
Foundations of Software Technology and Theoretical Computer Science (Bangalore) 2008.
Editors: R. Hariharan, M. Mukund, V. Vinay; pp 13-24

Sound Lemma Generation for Proving
Inductive Validity of Equations

Takahito Aoto
RIEC, Tohoku University

aoto@nue.riec.tohoku.ac.jp

ABSTRACT. In many automated methods for proving inductive theorems, finding a suitable gener-
alization of a conjecture is a key for the success of proof attempts. On the other hand, an obtained
generalized conjecture may not be a theorem, and in this case hopeless proof attempts for the in-
correct conjecture are made, which is against the success and efficiency of theorem proving. Urso
and Kounalis (2004) proposed a generalization method for proving inductive validity of equations,
called sound generalization, that avoids such an over-generalization. Their method guarantees that
if the original conjecture is an inductive theorem then so is the obtained generalization. In this pa-
per, we revise and extend their method. We restore a condition on one of the characteristic argument
positions imposed in their previous paper and show that otherwise there exists a counterexample to
their main theorem. We also relax a condition imposed in their framework and add some flexibilities
to some of other characteristic argument positions so as to enlarge the scope of the technique.

1 Introduction

Reasoning on data structures or recursively defined domains is very common in formal

treatments of programs such as program verification and program transformation. Such a

reasoning often needs highly use of induction, that is, the properties of interest are not only

(general) theorems which hold in all models of the theory but inductive theoremswhich hold

only in a particular model, the initial model of the theory.

Although automated reasoning of inductive theorems has been investigated in many

years, comparing to the high degree of automation on automated proving of (general) the-

orems, automated proving of inductive theorems is still considered as a very challenging

problem [8]. Many approaches to automated proving of inductive theorems are known: ex-

plicit induction with sophisticated heuristics and/or decision procedures [4, 5, 6, 11, 13, 17],

implicit induction methods such as inductionless induction/coverset induction/rewriting

induction [3, 7, 9, 14, 16, 19].

In all these approaches, it is commonly understood that an introduction of suitable

lemmas is an important key for the success of proof attempts. Thus techniques for finding

suitable lemmas in the course of proof attempts have been investigated [12, 15, 18, 21, 22].

Among them, one of the most basic methods is generalization—replacing some of equivalent

subterms of the conjecture by a fresh variable. Proving generalized conjecture is often easier

than the original conjecture because generalization often suppress the complexity at the in-

duction step and sometimes makes another induction scheme possible. On the other hand,

the generalized conjecture may not be a theorem any more—this phenomenon is often ref-

ereed to as over-generalization. Because hopeless proof attempts for the incorrect conjecture

is against the success and efficiency of theorem proving, any over-generalization is always

better to be avoided.
c© Takahito Aoto; licensed under Creative Commons License-NC-ND

FSTTCS 2008
IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science
http://drops.dagstuhl.de/opus/volltexte/2008/1737

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62913705?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

14 SOUND LEMMA GENERATION

Urso and Kounalis [21] proposed a generalization method called sound generalization,

which avoid such an over-generalization in automated inductive theorem proving of equa-

tions. Their method is sound in the sense it guarantees that if the original conjecture is an

inductive theorem then so is the obtained generalization. Thus the original conjecture can

be safely replaced by the obtained generalization if the criteria is satisfied. However, the

paper [21] contains an incorrect proof and, in fact, there exists a counterexample to their

main theorem.

Example 1 (counterexample) Let S = {Nat}, F = { plusNat×Nat→Nat, fNat→Nat, sNat→Nat,

0Nat } and

R =

plus(0, y) → y

plus(s(x), y) → s(plus(x, y))
f(0) → s(s(0))
f(s(x)) → s(s(x))

Then R is a monomorphic TRS and the argument 1 is a downward position of f [21]. In a mathe-

matical notation, f is a function f like this:

f (x) =

{

2 if x = 0

x + 1 if x > 0

Let s ≡ s(f(plus(x, s(0)))), t ≡ f(s(plus(x, s(0)))) and consider a conjecture s
.
= t, i.e.

s(f(plus(x, s(0))))
.
= f(s(plus(x, s(0))))

Then clearly this is an inductive theorem (on natural numbers), since we have f (x + 1) + 1 =
(x + 2) + 1 = f (x + 2). Now let us try a generalization of this conjecture based on the original

sound generalization [21]. We have 1.1.1 = BP(s) and 1.1.1 = BP(t) and thus 1.1 is a bottom path

of s and t. Since bot(s, 1.1) ≡ plus(x, s(0)) ≡ bot(t, 1.1) and s/1.1. ≡ plus(x, s(0)) ≡ t/1.1, the

generalization at 1.1 in s and at 1.1 in t is possible. Hence we obtain a generalized conjecture

s(f(y))
.
= f(s(y))

However, this is not an inductive theorem since s(f(0)) →R s(s(s(0))) and f(s(0)) →R s(s(0)).
Therefore, this generalization is not sound contrary to the Theorem 37 of [21].

