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Abstract

A space-efficient approximation algorithm for the grammar-based com-
pression problem, which requests for a given string to find a smallest
context-free grammar deriving the string, is presented. For the input
length n and an optimum CFG size g, the algorithm consumes only
O(g log g) space and O(n log∗n) time to achieve O((log∗n) log n) approxi-
mation ratio to the optimum compression, where log∗n is the maximum
number of logarithms satisfying log log · · · log n > 1. This ratio is thus
regarded to almost O(log n), which is the currently best approximation
ratio. While g depends on the string, it is known that g = Ω(log n) and

g = O
(

n
logkn

)
for strings from k-letter alphabet [12].

1 Introduction

The grammar-based compression problem is to find a smallest context-free gram-
mar generating just single string. Such a CFG requires that every nontermi-
nal is derived from only one production rule, say, deterministic. The problem
deeply relates to factoring problems for strings, and the complexity of similar
minimization problems have been rigorously studied. For example, Storer [20]
introduced a factorization for a given string and showed the problem is NP-hard.
De Agostino and Storer [2] defined several online variants and proved that those
are also NP-hard.

As non-approximability results, Lehman and Shelat [13] showed that the
problem is APX-hard, i.e. it is hard to approximate this problem within a
constant factor (see [1] for definitions). They also mentioned its interesting
connection to the semi-numerical problem [9], which is an algebraic problem of
minimizing the number of different multiplications to compute the given integers
and has no known polynomial-time approximation algorithm achieving a ratio
o(log n/ log log n). Since the problem is a special case of the grammar-based
compression, an approximation better than this ratio seems to be also hard.

On the other hand, various practical algorithms for the grammar-based com-
pression have been devised so far. LZW [21] including LZ78 [24], and BISEC-
TION [8] are considered as algorithms that computes straight-line programs,
CFGs formed from Chomsky normal form formulas. Also algorithms for re-
stricted CFGs have been presented in [6, 10, 15, 16, 22]. Lehman and She-
lat [13] proved the upper bounds of the approximation ratio of these practical
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algorithms, as well as the lower bounds with the worst-case instances. For ex-
ample, BISECTION algorithm achieves an approximation ratio no more than
O((n/ log n)1/2). All those ratios, including the lower-bounds, are larger than
O(log n).

Recently polynomial-time approximation algorithms for the grammar-based
compression problem have been widely studied and the worst-case approxima-
tion ratio has been improved. The first log n-approximation algorithm was de-
veloped by Charikar et al. [4]. Their algorithm guarantees the ratio O(log(n/g)),
where g is the size of a minimum deterministic CFG for an input. Independently,
Rytter presented in [17] another O(log(n/g))-approximation algorithm that em-
ploys a suffix tree and the LZ-factorization technique for strings. Sakamoto also
proposed in [19] a simple linear-time algorithm based on Re-pair [10] and achiev-
ing ratio O(log n); Now this ratio has been improved to O(log(n/g)).

The ratio O(log(n/g)) achieved by these new algorithms is theoretically suffi-
ciently small. However, all these algorithms require O(n) space, and it prevents
us to apply the algorithms to huge texts, which is crucial to obtain a good
compression ratio in practice. For example, the algorithm Re-pair [10] spends
5n + n1/2 space on unit-cost RAM with the input size n.

This state motivates us to develop a sub-linear space O(log n)-approximation
algorithm for the grammar-based compression. We presented a simple algo-
rithm [18] that repeats substituting one new nonterminal symbol to all the
same and non-overlapping two contiguous symbols occurring in the string. This
is carried out by utilizing idea of the lowest common ancestor of balanced bi-
nary trees, and no real special data structure, such as suffix tree or occurrence
frequency table, is requested. In consequence, the space complexity is nearly
equal to the total number of created nonterminal symbols, each of which cor-
responds to a production rule in Chomsky normal form. This algorithm was
applied to Compressed Pattern Matching in [14]. In this paper we improve the
algorithm and obtain almost O(log n)-approximation ratio preserving the space
complexity.

