Some Sieving Algorithms for Lattice Problems

V. Arvind and Pushkar S. Joglekar

Institute of Mathematical Sciences C.I.T Campus,Chennai 600 113, India \{arvind, pushkar\}@imsc.res.in

Abstract

We study the algorithmic complexity of lattice problems based on the sieving technique due to Ajtai, Kumar, and Sivakumar [AKS01]. Given a k-dimensional subspace $M \subseteq \mathbb{R}^{n}$ and a full rank integer lattice $\mathcal{L} \subseteq \mathbb{Q}^{n}$, the subspace avoiding problem SAP, defined by Blömer and Naewe [BN07], is to find a shortest vector in $\mathcal{L} \backslash M$. We first give a $2^{\mathrm{O}(n+k \log k)}$ time algorithm to solve the subspace avoiding problem. Applying this algorithm we obtain the following results. 1. We give a $2^{\mathrm{O}(n)}$ time algorithm to compute $i^{\text {th }}$ successive minima of a full rank lattice $\mathcal{L} \subset \mathbb{Q}^{n}$ if i is $O\left(\frac{n}{\log n}\right)$. 2. We give a $2^{O(n)}$ time algorithm to solve a restricted closest vector problem CVP where the inputs fulfil a promise about the distance of the input vector from the lattice. 3. We also show that unrestricted CVP has a $2^{\mathrm{O}(n)}$ exact algorithm if there is a $2^{\mathrm{O}(n)}$ time exact algorithm for solving CVP with additional input $v_{i} \in \mathcal{L}, 1 \leq i \leq n$, where $\left\|v_{i}\right\|_{p}$ is the $i^{\text {th }}$ successive minima of \mathcal{L} for each i. We also give a new approximation algorithm for SAP and the Convex Body Avoiding problem which is a generalization of SAP. Several of our algorithms work for gauge functions as metric, where the gauge function has a natural restriction and is accessed by an oracle.

1 Introduction

Fundamental algorithmic problems concerning integer lattices are the shortest vector problem (SVP) and the closest vector problem(CVP). Given a lattice $\mathcal{L} \subset \mathbb{R}^{n}$ by a basis, the shortest vector problem (SVP) is to find a shortest nonzero vector in \mathcal{L} w.r.t. some metric given by a gauge function in general (usually the ℓ_{p} norm for some p). Likewise, the closest vector problem (CVP) takes as input a lattice $\mathcal{L} \subset \mathbb{R}^{n}$ and vector $v \in \mathbb{R}^{n}$ and asks for a $u \in \mathcal{L}$ closest to v w.r.t. a given metric. These problems have polynomial-time approximation algorithms based on the celebrated LLL algorithm for basis reduction [LLL82].

The fastest known exact deterministic algorithms for SVP and CVP have running time $2^{O(n \log n)}$ [Kan87] (also see [Bl00]). More recently, Ajtai, Kumar and Sivakumar in a seminal paper [AKS01] gave a $2^{\mathrm{O}(n)}$ time randomized exact algorithm for SVP. Subsequently, in [AKS02] they gave a $2^{O(n)}$ time randomized approximation algorithm for CVP. Their algorithms are based on a generic sieving procedure (introduced by them) that exploits the underlying geometry. Recently, Blömer and Naewe [BN07] gave a different $2^{\mathrm{O}(n)}$ time randomized approximation algorithm for CVP, also based on the AKS sieving technique.

For $1 \leq i \leq n$, the $i^{\text {th }}$ successive minima $\lambda_{i}(\mathcal{L})$ is defined as the smallest r such that a ball of radius r around origin contains at least i linearly independent lattice vectors. The successive minimas $\lambda_{i}(\mathcal{L})$ are important lattice parameters. A classical problem is the successive minima problem SMP of finding for a given lattice \mathcal{L}, n linearly independent vectors
(C) V. Arvind and Pushkar S. Joglekar; licensed under Creative Commons License-NC-ND
$v_{1}, v_{2}, \ldots, v_{n} \in \mathcal{L}$ such that $\left\|v_{i}\right\|$ is at most $\lambda_{i}(\mathcal{L})$. This problem clearly subsumes the shortest independent vectors problem SIVP where one wants to find linearly independent vectors $v_{1}, v_{2}, \ldots, v_{n} \in \mathcal{L}$ such that $\left\|v_{i}\right\| \leq \lambda_{n}(\mathcal{L})$. Given a k-dimensional subspace $M \subseteq \mathbb{R}^{n}$ and a full rank integer lattice $\mathcal{L} \subseteq \mathbb{Q}^{n}$, the subspace avoiding problem SAP , is to find a shortest vector in $\mathcal{L} \backslash M$. The paper [BN07] gives $2^{O(n)}$ time approximation algorithm for these problems.

No exact $2^{O(n)}$ time randomized algorithm is known for CVP or SMP. Recently, Micciancio has shown [Mi08] that CVP is polynomial-time equivalent to several lattice problems, including SIVP and SMP, under deterministic polynomial time rank-preserving reductions. This perhaps explains the apparent difficulty of finding a $2^{O(n)}$ time exact algorithm for CVP or SMP, because SVP reduces to all of these problems but no reduction is known in the other direction. In particular, the reductions in [Mi08] yield $2^{O(n \log n)}$ time exact algorithms for SAP, SMP and SIVP, whereas [BN07] gives $2^{O(n)}$ time randomized approximation algorithm for these problems.

Our results

In this paper we consider some natural restrictions of these problems that can be exactly solved in $2^{O(n)}$ time. We obtain these results giving a $2^{O(n+k \log k)}$ algorithm to solve SAP where n is the rank of the lattice and k is the dimension of the subspace.

As our first result we show that given a full rank lattice $\mathcal{L} \subset \mathbb{Q}^{n}$ there is $2^{O(n)}$ time randomized algorithm to compute linearly independent vectors $v_{1}, v_{2}, \ldots, v_{i} \in \mathcal{L}$ such that $\left\|v_{i}\right\|=\lambda_{i}(\mathcal{L})$ if i is $O\left(\frac{n}{\log n}\right)$. Given a full rank lattice $\mathcal{L} \subset \mathbb{Q}^{n}$ and $v \in \mathbb{Q}^{n}$ we also give a $2^{O(n)}$ time algorithm to solve $\operatorname{CVP}(\mathcal{L}, v)$ if the input (v, \mathcal{L}) fulfils the promise $d(v, \mathcal{L}) \leq$ $\frac{\sqrt{3}}{2} \lambda_{O\left(\frac{n}{\log n}\right)}(\mathcal{L})$.

We show that CVP can be solved in $2^{O(n)}$ time if there is a $2^{O(n)}$ time algorithm to compute a closest vector to v in \mathcal{L} where $v \in \mathbb{Q}^{n}, \mathcal{L} \subset \mathbb{Q}^{n}$ is a full rank lattice and $v_{1}, v_{2}, \ldots, v_{n} \in$ \mathcal{L} such that $\left\|v_{i}\right\|_{p}$ is equal to $i^{\text {th }}$ successive minima of \mathcal{L} for $i=1$ to n are given as an additional input to the algorithm. As a consequence, we can assume that successive minimas are given for free as an input to the algorithm for CVP. We believe that using basis reduction techniques from [Kan87] one might be able to exploit the information about successive minimas of the lattice to get a better algorithm for CVP.

We give a new $2^{O(n+k \log 1 / \epsilon)}$ time randomized algorithm to solve $1+\epsilon$ approximation of SAP, where n is rank of the lattice and k is the dimension of subspace. We get better approximation guarantee than the one in [BN07] parametrised on k. We also consider a generalization of SAP (the convex body avoiding problem) and give a singly exponential approximation algorithm for the problem.