The purpose of this paper is to correct and extend the sound generalization proposed in

[21]. In the sound generalization, generalizable subterms are computed based on five types

of argument positions of functions—namely, reflective argument, downward position, up-

ward position, down-contextual position, and up-contextual position when the term rewrit-

ing system is monomorphic. We clarify that the notion of downward position should be

weakened as in their previous paper [20] that proposes induction on term partition, other-

wise there is a counterexample (as presented above) and that the notion of down-contextual

and up-contextual position can be enlarged so that more flexible rewrite rules are allowed

for functions to have such positions. We relax the definition of monomorphic signature

and localize the monomorphic and left-linearity conditions so as to enlarge the scope of the

sound generalization.

TAKAHITO AOTO FSTTCS 2008 15

The rest of the paper is organized as follows. After fixing basic notation (Section 2), we

introduce a relaxed definition of monomorphic signature and revised definitions of argu-

ment positions and prove the characterization lemmas for these argument positions (Sec-

tion 3). The term partition and sound generalization techniques are presented in Section 4.

Section 5 concludes.

2 Preliminaries

We assume familiarity with basic notations on (many-sorted) term rewriting ([2, 10]).

Let S be a set of sorts and F be a set of S-sorted function symbols. We assume there is

a function from F to S∗ × S , denoted by sort. For f ∈ F , let sort(f) = 〈τ1 · · · τn, τ0〉. Then
〈τ1 · · · τn, τ0〉 is called the sort of f and denoted by τ1 × · · · × τn → τ0. If n = 0, we write

sort(f) = τ and f is called a constant of sort τ.

Let Vτ be the set of variables of sort τ ∈ S . We assume there is a countably infinite set

Vτ of variables for each τ ∈ S . We denote by V the set
⋃

τ∈S V
τ. The set T(F ,V)τ of terms

of sort τ ∈ S over F ,V is defined inductively as: (1) Vτ ⊆ T(F ,V)τ; (2) if f ∈ F , sort(f) =
τ1 × · · · × τn → τ0 (n ≥ 0), ti ∈ T(F ,V)τi for 1 ≤ i ≤ n, then f (t1, . . . , tn) ∈ T(F ,V)τ0 . We

denote by T(F ,V) the set
⋃

τ∈S T(F ,V)τ. We write tτ if t ∈ T(F ,V)τ. The set of variables

contained in a term t is denoted by V(t). We use ≡ to denote the syntactical equality.

A position is a (possibly empty) sequence of positive integers. The empty sequence is

denoted by ǫ and the concatenation of positions p and q is by p.q. The set Pos(t) of positions
(or occurrence) in a term t and the subterm t/p of t at the position p are recursively defined

as follows: for t ∈ V, Pos(t) = {ǫ} and t/ǫ = t; for t ≡ f (t1, . . . , tn), Pos(t) = {ǫ} ∪
⋃

1≤i≤n{i.p | p ∈ Pos(ti)}, t/ǫ = t, and t/i.p = ti/p. If p ∈ Pos(t) and sort(t/p) = sort(s),
we write t[s]p the term obtained from t by replacing the subterm with s at the position p.

A variable x ∈ V(t) is said to have a linear variable occurrence in t if there exists a unique

p ∈ Pos(t) such that x ≡ t/p. The prefix ordering ≤ on positions are defined as p ≤ q iff

q = p.r for some position r. We write p | q if neither p ≤ q nor q ≤ p hold. A set of position

P is said to be prefix-closed if p ∈ P and q ≤ p imply q ∈ P. The function symbol that occurs

in t at a position p ∈ Pos(t) is denoted by t(p). In particular, the root symbol of a term t is

t(ǫ).

Suppose �
τ is a constant of sort τ and {�τ | τ ∈ S}∩F = ∅. A context is an element in

T(F ∪ {�τ | τ ∈ S},V). The special constants �
τ are called holes. If the holes occurring in a

context C are �
τ1 , . . . ,�τn from left to right and t1, . . . , tn are terms of sorts τ1, . . . , τn, respec-

tively, then we denote by C[t1, . . . , tn] the term obtained by replacing the holes �
τ1 , . . . ,�τn

with the terms t1, . . . , tn. The superscript of holes is often omitted if no confusion arises. For

a position p, we write C[u]p if C/p ≡ �.

A map σ from V to T(F ,V) is called a substitution if (1) σ preserves sort, i.e. sort(x) =
sort(σ(x)) and (2) the domain of σ is finite, where the domain of σ is given by dom(σ) =
{x ∈ V | σ(x) 6≡ x}. A substitution σ such that dom(σ) = {x1, . . . , xn} and σ(xi) ≡ ti
(1 ≤ i ≤ n) is also written as {x1 := t1, . . . , xn := tn}. We identify the substitution σ and its

homomorphic extension. A term σ(t) is called an instance of the term t; σ(t) is also written

as tσ.

