
Optimizing XML Compression in XQueC

Andrei Arion1∗, Angela Bonifati2, Ioana Manolescu3, Andrea Pugliese4

1 SCORT SA, France
2 ICAR CNR, Italy

3 INRIA Saclay–Île-de-France, France
4 DEIS – University of Calabria, Italy

Abstract

We present our approach to the problem of optimizing compression choices in the context
of the XQueC compressed XML database system. In XQueC, data items are aggregated into
containers, which are further grouped to be compressed together. This way, XQueC is able to
exploit data commonalities and to perform query evaluation in the compressed domain, with the
aim of improving both compression and querying performance. However, different compression
algorithms have different performance and support different sets of operations in the compressed
domain. Therefore, choosing how to group containers and which compression algorithm to apply
to each group is a challenging issue. We address this problem through an appropriate cost model
and a suitable blend of heuristics which, based on a given query workload, are capable of driving
appropriate compression choices.

1 Introduction

XML compression has gained prominence recently because it counters the disadvantage of the
“)5(verbose” representation XML gives to data. OurXQueC system is a full-fledged data management
system for compressed XML data that addresses the problem of embedding compression into XML
databases without degrading query performance [4, 5, 6, 7]. XQueC is capable of covering a
significant fragment of XQuery while providing efficient query processing on compressed XML
data.

The storage model we designed for XQueC leverages a proper data fragmentation strategy,
which allows the identification of the units of compression (granules) for the query processor; these
are also manipulated at the physical level by the storage backend. This fragmented model supports
fine-grained access to individual data items, providing the basis for diverse efficient query evaluation
strategies in the compressed domain. It is also transparent enough to process complex XML queries.

In the XQueC storage model, data nodes found under the same path are grouped into a single
container. Containers are further aggregated into groups, which allow their data commonalities
to be exploited, thus allowing both compression and querying to be improved. However, when
deciding how to group containers, several other factors must be considered that impact the final
compression ratio and the query performance. For instance, if we take into account decompression
times, our choice of how to group containers should ensure that containers belonging to the same

∗This work has been performed while the author was affiliated with the INRIA Saclay.

Dagstuhl Seminar Proceedings 08261
Structure-Based Compression of Complex Massive Data
http://drops.dagstuhl.de/opus/volltexte/2008/1692

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62913687?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

group also appear together in query predicates. In fact, it is always preferable to perform the
evaluation of a predicate within the compressed domain; this can be done if the containers involved
in the predicate belong to the same group and are compressed with an algorithm supporting that
predicate in the compressed domain. XQueC addresses these issues by employing a cost model and
applying a suitable blend of heuristics to make the final choice. In [4, 5, 7] we demonstrated the
utility of XQueC by means of thorough experimental assessments on a variety of XML datasets
and by comparing it with available competitor systems.

In this paper we briefly recall XQueC’s storage model then present our approach to making a
cost-based choice of the compression granules and corresponding compression algorithms.

2 Storing XML data in XQueC

XQueC splits an XML document into three data structures: a structure tree, a set of containers and
a structure summary. Across all these structures, XQueC encodes element and attribute names
using a simple binary encoding. The structure tree is encoded as a set of ID sequences, each
associated with a different root-to-node path in the tree. To encode the IDs in all its storage
structures, XQueC uses conventional structural identifiers consisting of triples [pre, post, depth] as
in [1, 9, 10, 16]. The pre (post) number reflects the ordinal position of the element within the
document, when traversing it in preorder (postorder). The depth number reflects the depth of the
element in the XML tree. This node identification scheme allows the direct inference of structural
relationship between two nodes using only their identifiers.

Similarly, the containers store together all data values found under the same root-to-leaf path
in the document. A container is realized as a sequence of records, each consisting of a compressed
value, and a number representing the position of its parent in the corresponding ID sequence of the
tree structure.

Finally, the storage model includes a structure summary, i.e., an access support structure storing
all the distinct paths in the document. The structure summary of an XML document d is a tree
whose nodes uniquely represent the paths in d, that is, for each distinct path p in d, the summary
has exactly one node on path p. For a textual node under path p, the summary has a node labeled
/p/#text, whereas for an attribute node a under path p, the summary has a node labeled /p/@a. This
establishes a bijection between paths in an XML document and nodes in the structure summary.
Each leaf node in the structure summary uniquely corresponds to a container of compressed values.