2 Preliminaries

A lattice \mathcal{L} is a discrete additive subgroup of R^{n}, n is called dimension of the lattice. For algorithmic purposes we can assume that $\mathcal{L} \subseteq \mathbb{Q}^{n}$, and even in some cases $\mathcal{L} \subseteq \mathbb{Z}^{n}$. A lattice is usually specified by a basis $B=\left\{b_{1}, \cdots, b_{m}\right\}$, where $b_{i} \in \mathbb{Q}^{n}$ and b_{i} 's are linearly independent. m is called the rank of the lattice. If the rank is n the lattice is said to be a full rank lattice. Although most results in the paper hold for general lattices, for convenience we
mainly consider only full-rank lattices. For $x \in \mathbb{Q}^{n}$ let size(x) denote the number of bits for the standard binary representation as an n-tuple of rationals. Let $\operatorname{size}(\mathcal{L})$ denote $\sum_{i} \operatorname{size}\left(\mathrm{~b}_{\mathrm{i}}\right)$. Next we recall the definition of gauge functions.
Definition 1.[Si45] A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is called a gauge function if it satisfies following properties:

1. $f(x)>0$ for all $x \in \mathbb{R}^{n} \backslash\{0\}$ and $f(x)=0$ if $x=0$.
2. $f(\lambda x)=\lambda f(x)$ for all $x \in \mathbb{R}^{n}$ and $\lambda \in \mathbb{R}$.
3. $f(x+y) \leq f(x)+f(y)$ for all $x, y \in \mathbb{R}^{n}$.

For $v \in \mathbb{R}^{n}$ we denote $f(v)$ by $\|v\|_{f}$ and call it norm of v with respect to the gauge function f. It is easy to see that any l_{p} norm satisfies all the above properties. Thus gauge functions generalize the usual l_{p} norms. A gauge function f defines a natural metric d_{f} on \mathbb{R}^{n} by setting $d_{f}(x, y)=f(x-y)$ for $x, y \in \mathbb{R}^{n}$. For $x \in \mathbb{R}^{n}$ and $r>0$, let $B_{f}(x, r)$ denote the f-ball of radius r with center x with respect to the gauge function f, defined as $B_{f}(x, r)=\left\{y \in \mathbb{R}^{n} \mid f(x-y) \leq r\right\}$. We denote the metric balls with respect to usual l_{p} norm by $B_{p}(x, r)$. Unless specified otherwise we always consider balls in \mathbb{R}^{n}. The next well-known proposition characterizes the class of all gauge functions.
Proposition 2.[Si45] Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be any gauge function then a unit radius ball around origin with respect to f is a n dimensional bounded O-symmetric convex body. Conversely, for any n dimensional bounded O-symmetric convex body C, there is a gauge function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that $B_{f}(0,1)=C$.

Given an f-ball of radius r around origin with respect to a gauge function f, from the Proposition 2 it follows that $B_{f}(0, r)$ is an O -symmetric convex body. It is easy to check that for any $r>0$ and any constant c we have $\operatorname{vol}\left(B_{f}(0, c r)\right)=c^{n} \operatorname{vol}\left(B_{f}(0, r)\right)$, where $\operatorname{vol}(C)$ denotes the volume of the corresponding convex body C (see e.g. [Si45]).

We now place a natural restriction on gauge functions. A gauge function f, given by oracle access, is a nice gauge function if it satisfies the following property: For some polynomial $p(n), B_{2}\left(0,2^{-p(n)}\right) \subseteq B_{f}(0,1) \subseteq B_{2}\left(0,2^{p(n)}\right)$, i.e. there exists a Euclidean sphere of radius $2^{-p(n)}$ inside the convex body $B_{f}(0,1)$, and $B_{f}(0,1)$ is contained inside a Euclidean sphere of radius $2^{p(n)}$. Note that if f is a nice gauge function and $v \in \mathbb{Q}^{n}$ we have $\operatorname{size}(f(v))=\operatorname{poly}(\mathrm{n}, \operatorname{size}(v))$. For a nice gauge function f we can sample points from convex body $B_{f}(0, r)$ almost uniformly at random in poly $(\operatorname{size}(r), \mathrm{n})$ time using the Dyer-FriezeKannan algorithm [DFK91]. It is easy to check that all l_{p} norms $p \geq 1$ define nice gauge functions. The $i^{\text {th }}$ successive minima of a lattice \mathcal{L} with respect to ℓ_{p} norm is smallest $r>0$ such that $B_{p}(0, r)$ contains at least i linearly independent lattice vectors. It is denoted by $\lambda_{i}^{p}(\mathcal{L})$.
Remarks: In this paper we consider lattice problems with respect to nice gauge functions. Let \mathcal{L} be a lattice with basis $\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$ and f be a nice gauge function. Suppose B is a full rank $n \times n$ matrix with columns $b_{1}, b_{2}, \ldots, b_{n}$. Note that the linear transformation B^{-1} maps lattice \mathcal{L} isomorphically to the standard lattice \mathbb{Z}^{n}. Furthermore, it is easy to see that the set $C=B^{-1}\left(B_{f}(0,1)\right)$ is an O -symmetric convex body. Hence, by Proposition 2 it follows that $C=B_{g}(0,1)$ for some gauge function g. As f is a nice gauge function, it easily follows that g is also a nice gauge function.

Thus, our algorithms that work for nice gauge functions can be stated for the the standard lattice \mathbb{Z}^{n} and a nice gauge function g. However, some of our results hold only for ℓ_{p} norms. Thus, to keep uniformity we allow our algorithms to take arbitrary lattices as input even when the metric is give by a nice gauge function.

3 A Sieving Algorithm for SAP

In this section we present a different analysis of the AKS sieving [AKS01, Re04] applied to the Subspace Avoiding Problem (SAP). Our analysis is quite different from that due to Blömer and Naewe [BN07] and gives us improved running time for computing a $1+\epsilon$ approximate solution.

Recall that an input instance of the subspace avoiding problem (SAP) consists of (\mathcal{L}, M) where $\mathcal{L} \subset \mathbb{Q}^{n}$ is a full rank lattice and $M \subset \mathbb{R}^{n}$ is a subspace of dimension k. The SAP problem is to find a vector $v \in \mathcal{L} \backslash M$ with least norm with respect to a nice gauge function f.

We give an intuitive outline of our approximation algorithm: Our analysis of AKS sieving will use the fact that the sublattice $\mathcal{L} \cap M$ of \mathcal{L} is of rank k. We will use the AKS sieving procedure to argue that we can sample $2^{O(n+k \log (1 / \epsilon))}$ points from some coset of $\mathcal{L} \cap M$ in $2^{O(n+k \log (1 / \epsilon))}$ time. We can then apply a packing argument in the coset (which is only k dimensional) to obtain points in the coset that are close to each other. Then, with a standard argument following the original AKS result [AKS01] we can conclude that their differences will contain a good approximation.