A pair 〈l, r〉 of terms l, r satisfying conditions (1) l(ǫ) ∈ F and (2) V(r) ⊆ V(l) (3) sort(l) =

16 SOUND LEMMA GENERATION

sort(r) is said to be a rewrite rule. A rewrite rule 〈l, r〉 is denoted by l → r. A tuple 〈S ,F ,R〉
is a term rewriting system (TRS). If no confusion arises, 〈S ,F ,R〉 is abbreviated asR. If there

exist a position p, a substitution σ, and a rewrite rule l → r ∈ R such that s/p ≡ lσ and

t ≡ s[rσ]p, we write s →R t. We call s →R t a rewrite step, p a redex occurrence, and→R the

rewrite relation of the TRS R. The reflexive transitive closure and equivalence closure of

→R are denoted by
∗
→R and

∗
↔R, respectively. A TRS R is terminating if→R is noetherian

i.e. there is no infinite sequence t0 →R t1 →R · · ·; is confluent if
∗
←R ◦

∗
→R ⊆

∗
→R ◦

∗
←R. A

term is said to be normal if there exists no s such that t →R s. Any normal term s such that

t
∗
→R s is called a normal form of t. One can easily show that if a TRS R is terminating and

confluent, any term s has a unique normal form; the normal form of s is denoted by s↓R, or
simply by s↓ if no confusion arises.

The set of defined function symbols is given by DR = {l(ǫ) | l → r ∈ R} and the set of

constructor symbols by CR = F \ DR. The set of defined symbols appearing in a term t is

denoted by DR(t). If R is obvious from its context, we omit the subscript R from DR, CR.
Terms in T(C,V) are said to be constructor terms.

An equation l
.
= r is a pair 〈l, r〉 of terms of the same sort. When we write l

.
= r,

however, we do not distinguish 〈l, r〉 and 〈r, l〉. A term t is said to be ground if V(t) = ∅.

The set of ground terms is denoted by T(F). If tσ ∈ T(F), tσ is called a ground instance

of t. The ground instance of an equation is defined analogously. A ground substitution is a

substitution σg such that σg(x) ∈ T(F) for any x ∈ dom(σg). Without loss of generality, we

assume that tσg is ground (i.e. V(t) ⊆ dom(σg)) when we speak of an instance tσg of t by a

ground substitution σg; and so for ground instances of equations. An inductive theorem of a

TRS R is an equation that is valid on T(F), i.e. s
.
= t is an inductive theorem if sσg

∗
↔R tσg

holds for any ground instance sσg
.
= tσg. We write R ⊢ind s

.
= t if s

.
= t is an inductive

theorem. A TRS R is said to be sufficiently complete if for any ground term tg ∈ T(F), there

exists a constructor ground term sg ∈ T(C) such that tg
∗
↔R sg. One can easily show that

if the TRS is sufficiently complete, terminating, and confluent then the normal form of any

ground term is a constructor term.

Throughout this paper, we only deal with the TRSs that are sufficiently complete, terminating,

and confluent.

3 Characterization of Monomorphic Equations

In this section, we introduce a relaxed definition of monomorphic signature and revised

definitions of argument positions—reflective argument position, downward and upward

argument positions, and contextual positions—and present lemmas that characterize these

positions.

The notion of monomorphic signature is introduced by Urso and Kounalis [20, 21]. We

here generalize the notion to monomorphic sorts, terms, etc.

DEFINITION 1.[monomorphic sort]

1. A sort τ is said to bemonomorphic if (i) there is only one constructor constant of the sort
τ (denoted by ⊥τ), (ii) for each non-constant constructor g ∈ C of sort τ1 × · · · × τn →
τ, there exists a unique 1 ≤ i ≤ n such that τi = τ; such i is called the reflective

TAKAHITO AOTO FSTTCS 2008 17

argument position of g and denoted by RA(g).
2. A variable, term, equation, and rule are said to bemonomorphic if its sort is monomor-

phic.

Intuitively, a sort is monomorphic if each normal term of that sort has a list structure.

For example, NatList (with nil : NatList and cons : Nat×NatList → NatList), Nat (with

0 : Nat and s : Nat→ Nat) are monomorphic while Tree, Bool are not.

We here removed one of the conditions contained in the original definition ofmonomor-

phicness. Let ≻S be a relation on S given by τ ≻S ρ iff there exists a ground constructor

term sg[u
ρ
g]

τ with τ 6= ρ. In the original definition, the monomorphic signature is the one

with only monomorphic sorts such that there are no ρ, δ such that ρ ≻S δ ≻S ρ. The acyclic-

ity of ≻S , however, turns out to be unnecessary in the subsequent development for sound

generalization. Moreover, the monomorphic condition can be localized so that the signature

may contain non-monomorphic sorts as well. This relaxation is useful, for example, to deal

with BoolList.

We introduce a notion of reflective positions in a monomorphic term as a successive

sequence of reflective argument positions from its root. Then, based on this, we define a join

operator. This is in contrast to the original definition in [20, 21] where the join operator is

defined as the replacement with⊥. The elimination of the extra restriction of monomorphic

signature is achieved due to our new definition.

DEFINITION 2.[reflective position] The set RPos(t) of reflective positions in t is defined as
follows: (i) ǫ ∈ RPos(t) (ii) if t ≡ g(t1, . . . , tn) with g ∈ C, i = RA(g), and p ∈ RPos(ti) then
i.p ∈ RPos(ti).

For example, we have RPos(s(s(0))) = {ǫ, 1, 1.1}. Since RPos(t) is total w.r.t. the prefix
ordering ≤, there exists a position p that is greatest (w.r.t. ≤) in RPos(t).

