∪ (p, α, p)
∗2: if |p+| > 1, |q−| = 1, introduce a loop in q:

let Q′ = Q, δ′ = δ \ t ∪ {(p, ǫ, q), (q, α, q)}
∗3: if |p+| = 1, |q−| > 1, introduce a loop in p:

let Q′ = Q, δ′ = δ \ t ∪ {(p, α, p), (p, ǫ, q)}
∗4: if |p+| > 1, |q−| > 1, introduce a new state p′:

let Q′ = Q∪̇p′, δ′ = δ \ t ∪ {(p, ǫ, p′), (p′, α, p′), (p′, ǫ, q)}

Cases are sketched in Fig. 1. Expansions will be denoted relational, writing E ⊳t E
′ if E′

results from expansion of t in E. Occasionally we write ⊳•,⊳+,⊳∗i to indicate which case of

Def. 4 is applied, or simply E ⊳ E′, if both t and the case are irrelevant. The latter might be

formalized as ⊳ = ⊳• ∪⊳+ ∪
⋃

0≤i≤4 ⊳∗i. The n-fold iteration of ⊳ will be denoted ⊳
n, thus

if E⊳
n E′ there is a series of EFAs Ei, 0 ≤ i ≤ n, such that E = E0, Ei ⊳ Ei+1, En = E′. Usually

we refer to⊳(q,α,q′) bymentioning α’s operator, e.g, ’•-expansion’. Distinct ∗-expansions will

be referred to as ’∗0-expansion’ to ’∗4-expansion’ according to Def. 4.

DEFINITION 5.[Primal EFA] Let A be the least alphabet satisfying α ∈ Reg(A). The EFA
A0

α = ({q0, q f },A, (q0, α, q f ), q0, q f }) is called the primal EFA representing α. We denote by
Ai

α any automaton satisfying A0
α ⊳

i Ai
α.

Thus, Ai
α denotes any EFA derived from the primal automaton representing α in a series of

i expansions. Note that generally, Ai
α is not unique. However, a most useful property of ⊳

is that the order of expansion is irrelevant, or formally:

LEMMA 6. ⊳ is locally confluent, i.e., if A ⊳ A′ and A ⊳ A′′, then ∃A′′′ : A′ ⊳ A′′′ and
A′′ ⊳ A′′′.

PROOF. Given in the appendix.

COROLLARY 7. ⊳ is confluent.

PROOF. Since ⊳ is terminating, the claim follows from Lem. 6. Detailed proof of this

argument can be found, e.g., in [Hue80].

We introduce two further conversions of different nature, altering EFAs with respect to ǫ-

labeled substructures.

DEFINITION 8.[State-Elimination] Let E=(Q,A, δ, q0, F) be an EFA, q ∈ Q\F. We consider
two types of state-elimination, based on q+ and q−:

- Y-Type : q−=(p, ǫ, q), q+={(q, α1, r1), . . . , (q, αn, rn)}.
Then, let δ′ = δ \ (q+∪q−) ∪ {(p, α1, r1), . . . , (p, αn, rn)}
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ααβ β
⊳

(a) product

αα + β

β
⊳

(b) sum

αα∗

⊳

(c) superfluous star, ∗0

α

α∗
⊳

(d) state-merging star, ∗1

ǫ

α

α∗
⊳

(e) target-looping star, ∗2

ǫ

α

α∗
⊳

(f) source-looping star, ∗3

ǫǫ

α

α∗
⊳

(g) state-introducing star, ∗4

Figure 1: Expansions of complex labeled transitions.

ǫ q
α1 α1

αn αn

⊲q

(a) Y-Type, schematic

ǫǫ

ǫ ǫ

ǫ
ǫ
ǫ

ǫ

q ⊲q

(b) X-Type, schematic

ǫ

ǫ

ǫ qγ

α
1α1

⊲γγ
β1

β1

β2β2

(c) Cycle-elimination, exemplary

Figure 2: State-eliminations (a,b) and cycle-elimination (c)

- X-Type : q− = {(p1, ǫ, q), (p2, ǫ, q)}, q
+ = {(q, ǫ, r1), (q, ǫ, r2)}.