Suppose, without loss of generality, that the input lattice $\mathcal{L} \subseteq \mathbb{R}^{n}$ is n-dimensional given by a basis $\left\{b_{1}, \cdots, b_{n}\right\}$, so that $\mathcal{L}=\sum_{i=1}^{n} \mathbb{Z} \cdot b_{i}$. Let us fix a nice gauge function f and let $v \in \mathcal{L}$ denote a shortest vector in $\mathcal{L} \backslash M$ with respect to gauge function f, i.e. $f(x)$ for $x \in \mathcal{L} \backslash M$ attains minimum value at $x=v$. Let $s=\operatorname{size}(\mathcal{L}, M)$ denote the input size (which is the number of bits for representing the vectors b_{i} and the basis for M). As v is a shortest vector in $\mathcal{L} \backslash M$ and f is a nice gauge function it is quite easy to see that $\operatorname{size}(f(v))$ is bounded by a polynomial in s. Thus, we can scale the lattice \mathcal{L} to ensure that $2 \leq f(v) \leq 3$. More precisely, we can compute polynomially many scaled lattices from \mathcal{L}, so that $2 \leq f(v) \leq 3$ holds for at least one scaled lattice. Thus, we can assume that $2 \leq f(v) \leq 3$ holds for the lattice \mathcal{L}.

We first describe the AKS sieving procedure [AKS01] for any gauge function, analyze its running time and explain its key properties. The following lemma is crucially used in the algorithm.

Lemma 3.[Sieving Procedure] Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be any gauge function. Then there is a sieving procedure that takes as input a finite set of points $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \ldots, \mathbf{v}_{N}\right\} \subseteq B_{f}(0, r)$, and in $N^{O(1)}$ time it outputs a subset of indices $S \subset[N]$ such that $|S| \leq 5^{n}$ and for each $i \in[N]$ there is a $j \in S$ with $f\left(\mathbf{v}_{i}-\mathbf{v}_{j}\right) \leq r / 2$.
Proof. The sieving procedure is exactly as described in Regev's lecture notes [Re04]. The sieving procedure is based on a simple greedy strategy. We start with $S=\varnothing$ and run the following step for all elements $v_{i}, 1 \leq i \leq N$. At the $i^{\text {th }}$ step we consider v_{i}. If $f\left(v_{i}-v_{j}\right)>$ $r / 2$ for all $j \in S$ include i in the set S and increment i. After completion, for all $i \in[N]$
there is a $j \in S$ such that $f\left(v_{i}-v_{j}\right) \leq r / 2$. The bound on $|S|$ follows from a packing argument combined with the fact that $\operatorname{vol}\left(B_{f}(0, c r)\right)=c^{n} \operatorname{vol}\left(B_{f}(0, r)\right)$ for any $r>0$ and a constant $c>0$. More precisely, for any two points $v_{i}, v_{j} \in S$ we have $f\left(v_{i}-v_{j}\right)>r / 2$. Thus, all the convex bodies $B_{f}\left(v_{i}, r / 4\right)$ for $v_{i} \in S$ are mutually disjoint and are contained in $B_{f}(0, r+r / 4)$. Also note that $\operatorname{vol}\left(B_{f}(0, d r)\right)=d^{n} \operatorname{vol}\left(B_{f}(0, r)\right)$ for any constant $d>0$. It follows that $5^{n} \operatorname{vol}\left(B_{f}\left(v_{i}, r / 4\right)\right) \geq \operatorname{vol}\left(B_{f}(0, r+r / 4)\right)$. Hence, $|S| \leq 5^{n}$. The second property of S is guaranteed by the sieving procedure.

Next, our algorithm follows the usual AKS random sampling procedure. Let $R=$ $n \cdot \max _{i}\left\|b_{i}\right\|_{f}$. It is clear that $\operatorname{size}(R)$ is polynomial in s since f is a nice gauge function. Let $B_{f}(0,2)$ denote the f-ball of radius 2 around the origin. Since we have an oracle for membership in $B_{f}(0,2)$ and f is a nice gauge function we can almost uniformly sample from $B_{f}(0,2)$ using the Dyer-Frieze-Kannan algorithm [DFK91]. Let $x_{1}, x_{2}, \cdots, x_{N}$ denote such a random sample, for $N=2^{c \cdot(n+k \log (1 / \epsilon))} \cdot \log R$ where the constant $c>0$ will be suitably chosen. Now, using the lattice \mathcal{L} we can round off the points x_{i}. More precisely, we express $x_{i}=\Sigma_{j} \alpha_{i j} b_{j}$ for rationals $\alpha_{i j}$. Then, from each vector x_{i} we compute the vector $y_{i}=\Sigma_{j} \beta_{i j} b_{j}$, where $0 \leq \beta_{i j}<1$, by adding appropriate integral multiples of the b_{j} 's to the expression for x_{i}. Thus, the points y_{1}, \cdots, y_{N} are in the interior of the fundamental parallelepiped of \mathcal{L}, and each $x_{i}-y_{i} \in \mathcal{L}$. We denote this by $y_{i}=x_{i}(\bmod \mathcal{L})$. We now have the set of N pairs $P=\left\{\left(x_{i}, y_{i}\right) \mid i \in[N]\right\}$, where $x_{i}-y_{i}$ are lattice points. Since y_{i} lie inside the fundamental parallelepiped we have $\left\|y_{i}\right\|_{f} \leq n \cdot \max _{i}\left\|b_{i}\right\|_{f}=R$ for $i=1$ to N.

Now, we apply the AKS sieving procedure in Lemma 3 to the set $\left\{y_{1}, y_{2}, \cdots, y_{N}\right\}$. The result is a subset $S \subset[N]$ of at most 5^{n} indices such that for each $i \in[N]$ there is some $j \in S$ such that $f\left(y_{i}-y_{j}\right) \leq R / 2$. We remove from P all $\left(x_{j}, y_{j}\right)$ for $j \in S$ and replace each remaining $\left(x_{i}, y_{i}\right) \in P$ by a corresponding $\left(x_{i}, y_{i}-\left(y_{j}-x_{j}\right)\right)$, where $j \in S$ is the first index such that $f\left(y_{i}-y_{j}\right) \leq R / 2$. After the sieving round, the set P has the property that for each $\left(x_{i}, z_{i}\right) \in P$ we have $x_{i}-z_{i} \in \mathcal{L}$ and $f\left(x_{i}-z_{i}\right) \leq 4+R / 2$, and P has shrunk in size by at most 5^{n}. We continue with $O(\log R)$ sieving rounds so that we are left with a set P with $N-O(\log R) 5^{n}$ pairs $\left(x_{i}, z_{i}\right)$ such that $x_{i}-z_{i} \in \mathcal{L}$ and $f\left(x_{i}-z_{i}\right) \leq 8$. We can ensure that $|P| \geq 2^{c^{\prime}(n+k \log (1 / \epsilon))}$ for an arbitrary constant c^{\prime} by appropriately choosing constant c. The vectors, $x_{i}-z_{i}$ for $\left(x_{i}, z_{i}\right) \in P$ follows some distribution among lattice points inside $B_{f}(0,8)$. Next, we need following simple proposition.

Proposition 4. Let $\mathcal{L} \subset \mathbb{R}^{n}$ be a rank n lattice, $v \in \mathcal{L}$ such that $2 \leq f(v) \leq 3$ for a nice gauge function f. Consider the convex regions $C=B_{f}(-v, 2) \cap B_{f}(0,2)$ and $C^{\prime}=$ $B_{f}(v, 2) \cap B_{f}(0,2)$. Then $C^{\prime}=C+v$ and $\operatorname{vol}(C)=\operatorname{vol}\left(C^{\prime}\right)=\Omega\left(\frac{\operatorname{vol}\left(B_{f}(0,2)\right)}{2^{O(n)}}\right)$.