Figure 1 outlines XQueC’s architecture. The loader decomposes the XML document into ID
sequences and containers, and builds the structure summary. The compressor partitions the data
containers and decides which compression algorithm to apply (see Section 3). This phase produces a
set of compressed containers. The repository stores the storage structures and provides data access
methods and a set of compression functions working at runtime on constant values appearing in the
query. Finally, the query processor includes a query optimizer and an execution engine providing
the physical data access operators.

3 Optimizing compression configurations

The compression of data containers is definitely more efficient if appropriate container groups are
considered and compressed together. There may exist multiple grouping choices, which have a

2

Loader

Compressor

Execution engine

Query optimizer

Structure

summary
ID sequences Containers

XML

data

Compressed repository

XML

results

XQuery

query

Figure 1: Architecture of the XQueC prototype

non-trivial impact on the size of compressed data and on the achievable query performance. As
explained in the rest of this section, XQueC leverages a suitable cost model to drive the final choice.

3.1 Rationale for a cost model

The containers include a large share of the compressible XML data, i.e., the values, thus making
proper choices about compressing them is a key issue for an efficient XML compressor [14]. Similarly
to other non-queryable XML compressors, XQueC looks at the data commonalities to choose the
container’s compression algorithm. But how do we know that a compression algorithm is suitable
for a container or a set of containers? In principle, we could use any eligible compression algorithm,
but one with nice properties is of course preferable. Each algorithm has specific computational
properties, which may lead to different performance depending on the data sets actually used and
on their similarities. In particular, the properties of interest for our purpose were the decompression

time, which strongly influences the query response times over compressed data, the compression

factor itself, and the space usage of the source models built by the algorithm. In fact, a container
can be compressed individually or along with other containers; in the latter case, a group of
containers share the same source model (i.e., the support structures used by the algorithm for both
compressing and decompressing data). Grouping containers might be convenient, e.g., when they
exhibit high data similarity. Therefore, the space usage of the source model matters as much as the
space usage of containers themselves and the decompression time; combining these three factors
makes the choice even more challenging.

Besides the properties discussed above, each compression algorithm is also characterized by the
supported selections and/or joins in the compressed domain. There are several operations one can
perform with strings, ranging from equality/inequality comparisons to prefix-matching and regular
expression-matching; we give here a brief classification of compression algorithms from the point of
view of querying XML data. We distinguish among the following kinds of compressors:

• equality-preserving compressors: these algorithms guarantee that equality selections and joins
can be applied in the compressed domain. For instance, the Huffman algorithm supports

3

both equality selections and equality joins in the compressed domain. Same holds for ALM,
Extended Huffman [15], Arithmetic [19] and Hu-Tucker [11].

• order-preserving compressors: these algorithms guarantee that selections and joins using an
inequality operator can be evaluated in the compressed domain. Examples of these algorithms
are ALM, Hu-Tucker and Arithmetic.

• prefix-preserving compressors: these algorithms guarantee that prefix selections (such as “c
like pattern*”) and joins (“c1 like c2*”) can be evaluated in the compressed domain. This
property holds for the Huffman algorithm, but does not hold for ALM.

• regular expression-preserving compressors: these algorithms allow the evaluation of a selection
of the form “c like regular-expression” in the compressed domain. Note that if an algorithm
allows matching a regular expression, it also allows the determination of inequality selections,
as these can be equivalently expressed as regular expression selections. An example of an
algorithm supporting regular expression selections is Extended Huffman.

The final choice of the algorithms to employ for the containers is driven by the predicates
that are actually evaluated in the queries. The specific advantage of XQueC over similar XML
compressors is that XQueC exploits query workloads to decide how to compress the containers in
a way that supports efficient querying. Besides selection and join predicates, the cost model also
takes into account top-level projections (i.e., those present in RETURN XQuery clauses), as they
enforce the decompression of the corresponding containers. Query workloads have been already
successfully employed in several performance studies, from multi-query optimization to XML-to-
relational mappings [8, 17]. To the best of our knowledge, this is the first time they are employed
for deciding how to compress data.

We now illustrate the multiple factors that influence the compression and querying performances
by means of an example. Let us consider three containers, namely c1, c2 and c3, whose size are
500KB, 1MB and 100MB, respectively. Assume that the workload features an inequality join
between c1 and c2 and a prefix join between c1 and c3, whereas containers c2 and c3 are never
compared by the workload queries (Figure 2(a)). To keep the example simple, we disregard top-
level projections.