DEFINITION 3.[greatest reflective position] Let t be a monomorphic term. The greatest el-
ement w.r.t. the prefix ordering in RPos(t) is called the greatest reflective position (grp) of
t.

DEFINITION 4.[join operator] For each monomorphic sort τ, a join operator ⊗τ on the set
T(C) is defined as follows: for ground constructor terms sg and tg of sort τ, sg⊗τ tg = sg[tg]p
where p is the grp of sg. We omit the superscript τ if no confusion arises.

The following properties of join operator is easily verified.

LEMMA 5.[properties of join operator] Let sg, tg, ug ∈ T(C) be monomorphic terms.
1. If sg ⊗ tg ≡ sg ⊗ ug then tg ≡ ug. If sg ⊗ tg ≡ ug ⊗ tg then sg ≡ ug.
2. (sg ⊗ tg)⊗ ug ≡ sg ⊗ (tg ⊗ ug).
3. p ∈ RPos(ug) implies ug[sg ⊗ tg]p ≡ ug[sg]p ⊗ tg.
4. ⊥⊗ tg ≡ tg and sg ⊗⊥ ≡ sg.

LEMMA 6.[decomposition at a reflective position] Suppose tg, ug ∈ T(F) are monomorphic
and p ∈ RPos(tg). Then tg[ug]p↓ ≡ tg[⊥]p↓ ⊗ ug↓.

PROOF. By induction on p. (B.S.) Suppose p = ǫ. Then tg[ug]p↓ ≡ ug↓ ≡ ⊥ ⊗ ug↓ ≡
⊥↓ ⊗ ug↓ ≡ tg[⊥]p↓ ⊗ ug↓. (I.S.) Let p = i.q with tg ≡ g(t1, . . . , tn), g ∈ C, i = RA(g), and

18 SOUND LEMMA GENERATION

q ∈ RPos(ti). Then

tg[ug]p↓ ≡ g(t1, . . . , ti[ug]q, . . . , tn)↓ by definition

≡ g(t1↓, . . . , ti[ug]q↓, . . . , tn↓) by g ∈ C
≡ g(t1↓, . . . , ti[⊥]q↓ ⊗ ug↓, . . . , tn↓) by the induction hypothesis

≡ g(t1↓, . . . , ti[⊥]q↓, . . . , tn↓)⊗ ug↓ by i = RA(g) and Lemma 5

≡ g(t1, . . . , ti[⊥]q, . . . , tn)↓ ⊗ ug↓ by g ∈ C
≡ tg[⊥]p↓ ⊗ ug↓.

In [20, 21], the notion of downward position is defined recursively; however, themutual

recursion of the definition is not terminating and thus the downward positions may not be

uniquely defined for a TRS. To make this fact explicit, we introduce a notion of downward

argument map and that of compatibility of the map with a TRS.

DEFINITION 7.[downward argument map/downward position]
1. A downward argument map DP is a partial map from D to N such that for any f ∈

dom(DP), if i = DP(f) then (1) 1 ≤ i ≤ arity(f), and (2) if f : τ1 × · · · × tn → τ0 then
τi = τ0 and τ0 is monomorphic.

2. Let p be a position in a term t. The setDPos(t) of downward positions in t is defined as
follows: (i) ǫ ∈ DPos(t) (ii) if t ≡ g(t1, . . . , tn) with g ∈ C, i = RA(g), and p ∈ DPos(ti)
then i.p ∈ DPos(ti). (iii) t ≡ f (t1, . . . , tn) with f ∈ D, i = DP(f), and p ∈ DPos(ti)
then i.p ∈ DPos(ti).

DEFINITION 8.[compatible downward argument map] A downward argument map DP is
compatible with a set R of rewrite rules if for any f ∈ dom(DP) with i = DP(f) and for
any f (l1, . . . , ln) → r ∈ R, li is a linear variable occurrence of f (l1, . . . , ln) and there exists a
position p ∈ DPos(r) such that li ≡ r/p and r/p is a linear variable occurrence in r.

Contrary to the definition in [21] in which li (≡ r/p) is allowed to be an arbitrary term

when p 6= ǫ, we impose a restriction that li must be a variable; this condition is imposed in

their previous paper [20] that proposes induction on term partition.

Example 2 Let S = {Nat}, F = { plusNat×Nat→Nat, sNat→Nat, 0Nat } and

R =

{

plus(0, y) → y

plus(s(x), y) → s(plus(x, y))

}

.

Then ⊥Nat ≡ 0 and RA(s) = 1. A map DP with DP(plus) = 2 is a downward argument map

compatible withR.

Example 3 Let S = {Nat}, F = { fNat×Nat→Nat, gNat×Nat→Nat, sNat→Nat, 0Nat } and

R =

{

f(0, y) → y g(x, 0) → x

f(s(x), y) → s(g(y, x)) g(x, s(y)) → s(f(y, x))

}

.

Then functions {f 7→ 2, g 7→ 1} and ∅ are both downward argument maps compatible with R. In

terms of [20, 21], it may possibly be (1) 2 is a downward position of f and 1 is a downward position

of g, and (2) both of f and g do not have downward positions. This is why we introduced the notion

of downward argument maps as remarked above.