Proposition 4 is easy to prove since $B_{f}(-v / 2,1 / 2) \subseteq C, B_{f}(v / 2,1 / 2) \subseteq C^{\prime}$. Note that we have picked x_{1}, \ldots, x_{N} uniformly at random from $B_{f}(0,2)$, where $N=2^{c \cdot(n+k \log (1 / \epsilon))}$. $\log R$. By Proposition 4, the point x_{i} is in C with probability at least $2^{-O(n)}$. Hence by choosing the constant c large enough we can ensure that with high probability there is a subset $Z \subseteq P$ such that $|Z| \geq 2^{c_{1}(n+k \log (1 / \epsilon))}$ for a constant c_{1} and for all $\left(x_{i}, z_{i}\right) \in Z, x_{i} \in C$. We now prove the main theorem of this section.

Theorem 5. Let $\mathcal{L} \subset \mathbb{Q}^{n}$ be a full rank lattice and let $v \in \mathcal{L} \backslash M$ such that $2 \leq f(v) \leq 3$ for a given gauge function f and $f(v) \leq f(x)$ for all $x \in \mathcal{L} \backslash M$. Let $\epsilon>0$ be an arbitrary constant. Then there is a randomized algorithm that in time $2^{O(n+k \log (1 / \epsilon))} \cdot$ poly $(\operatorname{size}(\mathcal{L}))$ computes a set P of pairs $\left(x_{i}, z_{i}\right)$ such that $|P| \geq 2^{c^{\prime} \cdot(n+k \log (1 / \epsilon))}$ for a constant c^{\prime} and $f\left(x_{i}-z_{i}\right) \leq 8$ for all $\left(x_{i}, z_{i}\right) \in P$. Moreover, $z_{i}-x_{i} \in \mathcal{L}$ are such that with probability $1-2^{-O(n)}$ there is a pair of points $\left(x_{i}, z_{i}\right),\left(x_{j}, z_{j}\right) \in P$ such that $v+u=\left(x_{i}-z_{i}\right)-\left(x_{j}-z_{j}\right)$ for a vector $u \in \mathcal{L} \cap M$ with $f(u) \leq \epsilon$.
Proof.
Consider the set P of pairs $\left(x_{i}, z_{i}\right)$, obtained after the AKS sieving as described above, such that $|P| \geq 2^{c^{\prime}(n+k \log (1 / \epsilon))}$, and $f\left(x_{i}-z_{i}\right) \leq 8$ for all $\left(x_{i}, z_{i}\right) \in P$. We know that by choosing c large enough we can ensure that with high probability there is $Z \subseteq P$ such that $|Z| \geq 2^{c_{1}(n+k \log (1 / \epsilon))}$ for any constant c_{1} and for all $\left(x_{i}, z_{i}\right) \in Z, x_{i} \in C$.

Note that $\mathcal{L} \cap M$ is a rank k sublattice of \mathcal{L}. We will now analyze Z using the cosets of the sublattice $\mathcal{L} \cap M$.

Write Z as a partition $Z=\bigcup_{j=1}^{m} Z_{j}$, where for each Z_{j} there is a distinct $\operatorname{coset}(\mathcal{L} \cap M)+$ v_{j} of $\mathcal{L} \cap M$ in \mathcal{L} such that $z_{i}-x_{i} \in(\mathcal{L} \cap M)+v_{j}$ for all $\left(x_{i}, z_{i}\right) \in Z_{j}$. Let $Z_{j}^{\prime}=\left\{z_{i}-x_{i} \mid\right.$ $\left.\left(x_{i}, z_{i}\right) \in Z_{j}\right\}$. Suppose $u_{j} \in Z_{j}^{\prime} \subseteq(\mathcal{L} \cap M)+v_{j}$ for $j=1$ to m.
Claim 6.[Coset sampling] By choosing constant c_{1} large enough we can ensure that there is an index $t, 1 \leq t \leq m$ such that $\left|Z_{t}\right| \geq 2^{c_{2}(n+k \log (1 / \epsilon))}$ for any constant c_{2}.
Proof of Claim Note that u_{i} and u_{j} for $i \neq j$ lie in different cosets of $\mathcal{L} \cap M$. So $u_{i}-u_{j} \notin M$. Since v is a shortest f-vector in $\mathcal{L} \backslash M$ with $2 \leq f(v) \leq 3$, we have $f\left(u_{i}-u_{j}\right) \geq 2$. Hence unit radius f-balls around u_{i} 's are disjoint. Note that $B_{f}\left(u_{i}, 1\right) \subset B_{f}(0,9)$ for $i=1$ to m. Since $\operatorname{vol}\left(B_{f}(0,9)\right) / \operatorname{vol}\left(B_{f}(0,1)\right) \leq 2^{d n}$ for some constant d, we have $m \leq 2^{d n}$. We have $|Z| \geq$ $2^{c_{1}(n+k \log (1 / \epsilon))}$ and Z is partitioned as $Z=\bigcup_{j=1}^{m} Z_{j}$. So it is clear that by choosing c_{1} large enough we can ensure that there is an index $t, 1 \leq t \leq m$ such that $\left|Z_{t}\right| \geq 2^{c_{2}(n+k \log (1 / \epsilon))}$ for any constant c_{2}.

By renumbering the indices assume that $Z_{t}=\left\{\left(x_{1}, z_{1}\right), \ldots,\left(x_{q}, z_{q}\right)\right\}, q \geq 2^{c_{2}(n+k \log (1 / \epsilon))}$. Let $\beta_{i}=z_{i}-x_{i}$ for $\left(x_{i}, z_{i}\right) \in Z_{t}$. Thus, each such β_{i} lies in the same $\operatorname{coset}(\mathcal{L} \cap M)+v_{\ell}$.
Claim 7.[Packing argument] By choosing the constant c_{2} large enough we can ensure that there exists $\left(x_{i}, z_{i}\right),\left(x_{j}, z_{j}\right) \in Z_{t}, i \neq j$ such that $f\left(\beta_{i}-\beta_{j}\right) \leq \epsilon$.
Proof of Claim Suppose for all $\left(x_{i}, z_{i}\right),\left(x_{j}, z_{j}\right) \in Z_{t}, i \neq j f\left(\beta_{i}-\beta_{j}\right) \geq \epsilon$. We also have $f\left(\beta_{i}-\beta_{j}\right) \leq 16$ for $i, j \in[q]$. Let $\gamma_{i}=\beta_{i}-v_{\ell} \in \mathcal{L} \cap M \subset M$ for $i=1$ to q. It is clear that $f\left(\gamma_{i}-\gamma_{j}\right)=f\left(\beta_{i}-\beta_{j}\right)$ for $i, j \in[q]$. Let $\left\{b_{1}, \ldots, b_{k}\right\}$ be an orthonormal basis of M. Consider the linear transformation $T: \mathrm{M} \rightarrow \mathbb{R}^{k}$ such that $T\left(b_{i}\right)=e_{i}$ for $i=1$ to k, where $\left\{e_{1}, e_{2}, \ldots, e_{k}\right\}$ is a standard basis of \mathbb{R}^{k}. Let $\delta_{i}=T\left(\gamma_{i}\right)$ for $i=1$ to q. By standard linear algebra it follows that T preserves distances between points with respect to any norm. In particular, we have $f\left(\gamma_{i}-\gamma_{j}\right)=f\left(\delta_{i}-\delta_{j}\right)$ for $i, j \in[q]$. So we have $\epsilon / 2 \leq f\left(\delta_{i}-\delta_{j}\right) \leq$ 16. As $\delta_{i} \in \mathbb{R}^{k}$ for $i \in[q]$, it follows that k-dimensional balls of radius $\epsilon / 2$ around δ_{i} 's are mutually disjoint. By a packing argument it follows that $\left|Z_{t}\right| \leq \frac{(16+\epsilon / 2)^{k}}{(\epsilon / 2)^{k}}=2^{f(k \log (1 / \epsilon))}$ for a constant f. This is a contradiction since choosing c_{2} large enough we can ensure that $\left|Z_{t}\right| \geq 2^{c_{2}(n+k \log (1 / \epsilon))}>2^{f(k \log (1 / \epsilon))}$.