The size of the final dictionary of the rules is proved by the compactness
of LZ-factorization [17] and alphabet reduction technique [5]. This technique
requires log∗n times iteration. Here log∗n denotes the maximum integer j which
satisfies F (j) ≤ n for

F (0) = 1, and F (j) = 2F (j−1) (j ≥ 1).

For instance, F (3) = 24 = 16, F (4) = 216 = 65536, and F (5) = 265536. Thus,
log∗n is almost constant even for sufficiently large n. Our algorithm runs in
almost O(n) time and O(g log g) space preserving the worst-case approximation
ratio O((log∗n) log n). This ratio is almost the currently best approximation.
The memory space is devoted to the dictionary that maps a contiguous pair of
symbols to a nonterminal. Practically, in randomized model, space complexity
can be reduced to O(g log g) by using a hash table for the dictionary. In the
framework of dictionary-based compression, the lower-bound of memory space
is usually estimated by the size of a possible smallest dictionary, and thus our
algorithm is nearly optimal in space complexity. Compared to other practical
dictionary-based compression algorithms, such as LZ78, which achieves the ratio
Ω(n2/3/ log n), the lower-bound of memory space of our algorithm is considered
to be sufficiently small.
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The remaining part of this paper is organized as follows. In Section 2, we
prepare the definitions related to the grammar-based compression. In Section 3,
we introduce the notion of lowest common ancestors in a complete binary tree
defined by alphabet symbols. Using this notion, our algorithm decides a fixed
priority of all pairs appearing in a current string and replaces them according
to the priority. More precisely, a pair is called to be maximal if its priority
is higher than the neighbors’. The aim of the algorithm is to find as many
maximal pairs as possible, and this is performed by iterative application of the
alphabet reduction. The algorithm is presented in Section 4 and we analyze
the approximation ratio and estimate the time/space efficiency compared with
related grammar-based compression algorithms. In Section 5, we summarize
this study.

2 Notions and Definitions

In this study we suppose a standard RAM model [11] with the unit-cost measure,
in which the following assumptions are made. Each value is a primitive data
item, the memory required by a given variable is equal to the number of entries
in the array that it represents, the memory required by a RAM is equal to the
total memory required by its variables, and the time required by a RAM is equal
to the number of instructions being executed.

We next recall the notions in formal language theory. Given a sufficiently
large integer n for the input length, we assume that the size of any symbol is
bounded by O(log n) bits, and a finite set Σ of symbols is called an alphabet.
The set of all strings over Σ is denoted by Σ∗, and Σi denotes the set of all
strings of length just i. The length of a string w ∈ Σ∗ is denoted by |w|, and
also for a set S, the notion |S| refers to the size (cardinality) of S. The ith
symbol of w is denoted by w[i]. For an interval [i, j] with 1 ≤ i ≤ j ≤ |w|, the
occurrence of a substring from w[i] to w[j] is denoted by w[i, j].

A repetition is a string xk for some x ∈ Σ and some positive integer k.
A repetition w[i, j] in w of a symbol x ∈ Σ is maximal if w[i − 1] �= x and
w[j + 1] �= x. It is simply referred by x+ if there is no ambiguity in its interval
in w. Intervals [i, j] and [i′, j′] with i < i′ are overlapping if i′ ≤ j < j′, and are
independent if j < i′. A pair u ∈ Σ2 is a string of length two, and an interval
[i, i + 1] is a segment of u in w if w[i, i + 1] = u.