Then, let δ′ = δ \ (q+∪q−) ∪ {(p1, ǫ, r1), (p1, ǫ, r2), (p2, ǫ, r1), (p2, ǫ, r2)}.

The q-reduct of E is defined as E′ = (Q\q,A, δ′, q0, F) and we write E⊲q E
′.

By reverting the transitions for Y-Type elimination, a further rule—though not structurally

different from the given Y-Type—is obtained.

DEFINITION 9.[ǫCycle-Elimination] Let γ={(qi, ǫ, q
′
i)|1≤i≤n} be a cycle of E=(Q,A, δ, q0, F).

LetQ′ = Q\{q1, . . . , qn} ∪ qγ and δ′ = δ\γ∪ {(p, α, qγ)|(p, α, qi) ∈ δ} ∪ {(qγ, β, r)|(qi, β, r) ∈
δ}. The γ-reduct of E is defined as E = (Q′,A, δ′, q0, F).

Note that both state- and cycle-eliminations strictly reduce the size of an EFA without re-

introducing complex labels. Eliminations are illustrated in Fig.2.

Exhaustive application of expansions and eliminations to A0
α (or any EFA, for that matter)

yields an ǫNFA. A primitive algorithm is given below.
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Algorithm 1 RegEx→ ǫNFA

A← A0
α

while A is not an NFA do

choose a complex-labeled transition t in A

let A⊳t A
′

if ⊳t introduced some e = (q, ǫ, q′) then
if q can be eliminated then

let A′ ⊲q A
′′

A′ ← A′′

if q′ can be eliminated then

let A′ ⊲q′ A
′′

A′ ← A′′

if e is part of some ǫ-cycle γ then

let A′ ⊲γ A′′

A′ ← A′′

A← A′

end while

⊳• ⊳+ ⊳∗0 ⊳∗1 ⊳∗2, ⊳∗3 ⊳∗4 ⊲γ ⊲q

∆(|Q|) 1 0 0 -1 0 1 -(|γ| − 1) -1

∆(|δ|) 1 1 0 0 1 2 -|γ| -1 or 0

Table 1: Number of elements introduced (i.e., removed, if negative) upon expansion and elimination,
broken down to states and transitions.

5 Analysis

Let Aα denote an ǫNFA constructed by our algorithm from A0
α. We start by bounding |Aα|

from above. To this end, we refine the definition of |α|∗. Let |α|∗i denote the number of stars

in α, that will be ∗i-expanded. Clearly, |α|∗ = ∑0≤i≤4 |α|∗i.

THEOREM 10. The size of an automaton built from α by our algorithm is bounded by

|Aα| ≤ |α|+ 2|α|∗4 − |α|+ + 2

If this bound is tight then neither state-elimination nor ∗0, ∗1-expansion is applied.

PROOF. A0
α is of size 3. The number of elements introduced upon expansion is determined

by |α|•, |α|+, . . ., weighted by the entries in Tab. 1. Using |α|A=|α|•+|α|++1 and |α| =
|α|• + |α|+ + |α|∗0 + . . .+|α|∗4+|α|A, this yields:

|Aα| ≤ 2|α|• + |α|+ − |α|∗1 + |α|∗2,3 + 3|α|∗4 + 3

= |α|+ |α|• − |α|∗0 − 2|α|∗1 + 2|α|∗4 − |α|A + 3

≤ |α|+ |α|• + 2|α|∗4 − |α|A + 3

= |α|+ 2|α|∗4 − |α|+ + 2
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(x∗1+x2+x∗3 )∗

x∗1+x2+x∗3 x∗1

x∗3

x1

x2x2

x3

⊳ ⊳
2

⊳
2

(a) (∑ αi)
∗ ≡ (∑ αi)

∗ by ∗0-expansions.

x1
x1

x2

x2

(x∗1 x
∗
2 )∗

x∗1 x
∗
2

⊳⊳

γ
⊲γ

(b) (∏ α∗i )
∗ ≡ (∑ αi)

∗ by elimination of ǫ-cycles.