We now complete the proof with a standard argument from [AKS01, Re04] using a modified distribution.

We have $\left(x_{i}, z_{i}\right),\left(x_{j}, z_{j}\right) \in Z_{t} \subset Z, i \neq j, x_{i}, x_{j} \in C$ such that $f\left(\beta_{i}-\beta_{j}\right) \leq \epsilon$ and $\beta_{i}-$ $\beta_{j} \in \mathcal{L} \cap M$. Now, we apply the argument as explained in Regev's notes [Re04] to reason with a modified distribution of the x_{i}. Note that in the sieving procedure described before Theorem 5 , each x_{i} is picked independently and uniformly at random from $B_{f}(0,2)$. Now, notice that we can replace the original distribution of x_{i} with a modified distribution in which we output x_{i} if it lies in $B_{f}(0,2) \backslash\left(C \cup C^{\prime}\right)$ and if $x_{i} \in C$ it outputs either x_{i} or $x_{i}+$ v with probability $1 / 2$ each. Similarly, if $x_{i} \in C^{\prime}=C+v$ it outputs either x_{i} or $x_{i}-v$ with probability $1 / 2$ each. By Proposition 4 it follows that this modified distribution is also uniform on $B_{f}(0,2)$ (indeed, this distribution is required only for the purpose of analysis). Furthermore, we can replace each x_{i} by the modified distribution just before it is used in the algorithm for the first time. The reason we can do this is because the distribution of y_{i} 's remains same even if we replace x_{i} by the modified distribution because $y_{i}=x_{i}(\bmod \mathcal{L})$ and $v \in \mathcal{L}$. This is explained further in Regev's notes $[\operatorname{Re} 04]$. Now recall that we have $\left(x_{i}, z_{i}\right),\left(x_{j}, z_{j}\right) \in Z$ with $x_{i}, x_{j} \in C$ and $f\left(\beta_{i}-\beta_{j}\right) \leq \epsilon$. Putting it together with the above argument, it follows that with good probability the points $\left(x_{i}, z_{i}\right)$ and $\left(x_{j}+v, z_{j}\right)$ are in the set P, where P is the set of pairs left after the sieving. This is easily seen to imply that with high probability we are likely to see the vector $v+\left(\beta_{i}-\beta_{j}\right)$ as the difference of $z_{i}-x_{i}$ and $z_{j}-x_{j}$ for some two pairs $\left(x_{i}, z_{i}\right),\left(x_{j}, z_{j}\right) \in P$. The theorem now follows since $f\left(\beta_{i}-\beta_{j}\right) \leq \epsilon$.

By choosing M as the 0 -dimensional subspace we get a $2^{O(n)}$ algorithm for SVP with respect to any nice gauge function. As an immediate consequence of Theorem 5 we get a $1+$ ϵ approximation algorithm for SAP problem that runs in time $2^{\mathrm{O}\left(n+k \log \frac{1}{\epsilon}\right)} \cdot \operatorname{poly}(\operatorname{size}(\mathcal{L}, M))$.

Remarks: The $1+\epsilon$ approximation algorithm in [BN07] for SAP has running time $2^{O\left(n \log \frac{1}{\epsilon}\right)}$. $\operatorname{poly}(\operatorname{size}(\mathcal{L}, M)))$. Our algorithm has running time $2^{O\left(n+k \log \frac{1}{\varepsilon}\right)}$ for computing $1+\epsilon$ approximate solution. Put another way, for $k=o(n)$ we get a $2^{O(n)}$ time algorithm for obtaining $1+2^{-n / k}$ approximate solutions to SAP.

There is a crucial difference in our analysis of the AKS sieving and that given in [BN07]. In [BN07] it is shown that with probability $1-2^{-O(n)}$ the sieving procedure outputs a $1+\epsilon$ approximate solution $u \in \mathcal{L} \backslash M$.

On the other hand, we show in Claim 6 that with probability $1-2^{-O(n)}$ the sieving procedure samples $2^{\mathrm{O}(n+k \log (1 / \epsilon)}$ lattice points in some coset of the sublattice $\mathcal{L} \cap M$ in \mathcal{L}. Then we argue that with probability $1-2^{-O(n)}$ the sample contains a lattice point u in $\mathcal{L} \cap$ $M+v$ such that such that $d(u, v)$ is small, for some shortest vector v in $\mathcal{L} \backslash M$. We argue this in Claim 7 by a packing argument in the coset of $\mathcal{L} \cap M$. As $\mathcal{L} \cap M$ has rank k, the packing argument in k dimensions gives the improved running time for our approximation algorithm for the problem.

The fact that the AKS sampling contains many points from the same coset of $\mathcal{L} \cap M$ also plays crucial role in our exact algorithm for SAP shown in Theorem 12.

Corollary 8. Given a rank n lattice \mathcal{L} and a k-dimensional subspace $M \subset \mathbb{R}^{n}$, there is $1+\epsilon$ randomized approximation algorithm for SAP (for any nice gauge function) with running time $2^{O\left(n+k \log \frac{1}{6}\right)} \cdot \operatorname{poly}(\operatorname{size}(\mathcal{L}, M))$.

Proof. The algorithm will examine all $\left(z_{i}-x_{i}\right)-\left(z_{j}-x_{j}\right)$ for $\left(x_{i}, z_{i}\right),\left(x_{j}, z_{j}\right) \in P$ obtained after sieving and output that element in $\mathcal{L} \backslash M$ of minimum f-value. The proof of correctness and running time guarantee follows immediately from Theorem 5.

4 Convex Body Avoiding Problem

In this section we consider a generalization of SAP: given a lattice \mathcal{L} and a convex body C the problem is to find a shortest vector (w.r.t. ℓ_{p} norm) in $\mathcal{L} \backslash C$. We consider convex bodies C that are bounded and O-symmetric. We refer to this problem as the Convex body Avoiding Problem (CAP).

A set $S \subseteq \mathbb{R}^{n}$ is O-symmetric if $x \in S$ if and only if $-x \in S$. Notice that a subspace $M \subseteq \mathbb{R}^{n}$ is convex and O -symmetric (but not bounded).

The input to CAP is the lattice \mathcal{L} and the convex body C, where C is given by a membership oracle. An algorithm can query the oracle for any $x \in \mathbb{R}^{n}$ to test if $x \in C$.

We give an approximation algorithm to solve CAP.
Theorem 9. Given an integer lattice \mathcal{L} of rank n and an O-symmetric convex body C in \mathbb{R}^{n} given by a membership oracle, there is $1+\epsilon$ factor approximation algorithm to solve CAP (w.r.t. any ℓ_{p} norm) with running time $2^{\mathrm{O}(n) \cdot \log (1 / \epsilon)} \cdot \operatorname{poly}(\operatorname{size}(\mathcal{L}))$.

Proof. It suffices to solve the problem for the case when C is n-dimensional. To see this, suppose C is contained in some k-dimensional subspace M of \mathbb{R}^{n}. We can find a basis for M with high probability by sampling vectors from C using the polynomial-time almost uniform sampling algorithm described in [DFK91]. Next, we compute the sublattice $\mathcal{L} \cap M$ and find a $(1+\epsilon)$ approximate solution u for the k-dimensional convex body avoidance for the lattice $\mathcal{L} \cap M$ and C. We also solve the SAP instance (\mathcal{L}, M) and find a $(1+\epsilon)$ approximate solution $v \in \mathcal{L} \backslash M$ using Theorem 5. The shorter of vectors u and v is clearly a $(1+\epsilon)$ approximate solution for the input CAP instance.