A context-free grammar (CFG) is a quadruple G = (Σ, N, P, s) of disjoint
finite alphabets Σ and N , a finite set P ⊆ N × (N ∪Σ)∗ of production rules, and
the start symbol s ∈ N . Symbols in N are called nonterminals. A production
rule a → b1 · · · · · bk in P derives β ∈ (Σ ∪ N)∗ from α ∈ (Σ ∪ N)∗ by replacing
an occurrence of a ∈ N in α with b1 · · · · · bk. In this paper, we assume that
any CFG is deterministic, that is, for each nonterminal a ∈ N , exactly one
production rule from a is in P . Thus, the language L(G) defined by G is a
singleton set. We say a CFG G derives w ∈ Σ∗ if L(G) = {w}. The size of G
is the total length of strings in the right hand sides of all production rules, and
is denoted by |G|. The aim of grammar-based compression is formalized as a
combinatorial optimization problem, as follows:

Problem 1 Grammar-Based Compression
Instance: A string w ∈ Σ∗.
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a b a b b a b a b b

A1 A1 A1 A1

A2A2

A3 A3

A4

f1 f2 f3 f4 f5

Figure 1: LZ-factorization and CFG derivation.

Solution: A deterministic CFG G that derives w.
Measure: The size of G.

From now on, we assume that every deterministic CFG is in Chomsky normal
form, i.e. the size of strings in the right-hand side of production rules is two,
and we use |N | for the size of a CFG. Note that for any CFG G, there is an
equivalent CFG G′ in Chomsky normal form such that |G′| ≤ 2 · |G|.

The approximation ratio of a grammar-based compression algorithm A is
defined by the quantity

max
w∈Σ∗

{ |GA(w)|
|Gopt(w)|

}
,

where GA(w) is the CFG computed by A and Gopt(w) is an optimum CFG for
a string w.

It is known that there is an important relation between a deterministic CFG
and a factorization called LZ-factorization. The factorization for w, denoted
by LZ(w), is the decomposition of w into f1 · · · · · fk, where f1 = w[1], and for
each 1 < � ≤ k, f� is the longest prefix of the suffix w[|f1 · · · f�−1| + 1, |w|] that
appears in f1 · · · f�−1, where f�−1 is empty if � = 1. Each f� is called a factor .
The size |LZ(w)| of LZ(w) is the number of its factors. The following result is
used in the analysis of the approximation ratio of our algorithm.

Example 1 The relation of the size of LZ-factorization and CFG is illustrated
in Fig. 1. For a string “ababbababb”, the first two factors are f1 = a and f2 = b.
Similarly, we obtain the sequence

f1 = a, f2 = b, f3 = ab, f4 = bab, f5 = abb.

Fig. 1 shows that the size of LZ-factorization is always smaller than or equal to
that of any CFG. Note that the size of CFG is defined by 2|N |.

Theorem 1 ([17]) For any string w and its deterministic CFG G, the inequal-
ity |LZ(w)| ≤ |G| holds.

This theorem shows that the number of LZ factors is smaller than the size
of a minimum CFG for any string.
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a1 a2 a3 a4 a5 a6

lca(a2,a4) 
= lca(a4,a2) = 2

a9 a10 a11a7 a8
dummy

3

4

1

Figure 2: The alphabet tree for Σ ∪ N = {a1, . . . , a11}.

3 Compression by the Alphabetical Order

In this section we describe the central idea of our grammar-based compression
utilizing information only available from individual symbols. The aim is to
minimize the number of different nonterminals generated by our algorithm.

A replacement [i, i+1] → a for w is an operation that replaces a pair w[i, i+1]
with a nonterminal a ∈ N . A set R of replacements is, by assuming some order
on R, regarded as an operation that performs a series of replacements to w. In
the following we introduce a definition of a set of replacements whose effect on
a string is independent of the order.

Definition 1 A set R of replacements for w is appropriate if it satisfies the
following: (1) At most one of two overlapping segments [i, i+1] and [i+1, i+2]
is replaced by replacements in R, (2) At least one of three overlapping segments
[i, i + 1], [i + 1, i + 2] and [i + 2, i + 3] is replaced by replacements in R, and (3)
For any pair of replacements [i, i + 1] → a and [j, j + 1] → b in R, a = b if and
only if w[i, i + 1] = w[j, j + 1].