If we aim at minimizing only the storage costs (thus disregarding the decompression costs)
among the multiple alternatives (i.e., keeping the containers separated versus aggregating them in
all possible ways), we would prefer to compress each container separately (Figure 2(b)). Indeed,
making groups of containers often increases both the sizes of compressed containers and source
models, because of the decreased inter-containers similarity within each group. In fact, if for
instance c1 and c2 contain strings over two disjoint alphabets of two symbols each, and two separate
source models are built, c1 and c2 are likely to be encoded with one bit per symbol. If instead
a single source model is used, two bits per symbol are required, thus degrading the compression
factor. A second relevant decision to be made is that of choosing the right algorithm for each
separate container. Since only the storage cost matters, this algorithm should be the one with the
best compression factor.

In contrast, if we aim at minimizing only the decompression costs, but keeping the advantage of
the reduced amount of data to be processed, then we would have to find a compression algorithm
that supports both inequality and prefix joins in the compressed domain. If such an algorithm
is available, the best choice is the one that aggregates all containers into one group, compressed

4

(b)

(c)

Inequality

join

Prefix

join

(a)

C2C1

C3

Inequality

join

Prefix

join

(a)

C2C2C1C1

C3C3

C3C3

C1
C2C2C2

(d)

C1C1
C2C2

C3C3

C3C3

C1C1
C2C2

(e)

C3C3

C1C1
C2C2C2

Figure 2: Sample workload and possible partitioning alternatives

with that algorithm (Figure 2(c)). Such a choice is optimal as it would nullify the decompression
cost. Note that this is already in conflict with the above choice of minimizing only the storage
costs. If instead such an algorithm is not available, and there is one order-preserving algorithm
for inequality joins and a prefix-preserving one for prefix joins, two possible alternatives arise:
grouping c1 together with c2 and compressing them with the order-preserving algorithm, leaving
c3 as a singleton; or, grouping c1 together with c3 and compressing them with the prefix-preserving
one, leaving c2 as a singleton. The first choice saves decompression of a very large container, i.e.,
c3, thus making it preferable (Figure 2(d)).

The most general case is that of minimizing both storage and decompression costs. For the
containers above, there are again many possible alternatives. If the prefix-preserving algorithm
matches the one that minimizes the storage costs, the choice of grouping is straightforward –
leaving c2 as a singleton (Figure 2(e)). On the other hand, if the two algorithms do not match, or
if the largest container is c2, the scenario becomes increasingly more complex.

3.2 Costs of compression configurations

Our proposed cost model allows us to evaluate the cost of a given compression configuration– that
is, a partition of the set of containers together with the assignment of a compression algorithm
to each set in the partition. To do this, the cost model must also know the set of available
compression algorithms (properly characterized with respect to certain types of comparison doable
in the compressed domain) and the query workload.

More formally, we first define a similarity matrix F , that is a symmetric matrix whose generic
element Fi,j, with 0 ≤ Fi,j ≤ 1, is the normalized similarity degree between containers ci and cj .
A compression algorithm a is characterized by a tuple 〈a.cd(F), a.cs(F), a.cx(F, σ), a.L〉 where:

• the decompression cost a.cd(F) is a function estimating the cost of retrieving an uncompressed
symbol from its compressed representation using algorithm a;

• the storage cost a.cs(F) is a function estimating the average cost of storing the compressed
representation of a symbol using a;

5

• the source model storage cost a.cx(F, σ) is a function estimating the cost of storing the aux-
iliary structures needed to represent the source model of a set of containers sized σ using
a;

• the algorithmic properties a.L are the kinds of comparisons supported by a in the compressed
domain.

Note that each cost component is a function of the similarity among the containers. This is
due to the fact that such costs always depend on the nature of data enclosed in the containers
compressed together, i.e., on the similarity among them (see the example in the previous section).
Observe also that, as opposed to the containers storage cost, the source model storage cost is not
symbol-specific, but it refers to an entire source model. This is due to the fact that the overhead
of storing the source model is seldom linear with respect to the container’s size [15].