Figure 3: Transformations respect the equivalences given in Prop. 12 (ǫ-labels are omitted).

The first inequality results from state- and ǫ-cycle eliminations, the second from ∗0- and
∗1-expansions, thus equality holds in absence of these transformations.

The conversion ratio of a worst-case expression can be read immediately from this term;

since we will refer to this quotient rather often, we restate it explicitly in

COROLLARY 11. Let α be worst-case, then

|Aα|

|α|
= 1+

2|α|∗4 − |α|+ + 2

|α|

PROPOSITION 12. Both sides in each of the following equivalences will be expanded to the
same (sub)automaton:

(α∗)∗≡α∗ and (∑ αi)
∗≡(∑ αi)

∗ and (∏ α∗i )
∗ ≡ (∑ αi)

∗

where αi = βi, if αi = β∗i and αi otherwise.

PROOF. The first two equivalences are realized by ∗0-expansion, the third by ǫ-cycle-

elimination. Examples are given in Fig. 3.

COROLLARY 13. Let α be worst-case, then |α|∗0=|α|∗1=0, further both a sum with starred
operands and a maximally starred product are not starred themselves.

PROOF. By Prop. 12we know that such sums and products would lead to ∗0-/∗1-expansions
and eliminations. Since for worst-case expressions equality in Thm. 10 holds and thus said

conversions do not occur, the claim follows.

We proceed with a series of results, each putting additional constraints to the structure of a

worst-case expression. Almost all proofs work by a line of argumentation that is common

in extremal combinatorics: assume α is worst-case, i.e., extremal with respect to conversion-

ratio, then infer some further property by contradicting extremality of α.

PROPOSITION 14. A worst-case expression contains stars.

PROOF. Let α be worst-case with |α|∗=0. Cor. 11 implies |Aα|
|α|
≤ 1+ 2

|α|
, the right-hand side

of which drops below 1.4, if |α| ≥ 5. Since by Cor. 3, the conversion-ratio is bounded from

below by 1.46̄, the assumption |α|∗=0 is wrong, if α is worst-case.
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LEMMA 15. Let γ∗ be a proper subexpression of α. Then γ∗ will be ∗4-expanded iff
- it is operand to a sum which is not starred, or
- without loss of generality it occurs rightmost in a star-maximal product.

PROOF. The first case is clear by looking at the expansion of some γ∗+β: If a transition la-

beled like this is a loop, γ∗ will be ∗0-expanded, otherwise it will definitely be ∗4-expanded.
The second case is more involved: If γ∗ is an infix, say, α1γ∗α2, we distinguish 3 cases: If

both αi are non-starred, γ∗ will be ∗1-expanded. If only one of the αi is non-starred, then

γ∗ can be ∗2- or ∗3-expanded by introducing a loop at the state incident to the transition

labeled with the non-starred αi. Finally, if both αi are starred, we can by confluence assume

that expansions will be applied from left to right. Then, every starred factor will be ∗2-
expanded until the final one necessitates ∗4-expansion. This embraces all possible cases,

giving both directions of the statement.

LEMMA 16. Let α be worst-case, assume γ∗∈sub(α) is ∗4-expanded. Then γ∗ is operand to
a sum.

PROOF. By Lem. 15, γ∗ is either operand to a sum or rightmost in a star-maximal product.

Assume the latter, thus π = π∗1 • . . . • π∗n−1 • γ∗. Construct α′ from α by replacing π with

σ = π∗1+ . . . + π∗n−1+γ∗. Then |α|=|α′|, however 2|α′|∗4−|α
′|+ = 2|α|∗4−|α|++n−1. Since

by Prop. 12 π is not starred in α, the stars in σ will not accidentally become ∗0. By Cor. 11,
|Aα′ |
|α′|

>
|Aα|
|α|

, thus α is not worst-case. Therefore γ∗ is necessarily operand to a sum.