Clearly, for any string w, an appropriate replacement R for w generates the
string w′ uniquely. In such a case, we say that R generates w′ from w, and write
w′ = R(w). Intuitively, w′ = R(w) is a resulting string by an execution of single
loop of our compression algorithm, which continues the process till |w′| < |w|.

Our first problem is to find small appropriate replacements, and here we
explain the strategies for making pairs in our algorithm.

Alphabet tree: Let d be a positive integer, and let k be 	log2 d
. An alphabet
tree Td for Σ ∪ N = {a1, . . . , ad} is the rooted, ordered complete binary tree
whose leaves are labeled with 1, . . . , 2k from left to right. The height of an inter-
nal node refers to the number of edges of a path from the node to a descendant
leaf. Let h be the height of the lowest common ancestor of leaves i and j. Then
we define lca(ai, aj)d = h. Usually we omit the index d, and for the simplicity
we assume that lca(i, j) is identical to lca(ai, aj). Moreover ‘log’ denotes the
binary logarithm throughout this paper.

Example 2 If |Σ ∪ N | = 11, the corresponding alphabet tree and the value of
lca(i, j) are illustrated in Fig. 2.

For every string w ∈ Σ+, any maximal repetition w[i, j] = xk is called type 1
metablock and any other occurrence of substring is called type 2 metablock of w.
For example we illustrate the following factorization by type 1 and 2 metablock:

w = abcabbcaaabab = abca · bb · c · aaa · bab
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Any type 1 metablock α can be compressed to a sufficiently short string. For
instance, if α = b2k for a symbol b, α is compressed to Ak by A → bb, and
if α = b2k+1, α is compressed to AkB by A → bb and B → b. The trivial
production rule B → b is produced to replace all symbols in the current string.
This strategy is important to achieve our space-saving compression. In the
next section, we introduce the general case of such compression called typical
compression.

For type 2 metablocks, we introduced our iterative compression technique
by lca and alphabet reduction.

Definition 2 Let w be a type 2 metablock. w[i, i + 1] is called to be maximal
if lca(w[i], w[i + 1]) > lca(w[i − 1], w[i]), lca(w[i + 1], w[i + 2]), where w[1, 2]
is maximal if lca(w[1], w[2]) > lca(w[2], w[3]), and the case w[|w| − 1, |w|] is
similarly defined.

Our idea is to replace all occurrences of maximal pairs prior to others. Any
two occurrences of maximal pairs are not overlapping, that is, if w[i, i + 1]
is maximal, then neither w[i − 1, i] nor w[i + 1, i + 2] is maximal. Thus, we
can replace all the occurrences of maximal pairs by appropriate nonterminals.
However there is a long substring w[i, j] containing no maximal pair such that
|w[i, j]| = 	log |Σ|
 in worst case. For instance, a1a2a4 · · · a2k is one of such
strings. For improving such a bound, we compute lca(w[i], w[i + 1]) iteratively
by the following strategy, which is a variant of alphabet reduction [5] defined on
integers. We expand this notion to alphabet trees for our compression problem.

Alphabet reduction: Let w be a type 2 metablock. In case k = 2, . . . , |w| and
w[k− 1, k] = aiaj , we define label(w[k]) = 2 · lca(i, j) if i < j and 2 · lca(i, j)+ 1
otherwise. In case k = 1 and w[1, 2] = aiaj , we define label(w[1]) = 2 · lca(i, j)
if i > j and 2 · lca(i, j) + 1 otherwise.

Lemma 1 For each k, if w[k] �= w[k + 1], then label(w[k]) �= label(w[k + 1]).

proof. We show that label(w[� + 1]) �= label(w[� + 2]) for w[�, � + 2] = aiajak.
In case (j > i, k) or (j < i, k), exactly one of label(w[� + 1]) and label(w[� + 2])
is odd. In case i < j < k, we obtain lca(i, j) �= lca(j, k). Moreover, label(w[� +
1]) = 2 · lca(i, j) and label(w[� + 2]) = 2 · lca(j, k) derives label(w[� + 1]) �=
label(w[� + 2]). The case of i > j > k is similar. Q.E.D.