Thus, we can assume C is n-dimensional. Let v be a shortest vector in $\mathcal{L} \backslash C$ which, as before, we can assume satisfies $2 \leq\|v\|_{p} \leq 3$ by considering polynomially many scalings of the lattice and the convex body. As in Theorem 5, we pick random points x_{1}, \cdots, x_{N} from $B_{p}(0,2)$ for $N=2^{c n \log (1 / \epsilon)} \cdot \operatorname{poly}(s)$. The constant $c>0$ will be suitably chosen later. Let $y_{i}=x_{i}(\bmod \mathcal{L})$ for $i=1$ to N. We apply several rounds of the AKS sieving on the set $\left\{\left(x_{1}, y_{1}\right), \cdots,\left(x_{N}, y_{N}\right)\right\}$ until we are left with a set S of $2^{c_{1} n \log (1 / \epsilon)}$ pairs $\left(x_{i}, z_{i}\right)$ such that $\left\|x_{i}-z_{i}\right\|_{p} \leq 8$. From proposition 4 it follows easily that with good probability we have $Z \subseteq S$ such that $|Z| \geq 2^{c_{2} n \log (1 / \epsilon)}$ and for all $\left(x_{i}, z_{i}\right) \in Z$ we have $x_{i} \in D \cup D^{\prime}$ where $D=B_{p}(0,2) \cap B_{p}(-v, 2)$ and $D^{\prime}=B_{p}(0,2) \cap B_{p}(v, 2)$. Note that the the constant c_{2} can be chosen as large as we like by appropriate choice of c. Let $Z^{\prime}=\left\{z_{i}-x_{i} \mid\left(x_{i}, z_{i}\right) \in Z\right\}$. Now consider ℓ_{p} ball of radius $\epsilon / 2$ centered at each lattice point $\beta \in Z^{\prime}$. It is clear that for all $\beta \in$ $Z^{\prime}, B_{p}(\beta, \epsilon / 2) \subseteq B_{p}(0,8+\epsilon / 2)$. If for all $\beta \in Z^{\prime} \ell_{p}$ balls $B_{p}(\beta, \epsilon / 2)$ are mutually disjoint, by packing argument we get $\left|Z^{\prime}\right| \leq \frac{(8+\epsilon / 2)^{n}}{(\epsilon / 2)^{n}}=2^{c^{\prime} n \log (1 / \epsilon)}$ for a constant c^{\prime}. We choose constant
c appropriately to ensure that $c_{2}>c^{\prime}$. This implies that there exists tuples $\left(x_{i}, z_{i}\right),\left(x_{j}, z_{j}\right) \in Z$ such that $\left\|\beta_{i}-\beta_{j}\right\| \leq \epsilon$, where $\beta_{i}=z_{i}-x_{i}$ and $\beta_{j}=z_{j}-x_{j}$. Let $\beta=\beta_{i}-\beta_{j}$. We claim that it is not possible that both $\beta+v, \beta-v$ lie inside the convex body C. Because this implies $v-\beta \in C$ since C is O-symmetric. Therefore $v=\frac{(\beta+v)+(v-\beta)}{2} \in C$, which contradicts with assumption $v \notin C$. So without loss of generality assume that $\beta+v \notin C$. Note that without loss of generality we can also assume that $x_{i} \in D^{\prime}$ with good probability. Now, we apply the argument as explained in $[\operatorname{Re} 04]$ to reason with a modified distribution of the x_{i}. As $x_{i} \in D^{\prime}$ we can replace x_{i} by $x_{i}-v$. It is easy to see that after sieving with good probability there exists tuples $\left(x_{i}, z_{i}\right),\left(x_{j}, z_{j}\right) \in S$ such that $r_{i, j}=\left(z_{i}-x_{i}\right)-\left(z_{j}-x_{j}\right)=v+\beta_{i}-\beta_{j}$. Hence, $r_{i, j}=v+\beta \notin C$ and, clearly, $\left\|r_{i, j}\right\|_{p} \leq(1+\epsilon)\|v\|_{p}$ since $\left\|\beta_{i}-\beta_{j}\right\|_{p} \leq \epsilon$. It is easy to see that the algorithm runs in time $2^{O(n \log (1 / \epsilon))} \operatorname{poly}(\operatorname{size}(\mathcal{L}))$. This completes the proof of the theorem.

5 Applications

The results of this section are essentially applications of ideas from Theorem 5 and Section 3.
First we describe an exact algorithm for SAP for ℓ_{p} norms. We prove our result for full rank lattices, but it is easy to see that the result holds for general lattices as well. Let $\mathcal{L} \subset \mathbb{Q}^{n}$ be a full rank integer lattice given by a basis $\left\{b_{1}, \cdots, b_{n}\right\}$ and let $M \subseteq \mathbb{R}^{n}$ is a subspace of dimension $k<n$. For any ℓ_{p} norm we give a randomized $2^{O(n+k \log k)}$ poly (s) time algorithm to find a shortest vector in $\mathcal{L} \backslash M$, where $s=\operatorname{size}(\mathcal{L}, M)$. Our exact algorithm uses the same sieving procedure and analysis described in the proof of Theorem 5 in Section 3. As before, by considering polynomially many scalings of the lattice, we can assume that a shortest vector $v \in \mathcal{L} \backslash M$ satisfies $2 \leq\|v\|_{p} \leq 3$. We now describe the algorithm.

1. Let $N=2^{c n} \log \left(n_{\text {.max }}\| \|_{i} \|_{p}\right)$. Pick $x_{1}, x_{2}, \cdots, x_{N}$ uniformly at random from $B_{p}(0,2)$.
2. Let $y_{i}=x_{i}(\bmod \mathcal{L})$. Apply AKS sieving to the set $\left\{\left(x_{1}, y_{1}\right), \cdots,\left(x_{N}, y_{N}\right)\right\}$ as described in Section 3 until $\left\|x_{i}-z_{i}\right\|_{p} \leq 8$ for each pair $\left(x_{i}, z_{i}\right)$ left after the sieving.
3. Let $P=\left\{\left(x_{i}, z_{i}\right) \mid i \in T\right\}, T \subset[N]$ be the set of tuples left after the sieving procedure. For all $i, j \in T$ compute lattice points $v_{i, j}=\left(z_{i}-x_{i}\right)-\left(z_{j}-x_{j}\right)$.
4. Let $w_{i, j}$ be a closest lattice vector to $v_{i, j}$ in the rank k lattice $\mathcal{L} \cap M$ (found using Kannan's exact CVP algorithm [Kan87]), and let $r_{i, j}=v_{i, j}-w_{i, j}$. Output a vector of least nonzero ℓ_{p} norm among all the vectors $r_{i, j}$ for $i, j \in T$.
First we prove the correctness of the algorithm.
LEMMA 10. For an appropriate choice of the constant c in the algorithm, it outputs a shortest nonzero vector in $\mathcal{L} \backslash M$ with respect to ℓ_{p} norm.
Proof. Let v be a shortest vector in $\mathcal{L} \backslash M$. Consider the set of pairs $P=\left\{\left(x_{i}, z_{i}\right) \mid i \in T\right\}, T \subset$ $[N]$, that remains after the sieving procedure in Step 3 of the algorithm. If we choose ϵ as a constant in Theorem 5, it follows that there is a constant c such that with probability $1-2^{-O(n)}$ there exists $\left(x_{i}, z_{i}\right),\left(x_{j}, z_{j}\right) \in P$ such that $v+u=\beta_{i}-\beta_{j}$ for some $u \in \mathcal{L} \cap M$ where $\beta_{i}=z_{i}-x_{i}$ and $\beta_{j}=z_{j}-x_{j}$. Hence, in Step 3 of the algorithm we have some $v_{i, j}=v+u$ for some vector $u \in \mathcal{L} \cap M$, i.e. $v_{i, j}$ and v lie in same coset of $\mathcal{L} \cap M$.