TAKAHITO AOTO FSTTCS 2008 19

LEMMA 9.[preservation of a downward position] Suppose that DP is compatible with R.
Let z be a fresh variable.

1. Let p ∈ DPos(sg) and sg →R tg. Then either (1) sg/p ≡ tg/q and sg[z]p →R tg[z]q or
(2) p = q, sg[z]p ≡ tg[z]q, and sg/p→R tg/q.

2. Let p ∈ DPos(sg) and sg
∗
→R tg. Then there exists q ∈ DPos(tg) such that sg[z]p

∗
→R

tg[z]q and sg/p
∗
→R tg/q.

PROOF. 1. Let the redex occurrence of sg →R tg be p′. If p′ | p then apparently (1)

holds and if p′ ≥ p then apparently (2) holds. It remains to show the case p′ < p. Then

there exists f (l1, . . . , ln) → r ∈ R and a substitution σ such that sg/p
′ ≡ f (l1, . . . , ln)σ. By

p ∈ DPos(sg), p′.i ≤ p with i = DP(f), li ≡ x ∈ V is a linear in f (l1, . . . , ln), and there

exists a unique u ∈ DPos(r) such that r/u ≡ x. Then we have p = p′.i.q′ for some q′. Let

q = p′.u.q′. Then sg/p ≡ tg/q. Since p ∈ DPos(sg[rσ]p) = DPos(tg), q′ ∈ DPos(xσ), and
u ∈ DPos(r), we have q = p.u.q′ ∈ DPos(tg). Furthermore, since li ≡ x ∈ V and x is a linear

variable in f (l1, . . . , ln) and r, we have sg[z]p →R tg[z]q. 2. It follows from 1.

LEMMA 10.[decomposition at a downward position] Suppose that DP is compatible with
R, tg, ug ∈ T(F) are monomorphic, and p ∈ DPos(tg). Then tg[ug]p↓ ≡ tg[⊥]p↓ ⊗ ug↓.

PROOF. By Lemma 9, there exist sg, vg, q such that tg[ug]p↓ ≡ sg[vg]q, q ∈ DPos(sg),

tg[z]p
∗
→R sg[z]q, and ug

∗
→R vg. By sufficient completeness, sg[vg]q ∈ T(C) and thus

vg, sg[⊥]q ∈ T(C) and hence tg[⊥]p↓ ≡ sg[⊥]q, and ug↓ ≡ vg. Furthermore, since q ∈
DPos(sg) and sg[⊥]q ∈ T(C), it follows q ∈ RPos(sg) by the definition of downward posi-

tion. Hence, by Lemma 6, we have sg[vg]q ≡ sg[⊥]q ⊗ vg. Therefore, tg[ug]p↓ ≡ tg[⊥]p↓ ⊗

ug↓.

Example 4 (counterexample) The lemma above does not hold for the definition of downward po-

sition in [21]. Let S = {Nat}, F = {fNat→Nat, sNat→Nat, 0Nat}, and

R =

{

f(0) → s(s(0))
f(s(x)) → s(s(x))

}

.

Then we have f(s(0))↓ ≡ s(s(0)) and f(0)↓ ⊗ s(0)↓ ≡ s(s(0)) ⊗ s(0) ≡ s(s(s(0))). Thus

f(s(0))↓ 6≡ f(0)↓ ⊗ s(0).
We now describe very roughly how the downward positions can be used to identify

the common subterms that can be generalized.

Example 5 Let S ,F ,R be as in Example 2. Consider a conjecture e and its generalization e′ like

this:

e = plus(s[x]p, x)
.
= plus(t[x]q, x), e′ = plus(s[x]p, y)

.
= plus(t[x]q, y).

Obviously, if the equation e′ is an inductive theorem then the equation e is an inductive theorem

(because e is a particular instance of e′). We explain, using the decomposition at a downward

position 2, that the other implication also holds. Suppose the equation e is an inductive theo-

rem. Then, by definition, plus(sσg[ug]p, ug)
∗
↔R plus(tσg[ug]q, ug) for any ground term ug and

ground substitution σg. This means plus(sσg[ug]p, ug)↓ ≡ plus(tσg[ug]q, ug)↓. Thus, by Lemma

10, plus(sσg[ug]p, 0))↓ ⊗ ug↓ ≡ plus(tσg[ug]q, 0))↓ ⊗ ug↓, which implies plus(sσg[ug]p, 0))↓ ≡

20 SOUND LEMMA GENERATION

plus(tσg[ug]q, 0))↓. Then, for any wg, plus(sσg[ug]p, 0))↓⊗wg↓ ≡ plus(tσg[ug]q, 0))↓⊗wg↓. By
Lemma 10, this implies e′ is also an inductive theorem.

Throughout the paper, if no confusion arises, we assume that the downward argument map DP

is compatible with the TRSR.

Next, we focus on the dual notion of downward position called upward position. The

notion of upward argument position UP is the same as the one given in [20, 21]. We, how-

ever, additionally introduce a notion of upward position in a term which will be used to

extend the definition of contextual positions.

DEFINITION 11.[upward argument position/upward position] Let f ∈ D with f : τ1 ×
· · · × τn → τ and 1 ≤ i ≤ n such that τi = τ and τ is monomorphic.