From a string w of length n, a sequence w′ = label(w[1])label(w[2]) · · · label(w[n])
is computed. By regarding each integer � = label(w[k]) as a next alphabet sym-
bol a�, we then continue the alphabet reduction for the string w iteratively. The
purpose of the alphabet reduction is to reduce all symbols to constant integers
preserving the structures of substrings. The next lemma shows that the number
of iteration is very small.

Lemma 2 After at most log∗n iterations of alphabet reduction, the label size
is 6.

proof. Let w[k−1, k] = aiaj and 2 ≤ k ≤ n = |w|. The size of the next label of
w[k] is reduced to label(w[k]) ≤ max{2	log j
, 2	log i
} + 1 by single iteration.
Thus, the alphabet reduction terminates within log∗n iterations. Moreover, at
each iteration, the alphabet size goes from |Σ| to at most 2	| log Σ|
. If |Σ| > 6,
then 2 log	|Σ|
 < |Σ|, that is, the next label size is smaller than the current
label size. Thus, the final labels are bounded by 6. Q.E.D.
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Figure 3: A worst case log∗|Σ|-iteration of alphabet reduction and resulting
landmarks: each internal node in the tree denotes the value of lca for the cor-
responding leaves.

If different symbols in w are less than or equal to 6, the iteration of al-
phabet reduction terminates. When the iteration terminates for the string
w, the resulting sequences label(w[1])label(w[2]) · · · label(w[n]) is called a fi-
nal labels, and a symbol w[k] is called a landmark if label(w[k]) is maximal,
i.e. label(w[k]) > label(w[k − 1]), label(w[k + 1]), where w[1] is maximal if
label(w[1]) > label(w[2]), and the case w[|w|] is similar.

Here we note that any w[i, j] in type 2 string longer than 6 must contain
at least one landmark. Using this property, the aim of our algorithm is to
synchronize the landmarks in all occurrences of a same substring.

Example 3 We show a worst case iteration of alphabet reduction in Fig. 3. In
case that |Σ| ≤ 32, if w is formed by the string presented in Fig. 3, log∗|Σ| = 3
times iteration is necessary in worst case to obtain the finial label sequence.

4 Algorithm and Analysis

In this section we introduce an approximation algorithm for the grammar-based
compression problem and analyze its approximation ratio to the optimum as well
as its space efficiency.

7



1 Algorithm LCA*(w)
2 initialize � = 1 for counter of �th loop;
3 factorize w = w1w2 · · ·wm by type 1 and 2 metablock;
4 for each type 1 metablock wi,
5 compute a typical compression;
6 for each type 2 metablock wi

7 compute its landmarks wi[x], wi[y], . . . , wi[z];
8 replace all pairs wi[x − 1, x], wi[y − 1, y], . . . , wi[z − 1, z]
9 by appropriate nonterminals;
10 compute typical compressions for remained substrings in wi;
11 set �th dictionary D�, � = � + 1, w = w1w2 · · ·wm

12 by the replaced wis, and goto line 3;
13 repeat this process until all pairs in w are mutually different;
14 output D ∪ {S → w} for D = D1 ∪ · · · ∪ D�;

Figure 4: The LCA* compression algorithm. A replaced pair w[i, i + 1] must
be consistent with a current dictionary D�, i.e. w[i, i + 1] is replaced by A if a
production A → BC (BC = w[i, i + 1]) is already registered to a D� and a new
nonterminal is created to replace w[i, i + 1] otherwise.

4.1 Algorithm LCA*

Before the description of our algorithm, we first explain a typical compression
for a trivial string. The following trivial replacement R(w) = A1 · · ·Ak is called
a typical compression for w of length n.