The query workload W, containing XQuery queries, is modeled using two sets, cmpW and
projW , that reflect selections and joins among containers, and top-level projections in W:

• cmpW is a set of tuples of the form 〈q, i, j, l〉, where q ∈ W, i ∈ {1, . . . , |C|}, j ∈ {0, . . . , |C|}
are container indexes (index 0 represents constant values for selections), and l ∈ L; each tuple
denotes a comparison of kind l in q between containers ci and cj ;

• projW is a set of tuples of the form 〈q, i〉, where q ∈ W, and i ∈ {1, . . . , |C|} is a container
index; each tuple in projW denotes a projection on container ci in q.

Note thatW could easily be extended to provide information about the relative query frequency.
For instance, suppose that a query q1 features a join between containers c1 and c2, and a query
q2 has another join between containers c3 and c4. In such a case, the corresponding elements of
cmpW would be 〈q1, 1, 2, eqj〉 and 〈q2, 3, 4, eqj〉. If we also know from W that q1 is three times
more frequent than q2, we simply add duplicates of 〈q1, 1, 2, eqj〉 in cmpW . This corresponds to
viewing cmpW as a bag instead of a set. The same applies to projW .

Summarizing, the cost model input consists of (see Table 1 for the symbols used):

• a set C of textual containers;

• a set A of compression algorithms;

• a query workload W;

• a set L of algorithmic properties, denoting the kinds of comparisons considered;

• a compression configuration s = 〈P, alg〉, consisting of a partition P of C, and a function
alg : P → A that associates a compression algorithm to each set in P .

The cost function, when evaluated on a configuration s, sums up different costs: the cost of
decompression needed to evaluate comparisons and projections inW, the compression factors of the
different algorithms, and the cost of storing their source models. The overall cost of a configuration
s with respect to a workload W is calculated as a weighted sum of the costs seen above (sets C, A,
and L are implicit function parameters):

cost(s, W) = α · decompW(s) + β · scc(s) + γ · scm(s)

6

C Set of textual containers

A Set of compression algorithms

W Query workload

P Partition of C
p Set in P

L Kinds of comparisons considered

alg Compression algorithm assignment function, P → A
s Compression configuration 〈P, alg〉
l Kind of comparison in L
a Algorithm in A
F Similarity matrix

Fp Similarity matrix projected over the containers in p

a.cd(F) Cost of decompressing a symbol using the compression algorithm a

a.cs(F) Cost of storing a symbol using the compression algorithm a

a.cx(F, σ) Cost of storing the auxiliary structures for σ symbols

using the compression algorithm a

cmpW Set of comparisons in W
projW Set of top-level projections in W

dcomp(s, i, j, l) Decompression cost due to a comparison of kind l

between containers ci and cj

dproj(q, s, i) Decompression cost due to a projection in query q on container ci

Table 1: Summary of symbols used in the cost model

where decompW (s) represents the decompression cost incurred by s, scc(s) represents the cost of
storing the compressed data, scm(s) represents the cost of storing the source models, and α, β, and
γ, with α+β +γ = 1, are suitable cost weights that measure the relative importance of the various
components. Some manual intervention may occur here, i.e. to determine the actual values of these
weights, which may depend on the application needs or the user preferences. In the following, we
separately characterize each component of the cost function.

The containers storage cost for each set p ∈ P is computed by multiplying the number of
symbols in p by the storage cost incurred by the algorithm p is compressed with. Such costs are
influenced by the similarity among the containers in p, so they are evaluated on the projection of
FC with respect to the containers in p (denoted as Fp). Thus, the containers storage cost is

scc(s) =
∑

p∈P

(alg(p).cs(Fp) ·
∑

c∈p

|c|)

where |c| denotes the total number of symbols appearing in container c. Similarly, the source model
structure storage cost is

scm(s) =
∑

p∈P

alg(p).cx(Fp,
∑

c∈p

|c|).

The decompression cost is evaluated by summing up the costs associated with both comparisons
and projections in W. To give an intuition, let us first consider a generic comparison occurring
between two containers ci and cj . The associated decompression cost is zero if ci and cj share

7

the same source model and the algorithm they are compressed with supports the required kind of
comparisons in the compressed domain. A non-zero decompression cost occurs instead when one
of the following conditions holds:

• ci and cj are compressed using different algorithms;

• ci and cj are compressed using the same algorithm but different source models;

• ci and cj are compressed using the same algorithm and the same source model, but the
algorithm does not support the required kind of comparisons in the compressed domain.