The interrelation between sums and stars in a worst-case expression is further tightened in

the following

LEMMA 17. Let α be worst-case. Then
1. every starred subexpression in α is operand to a sum and
2. all operands in a maximal sum are starred.

PROOF.

1. Assume γ∗∈sub(α) will not be ∗4-expanded. Construct α′ from α by replacing γ∗ with

γ. Since |α′|=|α|−1, yet |α′|∗4=|α|∗4, Cor. 11 again yields
|Aα′ |
|α′|

>
|Aα|
|α|

, thus α is not

worst-case. Therefore each star in a worst-case expression is subject to ∗4-expansion,
thus by Lem. 16 operand to a sum.

2. Let ∑ σi be maximal with some σj unstarred, i.e., a product. Construct α′ from α by

replacing σj with σ∗j . This newly starred expressions will be ∗4-expanded (Lem. 15).

Then |α′| = |α|+1, |α′|∗4 = |α|∗4+1 and by Cor. 11, |Aα′ | = |Aα|+2. Now

|Aα′ |

|α′|
=
|Aα|+ 2

|α|+ 1
>
|Aα|

|α|
iff |Aα| < 2|α|

We proceed similar to the proof of Thm. 10, additionally using that the previous item

implies |α|∗4 ≤ 2|α|+:

|Aα| ≤ 2|α|• + |α|+ − |α|∗1 + |α|∗2,3 + 3|α|∗4 + 3

= 2|α| − |α|+ − 3|α|∗1 − |α|∗2,3 + |α|∗4 + 3− 2|α|A

= 2|α| − 2|α|+ − |α|• − 3|α|∗1 − |α|∗2,3 + |α|∗4 + 2− |α|A

≤ 2|α| − |α|+ − 2|α|• + 1
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By assumption, |α|+ ≥ 1, any further binary operator pushes the right-hand side

strictly below 2|α′|. Indeed, the only expression containing only one + as binary op-

erator, that reaches a conversion-ratio of 2, is x∗1 + x∗2 , which is of claimed structure.

LEMMA 18. A worst-case expression α has no subexpression of the form

φ = (∏
i

∑
j

σ∗ij)
∗

PROOF. If φ ∈ sub(α), ǫ-cycle elimination would occur upon expansion. By Cor. 11 then

α would not be worst-case.

This allows us to provide a pretty detailed template of a worst-case expression:

LEMMA 19. Let α be worst-case. Then the structure of α is

α =
n

∏
i=1

ki

∑
j=1

σ∗ij where σi,j ∈ A

PROOF. By Prop. 14, a worst-case expression contains starred subexpressions, so fix some

σ∗ij which is by Lem. 17 operand to a sum. A maximal sum with stars is a factor, since it may

not be starred itself and is already maximal. Further, σij is necessarily a maximal product.

If its operands were maximally starred sums, this would contradict Lem. 18, thus σij is a

product of literals. Then, σij influences the conversion-ratio as given in Cor. 11 only by its

length, which has to be minimized in order to maximize the ratio. Thus σij is a symbol from

the alphabet. From Lem. 18 it also follows that α itself may not be starred.

It remains to analyze the influence of the number of summands (the ki in Lem. 19) on

conversion-ratio. This is done in the proof of our main

THEOREM 20. An expression α is worst-case, if its structure is

α =
n

∏
i=1

2+(i mod 2)