Let $w_{i, j} \in \mathcal{L} \cap M$ be a closest vector to $v_{i, j}$. So we have $d\left(v_{i, j}, w_{i, j}\right) \leq d\left(v_{i, j}, u\right)=\|v\|_{p}$, i.e. $\left\|v_{i, j}-w_{i, j}\right\|_{p} \leq\|v\|_{p}$. But since we have $v_{i, j} \notin \mathcal{L} \cap M$ and $w_{i, j} \in \mathcal{L} \cap M$ clearly $v_{i, j}-w_{i, j} \notin$
$\mathcal{L} \cap M$ and since v is a shortest vector in $\mathcal{L} \backslash M$, this implies $\left\|v_{i, j}-w_{i, j}\right\|_{p}=\|v\|_{p}$. So with probability $1-2^{-O(n)}$ the algorithm will output (in Step 4) a vector $r_{i, j}$ with $\left\|r_{i, j}\right\|_{p}=\|v\|_{p}$. This proves the correctness of the algorithm.

Next we argue that the running time of the algorithm is $2^{O(n+k \log k)}$. poly(s) where s is the input size. In Step 1 of the algorithm we are sampling $N=2^{O(n)}$ points from $B_{p}(0,2)$, a ball of radius 2 with respect to l_{p} norm. Since $B_{p}(0,2)$ is a convex body, the task can be accomplished using Dyer-Frieze-Kannan algorithm [DFK91] in time $2^{\mathrm{O}(n)} \cdot$ poly(s). It easily follows that the sieving procedure in Step 2 can be performed in $2^{\mathrm{O}(n)}$ time. Note that $\mathcal{L} \cap M$ is a rank k lattice and a basis for it can be computed efficiently. We need the following easy lemma from [Mi08].

Lemma 11.[Mi08, Lemma 1] There is a polynomial-time algorithm that takes as input a lattice $\mathcal{L} \subset \mathbb{Q}^{n}$ and a subspace $M \subset \mathbb{R}^{n}$ of dimension $k<n$ outputs a basis for rank k lattice $\mathcal{L} \cap M$.

From the above lemma it is clear that a basis for $\mathcal{L} \cap M$ can be efficiently computed in polynomial time. In Step 4 of the algorithm we are solving $2^{\mathrm{O}(n)}$ many instances of CVP for the rank k lattice $\mathcal{L} \cap M$. For $i, j \in S$ a closest vector to $v_{i, j}$ in the rank k lattice $\mathcal{L} \cap$ M can be computed in $2^{O(k \log k)}$ time using Kannan's algorithm for CVP [Kan87]. Hence the Step 4 takes $2^{\mathrm{O}(n+k \log k)}$ time. Therefore the overall running time of the algorithm is $2^{O(n+k \log k)} \cdot p o l y(s)$. Note that by repeating above algorithm $2^{O(n)}$ times we can make the success probability of the algorithm exponentially close to 1 .

Theorem 12. Given a full rank lattice $\mathcal{L} \subset \mathbb{Q}^{n}$ and a subspace $M \subseteq \mathbb{R}^{n}$ of dimension $k<n$, There is a randomized algorithm to finds $v \in \mathcal{L} \backslash M$ with least possible l_{p} norm. The running time of the algorithm is $2^{\mathrm{O}(n+k \log k)}$ times a polynomial in the input size and it succeeds with probability $1-2^{-c n}$ for an arbitrary constant c.

Blömer and Naewe [BN07] gave $2^{\mathrm{O}(n)}$ time $1+\epsilon$ factor approximation algorithms to solve the SMP and SIVP problems. As a simple consequence of Theorem 12 we get a $2^{\mathrm{O}(n)}$ time randomized algorithm to "partially" solve SMP: we can compute the first $O\left(\frac{n}{\log n}\right)$ successive minima in $2^{\mathrm{O}(n)}$ time. More precisely, we can compute a set of i linearly independent vectors $\left\{v_{1}, v_{2}, \ldots, v_{i}\right\} \subset \mathcal{L}$ such that $\left\|v_{j}\right\|_{p}=\lambda_{j}^{p}(\mathcal{L})$ for $j=1$ to i if i is $O\left(\frac{n}{\log n}\right)$.

Given a lattice \mathcal{L}, let $M=0 \subset \mathbb{R}^{n}$ be the zero-dimensional subspace in \mathbb{R}^{n} and consider the SAP instance (\mathcal{L}, M). Clearly, v_{1} is a shortest vector in $\mathcal{L} \backslash M$. Hence, by Theorem 12 we can compute v_{1} in $2^{O(n)}$ time. Now, inductively assume that we have computed linearly independent vectors $v_{1}, v_{2}, \ldots, v_{k} \in \mathcal{L}$ such that $\left\|v_{j}\right\|_{p}=\lambda_{j}^{p}(\mathcal{L})$. Consider the instance (\mathcal{L}, M) of SAP where M is the space generated by v_{1}, \ldots, v_{k} and compute $v \in \mathcal{L} \backslash M$ using Theorem 12 in time $2^{O(n+k \log k)}$. It is clear that $\|v\|_{p}=\lambda_{k+1}^{p}(\mathcal{L})$ and as $v \notin M$ the vectors $v_{1}, v_{2}, \ldots, v_{k}, v$ are linearly independent. If k is $O\left(\frac{n}{\log n}\right)$ it is clear that algorithm takes $2^{O(n)}$ time. This proves Corollary 13.

Corollary 13. Given a full rank lattice $\mathcal{L} \subset \mathbb{Q}^{n}$ and a positive integer $i \leq \frac{c n}{\log n}$ for a constant c, there is a randomized algorithm with running time $2^{O(n)} \cdot \operatorname{poly}(\operatorname{size}(\mathcal{L}))$ to
compute linearly independent vectors $v_{1}, v_{2}, \ldots, v_{i} \in \mathcal{L}$ such that $\left\|v_{j}\right\|_{p}=\lambda_{j}^{p}(\mathcal{L})$ for $j=1$ to i.

The CVP problem is polynomial-time reducible to SAP, as noted in [BN07]. Micciancio [Mi08] has shown that CVP, SAP and SMP are all polynomial-time equivalent. Our algorithm computes $v \in \mathcal{L} \backslash M$ with least norm by solving $2^{O(n)}$ instances of CVP. We have basically given a randomized $2^{\mathrm{O}(n)}$ time Turing reduction from SAP to CVP. An interesting property of our reduction is that we are solving instance (\mathcal{L}, M) of SAP by solving $2^{O(n)}$ many CVP instances $(\mathcal{L} \cap M, v)$ where $\mathcal{L} \cap M$ is a rank k lattice, where k is dimension of M. In contrast, for the CVP instance (N, v) produced by the SAP to CVP reduction in [BN07] the lattice N has rank $O(n)$.