1. The index i is called a upward argument position of f (UP(f)) if for any f (l1, . . . , ln)→
r ∈ R, either li ≡ ⊥

τ or li ≡ u[x]p ∈ T(C,V) and r ≡ u[l[x]i]p, where l ≡ f (l1, . . . , ln),
p ∈ RPos(u), and x is a linear variable in l. Note that p 6= ǫ; for, otherwise l ≡ r and
contradicts termination ofR.

2. The set UPos(t) of upward positions in t is defined as follows: UPos(t) = {i} ∪ {i.p |
p ∈ UPos(ti)} if t ≡ f (t1, . . . , tn) with f ∈ D and i = UP(f); UPos(t) = ∅ otherwise.

The dual property of Lemma 10 holds for upward positions.

LEMMA 12.[decomposition at a upward position] Let tg, ug ∈ T(F) be monomorphic terms.

1. Let tg ≡ f (t1, . . . , tn) with tj ∈ T(C) for all 1 ≤ j ≤ n. If i = UP(f) and p be the grp of

ti then tg
∗
→R ti[tg[⊥]i]p.

2. If i = UP(tg(ǫ)) then tg[ug]i↓ ≡ ug↓ ⊗ tg[⊥]i↓.
3. If p ∈ UPos(tg) then tg[ug]p↓ ≡ ug↓ ⊗ tg[⊥]p↓.

PROOF.

1. By induction on |ti|.
2. Use confluence, sufficient completeness ofR and 1.

3. By induction on p. Use 2.

Next, we focus on the notion of contextual argument positions. The definition is ex-

tended from the original one given in [20, 21].

DEFINITION 13.[contextual argument position] Let f ∈ D with f : τ0 × · · · × τn → τ with
monomorphic τ and 1 ≤ i ≤ arity(f) such that τi is monomorphic.

1. The index i is called a down-contextual argument position of f (DCP(f)) if for any
f (l1, . . . , ln) → r ∈ R, either li ≡ ⊥ and r ≡ ⊥ hold or li ≡ u[x]p ∈ T(C,V) and
r/q ≡ l[x]i, where l ≡ f (l1, . . . , ln), p ∈ RPos(u), q ∈ UPos(r), and x is a linear
variable in l and r. Note that p 6= ǫ; for, otherwise r/q ≡ l and contradicts termination
ofR.

2. The index i is called an up-contextual argument position of f (UCP(f)) if for any
f (l1, . . . , ln) → r ∈ R, either li ≡ ⊥ and r ≡ ⊥ hold or li ≡ u[x]p ∈ T(C,V) and
r/q ≡ l[x]i, where l ≡ f (l1, . . . , ln), p ∈ RPos(u), q ∈ DPos(r), and x is a linear vari-
able in l and r. Note that p 6= ǫ; for, otherwise r/q ≡ l and contradicts termination of
R.

TAKAHITO AOTO FSTTCS 2008 21

The original definition of contextual positions use the conditions q = UP(r(ǫ)) and

q = DP(r(ǫ)) instead of q ∈ UPos(r) and q ∈ DPos(r), respectively. Furthermore, when

li ≡ ⊥ and r ≡ ⊥, sort(li) = sort(r) (and hence li ≡ r) is required in the original definition.

Since UP(r(ǫ)) ∈ UPos(r) and DP(r(ǫ)) ∈ DPos(r), our definition enlarges the scope of the

contextual positions.

Example 6 Let S = {Nat, List}, F = {dblNat→Nat, lenList→Nat, sumList→Nat, plusNat×Nat→Nat,

consNat×List→List, nilList, sNat→Nat, 0Nat}, and

R =

len(nil) → 0 dbl(0) → 0

len(cons(x, xs)) → s(len(xs)) dbl(s(x)) → s(s(dbl(x)))
plus(x, 0) → x sum(nil) → 0

plus(x, s(y)) → s(plus(x, y)) sum(cons(x, xs)) → plus(x, sum(xs))

Then we have 1 = UCP(len), 1 = UCP(dbl), and 1 = DCP(sum). In the original definition in

[20, 21], however, none of these are defined.

LEMMA 14.[decomposition at contextual positions] Let tg ∈ T(F), ug, vg ∈ T(C) bemonomor-
phic terms and f = tg(ǫ).

1. If i = DCP(f) then tg[⊥]i↓ ≡ ⊥.
2. If i = DCP(f) then tg[ug ⊗ vg]i↓ ≡ tg[vg]i↓ ⊗ tg[ug]i↓.
3. If i = UCP(f) then tg[⊥]i↓ ≡ ⊥.
4. If i = UCP(f) then tg[ug ⊗ vg]i↓ ≡ tg[ug]i↓ ⊗ tg[vg]i↓.

PROOF.

1. Straightforward.

2. By induction on |ug|. Use Lemma 6 and Lemma 12.

3. Same as 1 except using i = UCP(f) instead of i = DCP(f).
4. Same as 2 except using Lemma 10 instead of Lemma 12.

4 Term Partition and Sound Generalization

Based on the characterization of five types of argument positions, Urso and Kounalis ([20,

21]) developed techniques useful in inductive theorem proving—namely, term partition and

sound generalization. These techniques rely on the following observation.