∑
j=1

x∗ij where xij ∈ A

PROOF. Let α be of the general structure given in Lem. 19, the FA produced by a series of

expansions from A0
α is sketched in Fig. 4. The sizes of these objects are

|α| = (n− 1) +
n

∑
i=1

(3ki − 1) = 3
n

∑
i=1

ki − 1

|Aα| =
n

∑
i=1

4ki + n− 1 = 4
n

∑
i=1

ki + n− 1

thus the ratio is
|Aα|

|α|
=

4∑ ki + n− 1

3∑ ki − 1
= 1+

∑ ki + n

3∑ ki − 1

The fraction on the right-hand side is maximized, if n is maximal with respect to ∑ ki, or

equivalently, if ∑ ki is minimal. Two restrictions result from prohibiting state-elimination,

namely that ∀i : ki ≥ 2 and if ki=2 then ki−1>2 and ki+1>2 (if they exist). Thus ∑ ki is

minimal, if ki alternates between 2 and 3, i.e., ki = 2+ (imod 2).
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x11

x12

x1k1

x21

x22

x2k2

xn1

xn2

xnkn

Figure 4: Automaton constructed from an expression as given in Lem. 19 (ǫ-labels are omitted).

COROLLARY 21. The size of an automaton produced by our construction is bounded by
22
15 |α|+ 1. The construction is optimal.

PROOF. The value is reached by the expression given in Thm. 20, which was proven to

give the maximal ratio of sizes. Since by Cor. 3 22
15 |α|+ 1 is also a lower bound, the bound is

tight, hence the construction is optimal.

6 Conclusions & Remarks

We have given a construction for converting regular expressions into equivalent ǫNFAs. To

our knowledge it is the only provably optimal construction so far. It should be mentioned

that the generated automata differ from these constructed in [IY03] only by the effects of

state-elimination. This element is crucial however, both for raising the lower bound as well

as for upper bound analysis as we did. On a practical detail, preprocessing the input to

reduced expressions (as done in [IY03]) is in part realized upon execution of our algorithm.

Treatment of ∅ in expressions can easily be added to our algorithm by considering it a literal

throughout the expansion/reduction-sequence and adding a final step: removing ∅-labeled

transitions followed by running some reachability algorithm. The final step will reduce the

size of the automaton, thus the bound is maintained even if ∅ does not count into the ex-

pressions’ size. Since we consider ∅ as being of no practical relevance, it was omitted from

formal treatment.

Maybe more interesting, Kleene-+ can be implemented by reformulating ∗-expansions,
where additional ǫ-transitions need to be introduced. This yields smaller FAs than by ap-

plying the equivalence α+ ≡ αα∗ (which would double the number of elements introduced

by α), yet it is not feasible with the given bound.

Finally note that the construction not unique in the general case, since state-eliminations is

not confluent. This can be remedied by adding rules that take the in- and out-degrees of the

states adjacent to the eliminated one into consideration, however this is not at the attention

of this paper. A closer analysis will be available in a future article.
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A Appendix

LEMMA 6. ⊳ is locally confluent modulo isomorphism.

PROOF. First, assume one of the transitions is labeled by either a product or a sum:

- Let t1 = (q, α • β, q′). Upon expansion a bridge-state q′′ will be introduced, however

the number of arcs leaving and reaching q and q′ will remain constant. The structure

of A will change insofar as that an arc will be elongated. Since any ⊳t2 will at most

have the effect on t1 that one of its states might be renamed (upon ∗1-expansion), the
order of ⊳t1 ,⊳t2 is irrelevant.

- If t1=(q, α + β, q′), informal reasoning is that an arc is merely doubled. Looking at

Def. 4, the booleans q+
>1 etc. are not changed by such an operation.

Now let both ti be star-labeled. Note that the statement is trivial, if expansions take place

in ’different parts’ of the EFA, so let t1, t2 share at least a common state. If the transitions

are parallel, both will be ∗4-expanded anyway. Further, ∗0-expansion does not change the

structure of the state-graph at all, i.e., neither of t1, t2 is a loop. So assume t1 = (p, α∗, q),
t2 = (q, α∗, r) where p 6= q 6= r. Some of the possible combinations are shown in Fig. 5, the

remaining are a simple exercise.

This work is licensed under the Creative Commons Attribution-
NonCommercial-No Derivative Works 3.0 License.
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Figure 5: Examples for confluence of expanding consecutive starred transitions. Isomorphism is
denoted by ≃.