As a consequence of this property of our reduction we obtain Corollary 14 which states that it suffices to look for a $2^{\mathrm{O}(n)}$ randomized exact algorithm for CVP that can access all successive minimas of the input lattice.
Corollary 14. Suppose for all m there is a $2^{O(m)}$ randomized exact algorithm for CVP that takes as input a CVP instance (M, v) where M is full rank lattice of rank m and $v \in \mathbb{R}^{m}$ (along with the extra input $v_{i} \in M$ such that $\left|v_{i}\right|_{p}=\lambda_{i}^{p}(M)$ for $i=1$ to m where $\lambda_{i}^{p}(M)$ is $i^{\text {th }}$ successive minima in M). Then, in fact, there is a $2^{\mathrm{O}(n)}$ randomized exact algorithm for solving CVP on any rank n lattice.
Proof. By [Mi08], CVP is polynomial-time equivalent to SMP (the successive minima problem). Consider the full rank lattice $\mathcal{L} \subset \mathbb{Q}^{n}$ as input to SMP. It suffices to compute linearly independent vectors $v_{1}, \ldots, v_{n} \in \mathcal{L}$ with $\left\|v_{i}\right\|_{p}=\lambda_{i}^{p}(\mathcal{L})$ for $i=1$ to n in $2^{O(n)}$ time. We proceed as in the proof of Corollary 13. Inductively assume that we have computed linearly independent vectors $v_{1}, \ldots, v_{k} \in \mathcal{L}$ with $\left\|v_{i}\right\|_{p}=\lambda_{i}^{p}(\mathcal{L})$. Let M be the space generated by v_{1}, \ldots, v_{k}. As in proof of Theorem 12 we can solve the SAP instance (\mathcal{L}, M) by solving $2^{O(n)}$ many instances of CVP $\left(\mathcal{L} \cap M, v^{\prime}\right)$. Note that $\mathcal{L} \cap M$ is rank k lattice and it is clear that $\left\|v_{i}\right\|_{p} \lambda_{i}^{p}(\mathcal{L} \cap M)$ for $i=1$ to k. Hence we can solve these instances in $2^{O(n)}$ time (although $\mathcal{L} \cap M$ is not full rank lattice, but it is not difficult to convert all these instances of CVP to full rank by applying a suitable linear transformation). This takes time $2^{\mathrm{O}(n+k)}$ which is at most $2^{O(n)}$. Hence, it is clear that we can compute linearly independent vectors $v_{1}, \ldots, v_{n} \in \mathcal{L}$ such that $\left\|v_{i}\right\|_{p}=\lambda_{i}^{p}(\mathcal{L})$ in time $n \cdot 2^{O(n)}$.

In the next corollary we give a $2^{O(n)}$ time algorithm to solve certain CVP instances (\mathcal{L}, v) for any ℓ_{p} norm. We prove the result only for ℓ_{2} norm and it is easy to generalize it for general ℓ_{p} norms. Let $\lambda_{i}(\mathcal{L})$ denote i th successive minima of the lattice \mathcal{L} with respect to ℓ_{2} norm.
Corollary 15. Let (\mathcal{L}, v) be a CVP instance such that \mathcal{L} is full rank with the promise that $d(v, \mathcal{L})<\sqrt{3} / 2 \lambda_{t}(\mathcal{L}), t \leq \frac{c n}{\log n}$. Then there is a $2^{\mathrm{O}(n)} \cdot \operatorname{poly}(\operatorname{size}(\mathcal{L}))$ time randomized algorithm that solves such a CVP instance exactly.

Proof. By Corollary 13 we first compute $\lambda_{t}(\mathcal{L})$. We now use ideas from Kannan's CVP to SVP reduction [Kan87]. Let $b_{1}, b_{2}, \cdots, b_{n}$ be a basis for \mathcal{L}. We obtain new vectors $c_{i} \in \mathbb{Q}^{n+1}$ for $i=1$ to n by letting $c_{i}^{T}=\left(b_{i}^{T}, 0\right)$. Likewise, define $u \in \mathbb{Q}^{n+1}$ as $u^{T}=\left(v^{T}, \lambda_{t} / 2\right)$. Let \mathcal{M} be the lattice generated by the $n+1$ vectors $u, c_{1}, c_{2}, \cdots c_{n}$. Compute the vectors $v_{j} \in \mathcal{M}$
such that $\left\|v_{j}\right\|_{2}=\lambda_{j}(\mathcal{M})$ for $j=1$ to t using Corollary 13 in time $2^{O(n)} \cdot \operatorname{poly}(\operatorname{size}(\mathcal{L}))$. Write vectors v_{j} as $v_{j}=u_{j}+\alpha_{j} u, u_{j} \in \mathcal{L}\left(c_{1}, \cdots, c_{n}\right)$ and $\alpha_{j} \in \mathbb{Z}$. Clearly, $\left|\alpha_{j}\right| \leq 1$ since u has $\lambda_{t} / 2$ as its $(n+1)^{\text {th }}$ entry. As $d(v, \mathcal{L})<\sqrt{3} / 2 \lambda_{t}(\mathcal{L})$ we have $d(u, \mathcal{M})<\lambda_{t}(\mathcal{L})$. Hence, there is at least one index $i, 1 \leq i \leq t$ such that $\left|\alpha_{i}\right|=1$. Consider the set $S=\left\{u_{i} \mid 1 \leq i \leq\right.$ $\left.t,\left|\alpha_{i}\right|=1\right\}$ and let u_{j} be the shortest vector in S. Writing $u_{j}=\left(w_{j}^{T}, 0\right)$, it is clear that the vector $-w_{j} \in \mathcal{L}$ is closest vector to v if $\alpha_{j}=1$ and w_{j} is a closest vector to v if $\alpha_{j}=-1$.

References

[AKS01] M. Ajtai, R. Kumar, D. Sivakumar, A sieve algorithm for the shortest lattice vector. In Proceedings of the 30th Annual ACM Symposium on Theory of Computing, 266-275, 2001.
[AKS02] M. Ajtai, R. Kumar, D. Sivakumar, Sampling short lattice vectors and the closest lattice vector problem. In Proceedings of the 17th IEEE Annual Conference on Computational Complexity-CCC, 53-57, 2002.
[Bl00] J. Blömer, Closest vectors, successive minima, and dual HKZ-bases of lattices. In Proceedings of th 17th ICALP, Lecture Notes in Computer Science 1853, 248-259, Springer, 2000.
[BN07] J. BlöMER, S. NAEWE Sampling Methods for Shortest Vectors, Closest Vectors and Successive Minima of lattices. In Proceedings of ICALP, 65-77, 2007.
[DFK91] M. Dyer, A. Frieze, R. Kannan A random polynomial time algorithm for approximating the volume of convex bodies. Journal of the ACM, 38(1):1-17, 1991.
[Kan87] R. Kannan Minkowski's convex body theorem and integer programing. Mathematics of Operational Rearch ,12(3):415-440, 1987.
[LLL82] A. K. Lenstra, H. W. Lenstra, Jr. and L. Lovasz, Factoring Polynomials with Rational Coefficients, Mathematische Annalen, 261:515-534, 1982.
[MG02] D. Micciancio, S. Goldwasser, Complexity of Lattice Problems. A Cryptographic Perspective, Kluwer Academic Publishers, 2002.
[Mi08] D. MicCIANCIO, Efficient reductions among lattice problems,SODA,2008,84-93
[Re04] O. Regev, Lecture Notes - Lattices in Computer Science, lecture 8. Available at the website: http:/ /www.cs.tau.ac.il/ odedr/teaching/lattices_fall_2004/index.html.
[Si45] C. L. Siegel Lectures on Geometry of Numbers. Springer-Verlag publishing company, 1988.