A1 → w[1, 2], A2 → w[3, 4], . . . ,

{
Ak → w[n − 1, n], if n is even
Ak−1 → w[n − 2, n − 1], Ak → w[n], otherwise.

The last replacement Ak → w[n] is called renaming. In our compression
algorithm, we assume any replacement is consistent to a current dictionary D,
that is, any replaced pair w[i, i + 1] and w[j, j + 1] must be replaced by an
identical nonterminal if w[i, i + 1] = w[j, j + 1]. The algorithm LCA*(w) is
presented in Fig. 4. We describe the outline of LCA*(w) in Fig. 4.

Phase 1 (Line 3):

The algorithm find all type 1 and type 2 metablocks in the input string w. Each
metablock wi is compressed in Phase 2 and 3 individually.

Phase 2 (Line 4 – 5):

Type 1 metablock substring wi, i.e. a maximal repetition is replaced by a typical
compression for wi. If |wi| is odd, the last symbol is renamed; This trivial
replacement is necessary for our space-saving compression. Such renaming is
executed in the next phase.

8
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Figure 5: The flow of LCA* for a string w.

Phase 3 (Line 6 – 10):

Type 2 metablock wi, i.e. wi[j] �= wi[j + 1] for all j is replaced. First, all
landmarks in wi are found and for any landmark wi[j], the pair wi[j − 1, j] is
replaced by a nonterminal. Second, if wi[k] is the nearest landmark from wi[j],
the remained substring wi[j + 1, k − 2] is replaced by a typical compression.

Phase 4 (Line 11 – 14):

In �th loop, let D�1 and D�2 be the set of production rules produced for type 1
and 2 metablocks, respectively. In this phase, the depth of loop �, the current
string w, and the current dictionary D are updated to � = �+1, w = w1w2 · · ·wm

by the compressed metablocks wi (1 ≤ i ≤ m), and D = D1 · · ·∪D�. The above
phases are repeated until all symbols are different in a current string. Then, the
algorithm outputs the finial dictionary and terminates.

Theorem 2 The running time of LCA*(w) is bounded by O(n log∗n).

proof. By Lemma 2, the time to compute all landmarks is O(log∗n) and it is
clear that other computation is O(n) time for each loop. Moreover, a current
string shrinks in half approximately by single loop of LCA*. Thus, the total
length of strings given to LCA* is bounded by O(n). Hence, the time complexity
is O(n log∗n). Q.E.D.

4.2 Performance analysis

Before the proof of our approximation ratio, we introduce a notion of occurrences
of a substring.

Definition 3 For an occurrence w[i, j] = α, we call it a boundary occurrence if
w[i − 1] �= w[i] and w[j] �= w[j + 1]. In case w[1, j], that is, a prefix of w, it is
also called a boundary occurrence if w[j] �= w[j + 1], and so is in suffixes.
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Lemma 3 Let α be a substring in w satisfying α = w[�, r] = w[�′, r′]. For
any replacement by single loop of LCA*(w), a pair in w[�, r] is replaced iff the
corresponding pair in w[�′, r′] is replaced by a same nonterminal except at most
log∗n pairs in w[�, r] and w[�′, r′].

proof. By Lemma 1 and Lemma 2, for any type 2 metablock, we have following
facts:

1. The final labels consist of at most 6 symbols and any label never repeats.

2. The final label of w[i] depends on at most log∗n symbols to its left.

If w[�, r] and w[�′, r′] are both boundary occurrences, there is a unique
metablock factorization for them, like α = α1 · · ·αm. By the above facts, if
|α| > 2 log∗n, w[�, r] and w[�′, r′] contain at least two landmarks in the same
positions. Let w[� + i] be such the left most landmark and w[� + j] be the right
most landmark. Thus, by the definition of replacement in our algorithm, the
occurrences w[� + i, � + j] and w[�′ + i, �′ + j] are replaced identically.