DEFINITION 15.[term partition[20, 21]] Let R be a sufficiently complete, confluent, termi-
nating TRS. 〈s0, s1〉 is said to be a term partition of s if (1) s0 and s1 have the same monomor-
phic sort τ and (2) for any ground substitution θg, s0θg↓ ⊗ s1θg↓ ≡ sθg↓.

PROPOSITION 16.[term partition theorem (Theorem 1 of [20])] Let R be a sufficiently com-
plete, confluent, terminating TRS. Suppose 〈s0, s1〉 is a term partition of s and 〈t0, t1〉 is a
term partition of t. Then for each i ∈ {0, 1}, if R ⊢ind si

.
= ti then we have R ⊢ind s

.
= t iff

R ⊢ind s1−i
.
= t1−i.

In [20, 21], Urso and Kounalis introduced a notion of prominent paths (called top path

and bottom path) based on the five types of argument positions of functions and a method to

compute some term partitions based on these paths.

22 SOUND LEMMA GENERATION

DEFINITION 17.[top/bottom paths[20, 21]] Let t be a monomorphic term. The set TPath(t)
of top paths in a term t and the set BPath(t) of bottom paths in a term t are defined as
follows:

TPath(t) =

{ǫ} ∪ {i.p | p ∈ TPath(ti)} if t ≡ f (t1, . . . , tn), i = RA(f)
{ǫ} ∪ {i.p | p ∈ TPath(ti)} if t ≡ f (t1, . . . , tn), i = UP(f)
{ǫ} ∪ {i.p | p ∈ BPath(ti)} if t ≡ f (t1, . . . , tn), i = DCP(f)
{ǫ} ∪ {i.p | p ∈ TPath(ti)} if t ≡ f (t1, . . . , tn), i = UCP(f)
{ǫ} otherwise

BPath(t) =

{ǫ} ∪ {i.p | p ∈ BPath(ti)} if t ≡ f (t1, . . . , tn), i = RA(f)
{ǫ} ∪ {i.p | p ∈ BPath(ti)} if t ≡ f (t1, . . . , tn), i = DP(f)
{ǫ} ∪ {i.p | p ∈ TPath(ti)} if t ≡ f (t1, . . . , tn), i = DCP(f)
{ǫ} ∪ {i.p | p ∈ BPath(ti)} if t ≡ f (t1, . . . , tn), i = UCP(f)
{ǫ} otherwise

Clearly, TPath(t) and BPath(t) are totally orderedw.r.t.≤ and the greatest element in TPath(t)
and BPath(t) are called the maximum top path and the maximum bottom path and denoted
by TP(t) and BP(t), respectively.

DEFINITION 18.[head/tail parts[20, 21]] Let t be amonomorphic term. For each p ∈ TPath(t),
its head context Ctopt,p as well as for each q ∈ BPath(t), its tail context Cbott,q are defined as
follows:

Ctopt,p =

� if p = ǫ

t[Ctopti ,p′]i if p = i.p′, t ≡ f (t1, . . . , tn), and i = RA(f)

Ctopti ,p′ if p = i.p′, t ≡ f (t1, . . . , tn), and i = UP(f)

t[Cbotti ,q′]i if p = i.q′, t ≡ f (t1, . . . , tn), and i = DCP(f)
t[Ctopti ,p′]i if p = i.p′, t ≡ f (t1, . . . , tn), and i = UCP(f)

Cbott,q =

� if q = ǫ

Cbotti ,q′ if q = i.q′, t ≡ f (t1, . . . , tn) and i = RA(f)
Cbotti ,q′ if q = i.q′, t ≡ f (t1, . . . , tn) and i = DP(f)
t[Ctopti ,p′]i if q = i.p′, t ≡ f (t1, . . . , tn) and i = DCP(f)

t[Cbotti ,q′]i if q = i.q′, t ≡ f (t1, . . . , tn) and i = UCP(f)

The head part is given by top(t, p) ≡ Ctopt,p[t/p] and the tail part is by bot(t, q) ≡ Cbott,q[t/q].

The development of the term patition based on prominent paths is solely based on

the characterization lemmas for five types of argument positions. Thus this term partition

can be corrected and extended based on our revised definition of monomorphic signature

and argument positions given in the previous section. We refer to [20, 21] the definition of

ntp(t, p) and nbt(t, q) in the following proposition.

PROPOSITION 19.[term partition via prominent path (Theorem 36 of [21])] Let R be a suf-
ficiently complete, terminating, and confluent TRS. Let t be a monomorphic term. (1) For

TAKAHITO AOTO FSTTCS 2008 23

each top path p in t, 〈top(t, p), ntp(t, p)〉 is a term partition of t. (2) For each bottom path q

in t, 〈nbt(t, q), bot(t, q)〉 is a term partition of t.

The sound generalization is obtained from Proposition 19.

PROPOSITION 20.[sound generalization theorem (Theorem 37 of [21])] Let R be a suffi-
ciently complete, terminating, and confluent TRS. Let s

.
= t be a monomorphic equation

and x be a fresh variable.

1. Let p be a top path in s and q a top path in t. Suppose that s/p ≡ t/q and top(s, p) ≡
top(t, q). ThenR ⊢ind s

.
= t iffR ⊢ind s[x]p

.
= t[x]q.