If w[�, r] is not boundary, the shortest boundary occurrence containing w[�, r]
is formed by x+α1 · · ·αmy+ for x, y ∈ Σ and a metablock αi. In this case, the
replacement of the boundary α1 · · ·αm in w[�, r] and w[�′, r′] are completely
identical since all labels are decided within α1 · · ·αm. Thus, in this case, dis-
agreement of replacement occurs in the last symbol of x+ and y+ only.

Hence, in each case, the replacements of w[�, r] and w[�′, r′] for the same
substring are identical except at most log∗n pairs of them. Q.E.D.

Theorem 3 The worst-case approximation ratio of the size of a grammar pro-
duced by the algorithm LCA* to the size of a minimum grammar is O((log∗n) log n).

proof. Let R be the set of appropriate replacements produced by single loop
of LCA∗(w). Let g be the size of a minimum CFG for w, and let w1 · · ·wk

be the LZ-factorization of w. We denote by #(w)R the number of different
nonterminals produced by R. From the definition of LZ-factorization, any factor
wi occurs in w1 · · ·wi−1, or |wi| = 1.

With lemma 3, any factor wi and its left-most occurrence are compressed into
almost the same strings except log∗n pairs in them. Thus, by the bound of the
number of LZ-factors in Theorem [17], we can obtain the following estimation.

#(w)R = #(w1 · · ·wk−1)R + log∗n
= #(w1 · · ·wk−2)R + 2 log∗n
= O(k log∗n)
= O(g log∗n)

This is the number of different nonterminals produced by single loop ex-
ecution in LCA*(w). Clearly the loop is executed at most O(log n) times.
Therefore, the total number of different nonterminals produced by LCA(w),
that is, the size of CFG is O(g(log∗n) log n). This derives the approximation
ratio. Q.E.D.

The memory space required by LCA*(w) can be bounded by the size of data
structure to answer the membership query: input is a pair AiAj ; output is an
integer k if Ak → AiAj is already created and no otherwise. By Theorem 3,
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the size of a current dictionary D� is bounded by O(g log g) for each � ≥ 1.
Moreover, each symbol Ai in a current string is replaced by a rule of the form
Aj → Ai or Aj → Y Z, where Ai ∈ {Y, Z}. Thus, O((g log g)2)-space algorithm
is obtained by a naive implementation using look up table. Finally we show
that the memory space can be improved to O(g log g).

4.3 Improving the space efficiency

An idea for improving space complexity of the algorithm is to recycle nonter-
minals created in the preceding iteration. Let D(α) be the string obtained by
applying a dictionary D to a string α. Let D1 and D2 be dictionaries such
that any symbol in w is replaced by D1 and any symbol in D1(w) is replaced
by D2. Then, the decoding of the string D2(D1(w)) is uniquely determined,
even if D2 reuses nonterminals in D1 like “A → AB.” Thus, we consider that
the final dictionary D is composed of D1, . . . , D�, where Di is the dictionary
constructed in the ith iteration. Since all symbols in w are replaced within a
same loop in LCA*, the decoding from the final string w′ is uniquely decided
by the semantics Dm(· · ·D1(w′) · · ·) = w. Such a dictionary is computed by the
following function and data structures. Let Di be the set of productions, Ni

the set of alphabet symbols created in the ith iteration, and ki the cardinality
|Ni|. We define the function

fi(x, y) = (x − 1)ki + y for x, y = 1, . . . , ki.

This is a one-to-one mapping from {1, . . . , ki}×{1, . . . , ki} to {1, . . . , k2
i }, and is

used to decide an index of a new nonterminal associated to a pair AxAy , where
Ax denotes the xth created nonterminal in Ni.