2. Let p be a bottom path in s and q a bottom path in t. Suppose that s/p ≡ t/q and
bot(s, p) ≡ bot(t, q). ThenR ⊢ind s

.
= t iffR ⊢ind s[x]p

.
= t[x]q.

5 Conclusion

We presented an example showing that the sound generalization proposed in [21] does not

work without a condition imposed in their previous paper [20] that proposes induction

based on term partition. We restored a condition in the definition of one of the argument

positions and gave the corrected proof of the characterization of the position. Based on this,

the correctness of sound generalization [21] was recovered. We note that all examples of

sound genereralization presented in [21] still works under the restored condition. We also

extended the technique by eliminating one of the restriction of monomorphic signature, lo-

calizing a part of the conditions for target term rewriting systems, and extending the notion

of contextual positions. The corrected part of sound generalization is implemented in our

experimental induction prover based on rewriting induction [1].

Despite the relaxation, some strong restrictions of monomorphicness are still imposed

on the sound generalization. Finding other types of sound generalization applicable for

non-monomorphic equations remains as a future work. Another future work is obtaining

a lemma discovery method other than term partition and sound generalization via deeper

analysis of monomorphicness.

Acknowledgments

Thanks are due to anonymous referees for helpful comments. This work was partially sup-

ported by a grant from JSPS, No. 20500002.

References

[1] T. Aoto. Designing a rewriting induction prover with an increased capability of non-

orientable equations. In Proc. of Symbolic Computation in Software Science Austrian-

Japanese Workshop, volume 08-08 of RISC Technical Report, pages 1–15, 2008.

[2] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press,

1998.

[3] A. Bouhoula, E. Kounalis, and M. Rusinowitch. Automated mathematical induction.

Journal of Logic and Computation, 5(5):631–668, 1995.

24 SOUND LEMMA GENERATION

[4] R. Boyer and J. Moore. A Computational Logic. Academic Press, 1979.

[5] A. Bundy. The automation of proof bymathmatical induction. InHandbook of Automated

Reasoning, volume 1, pages 845–908. MIT Press, 2001.

[6] A. Bundy, D. Basin, D. Hutter, and A. Ireland. Rippling: Meta-Level Guidance for Mathe-

matical Reasoning. Cambridge University Press, 2005.

[7] H. Comon. Inductionless induction. In Handbook of Automated Reasoning, volume 1,

pages 913–962. MIT Press, 2001.

[8] B. Gramlich. Strategic issues, problems and challenges in inductive theorem proving.

Electronic Notes in Theoretical Computer Science, 125:5–43, 2005.

[9] G. Huet and J.-M. Hullot. Proof by induction in equational theories with constructors.

Journal of Computer and System Sciences, 25(2):239–266, 1982.

[10] G. Huet and D. C. Oppen. Equations and rewrite rules: a survey. Technical report,

Stanford University, Stanford, CA, USA, 1980.

[11] D. Hutter and C. Sengler. INKA: The next generation. In Proc. of the 13th International

Conference on Automated Deduction, pages 288–292, 1996.

[12] A. Ireland and A. Bundy. Productive use of failure in inductive proof. Journal of Auto-

mated Reasoning, 16(1–2):79–111, 1996.

[13] D. Kapur, J. Giesl, and M. Subramaniam. Induction and decision procedures. Revista

de la real academia de ciencas (RACSAM) Serie A: Matematicas, 98(1):154–180, 2004.

[14] D. Kapur, P. Narendran, and H. Zhang. Automating inductionless induction using test

sets. Journal of Symbolic Computation, 11(1–2):81–111, 1991.

[15] D. Kapur and M. Subramaniam. Lemma discovery in automating induction. In Proc.

of the 13th International Conference on Automated Deduction, volume 1104 of LNCS, pages

538–552. Springer-Verlag, 1996.

[16] D. Kapur and H. Zhang. An overview of rewrite rule laboratory (RRL). Journal of

Computer Mathematics with Applications, 29(2):91–114, 1995.

[17] M. Kaufmann, P. Manolios, and J. S. Moore. Computer-Aided Reasoning: ACL2 Case

Studies. Kluwer Academic Publishers, 2000.

[18] S. Shimazu, T. Aoto, and Y. Toyama. Automated lemma generation for rewriting induc-

tion with disproof. In Proc. of the 8th JSSST Workshop on Programming and Programming

Languages, pages 75–89, 2006. In Japanese.

[19] S. Stratulat. A general framework to build contextual cover set induction provers.

Journal of Symbolic Computation, 32:403–445, 2001.

[20] P. Urso and E. Kounalis. Term partition for mathematical induction. In Proc. of the 14th

International Conference on Rewriting Techniques and Applications, volume 2706 of LNCS,

pages 352–366, 2003.

[21] P. Urso and E. Kounalis. Sound generalizations in mathematical induction. Theoretical

Computer Science, 323:443–471, 2004.

[22] T.Walsh. A divergence critic for inductive proof. Journal of Artificial Intelligence Research,

4:209–235, 1996.

This work is licensed under the Creative Commons Attribution-
NonCommercial-No Derivative Works 3.0 License.