The next dictionary Di+1 is constructed from Di, Ni, and fi as follows. In
the algorithm LCA*, there are two cases of replacements: one is for replacements
of pairs, and the other is renaming. We first explain the case of replacements
of pairs. Let a pair AxAy in a current string be decided to be replaced. The
algorithm LCA* computes the integer z = f(x, y), and looks up a hash table
H for z. If H(z) is absent and Ni = {A1, . . . , Ak}, then set Ni = Ni ∪ {Ak+1},
Di = Di ∪ {Ak+1 → AxAy}, H(z) = k + 1, and replace the pair AxAy with
Ak+1. If H(z) = k + 1 is present, then only replace the pair AxAy by Ak+1.
For the case of renaming of a symbol Ax, we can use the nonterminal Ak+1

such that z = fi(x, x) and H(z) = k + 1. The dictionary Di constructed in the
ith iteration can be divided to Di1 and Di2 such that Di1 is the dictionary for
repetitions and Di2 = Di \ Di1 . Thus, we can create all productions without
collisions, and decode a current string wi+1 to the previous string wi by the
manner Di(wi+1) ≡ Di1(Di2(wi+1)) = wi.

Theorem 4 The space required by LCA*(w) is O(g log g) for the size of a
minimum CFG for w.

proof. Let n = |w| and � be the number of iterations of loops executed in
LCA*(w). By theorem 3, the number |Ni| of new nonterminals created in the ith
iteration is O(g log∗n) for each i ≤ �. To decide the index of a new nonterminal
from a pair AxAy, LCA* computes z = fi(x, y), H(z), and k = |Ni| for the
current Ni. Since |z| ≤ O(log n) and the number of different z is O(g log g),
the space for H is O(g log g) and k = O(g log g). Thus, the construction of Di
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Table 1: Performance of compression algorithms: the common lower bound
Ω(n) for the time complexity is omitted, ‘α’ and ‘–’ denote log∗n and unknown,
respectively, and Rytter [17], Welch [21] contains LZ77, LZ78 algorithms by Ziv
and Lempel [23, 24], respectively.

Algorithm Approx. Ratio Space Time
[reference] upper/lower upper/lower upper

proposed α log n / – g log g /log n αn

Charikar[4] log n / – n/n n
Rytter[17] log n / – n/n n

Sakamoto[19] log n / – n/n n

Welch[21]
(

n
log n

) 2
3 /

3
√

n2

log n
n/n n

Larsson[10]
(

n
log n

) 2
3 /

√
log n n/n n

Witten[16]
(

n
log n

) 3
4 / 3√n n/n n

Kieffer[7] – / log log n n/n n

Kieffer[8]
(

n
log n

) 1
2 /

√
n

log n

√
n log n /√

n n

Apostolico[3]
(

n
log n

) 2
3 / 1.37 n log n/n n log2 n

requires only O(g log g) space. We can release whole the memory space for Di

in the next loop. Hence, the total space for constructing D is also O(g log g).
Q.E.D.

4.4 Comparison with related works

In Table 1, we summarize all the results obtained in this study together with
related works on grammar-based compression, where the trivial time complexity
Ω(n) is omitted. In this table, all results concerned with approximation ratio
were proved in [12] as well as the upper/lower bounds of the grammar size by
each algorithm, which directly derives the complexity bounds. In particular,
the reason for Ω(n) space of almost algorithms is due to the data structures
of indexing for substrings. Since our algorithm does not require no index for
substring, the required space depends on the hash table, that is, the grammar
size only.

5 Conclusion

We presented a space-efficient near linear-time algorithm for the smallest CFG
problem. This algorithm guarantees the approximation ratio O((log∗n) log n),
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which is almost O(log n) and the memory space O(g log g) for the minimum
CFG size g of input string. This space bound is considered to be sufficiently
small since Ω(g) space is a lower bound for non-adaptive dictionary-based com-
pression. In addition, it is known that Ω(log n) ≤ g ≤ O( n

logk n ) [12] for k = |Σ|.
The upper bound of memory space is best in the previously known polylog-
approximation algorithms. Practically, production rules for renaming occupy
comparatively large space in final dictionary. However it is still open whether it
is possible to reduce such renaming production rules preserving the time/space
complexity.
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