For a selection over a container ci, a zero decompression cost occurs only if the compression
algorithm for ci supports the required kind of selection in the compressed domain. In such a case,
the constant value will be compressed using ci’s source model and the selection will be directly
evaluated in the compressed domain. If instead the compression algorithm for ci does not support
the selection in the compressed domain, a non-zero decompression cost must be taken into account.
To formalize this, we define a function dcomp that, given a compression configuration, calculates
the cost of decompressing pairs of containers or single containers, when involved in selections. The
pseudocode for function dcomp is shown in Figure 3, where function set(P, c) returns the set in P

containing c.

function dcomp(s: compression configuration,
i ∈ {1, . . . , |C|} and j ∈ {0, . . . , |C|}: container indexes,
l ∈ L: comparison type): return a decompression cost

1 If j 6= 0 // join predicate
2 p′ ← set(P, ci); p′′ ← set(P, cj)
3 If p′ 6= p′′ Or l 6∈ alg(p′).L
4 Return |ci| ∗ alg(p′).cd(Fp′) + |cj | ∗ alg(p′′).cd(Fp′′)
5 Else // selection predicate
6 p← set(P, ci)
7 If l 6∈ alg(p′).L
8 Return |ci| ∗ alg(p).cd(Fp)
9 Return 0

function dproj(s: compression configuration,
i ∈ {1, . . . , |C|}: container index): return a decompression cost

1 p← set(P, ci)
2 Return |ci| ∗ alg(p).cd(Fp)

Figure 3: Decompression cost for comparison predicates and top-level projections

Similarly, function dproj, given a compression configuration, calculates the decompression cost
associated with the top-level projection of a container (Figure 3).

The overall decompression cost of a configuration s is computed by simply summing up the
costs associated to each comparison and projection in the workload W. The cost is therefore given
by the following formula:

decompW(s) =
∑

〈q, i, j, l〉∈cmpW

dcomp(s, i, j, l) +
∑

〈q, i〉∈projW

dproj(s, i)

8

Note that, during the evaluation of decompW , we keep track of the containers that have already
been decompressed, to make sure that the decompression cost of a container is taken into account
only once.

3.3 Optimizing compression choices

The problem we deal with is that of finding the configuration incurring the minimum cost, pro-
vided the query workload (W), a set of containers (C), and a set of compression algorithms (A).
To the best of our knowledge, this problem (which in principle faces a search space of

∑
P∈P |A|

|P |,
with |P| being the set of possible partitions of C) cannot be reduced to any well-understood com-
binatorial optimization problem. Thus, we have designed some simple and fast heuristics that
explore the search space to quickly find suitable compression configurations: a Greedy heuristic
which starts from a naive initial configuration and makes local greedy optimizations; a Group-based

greedy heuristic that adds a preliminary step to the previous one, aiming at improving the initial
configuration; a Clustering-based heuristic that applies a classical clustering algorithm together
with a cost-based distance measure. These heuristics are combined to obtain suitable compression
configurations. This is feasible because all the heuristics are quite efficient in practice.

Greedy heuristic. We have devised a greedy heuristics that starts from a naive initial configu-
ration, s0, and improves over it by merging sets of containers in the partition. The main idea here
is that of exploiting each comparison in W to enhance the current configuration; at each iteration,
the heuristic picks the comparison that involves the maximum number of containers (improving
over the heuristic presented in [5] that randomized the choice of the comparison). Figure 4 shows
the pseudocode of this heuristic. Steps 1 to 19 build the initial configuration by examining all the
comparisons in the workload. Then, steps 20 to 32 examine the cost of possible new configurations
that are built by merging the groups obtained in previous steps but using a different algorithm for
them. The algorithm halts when all comparisons in the workload have been inspected.

Group-based greedy heuristic. The group-based greedy heuristic is a variant of the greedy
one, and relies on the simple intuition that textual data marked by the same tag will likely have
similar text content. Indeed, this heuristic treats groups of containers corresponding to paths
ending with the same tag as a single container; this may lead to the building of a less trivial initial
configuration than the one produced by the greedy heuristic. The latter is eventually applied
on this initial configuration; thus, the pseudocode looks like the one in Figure 4, except for the
pre-processing step.

Clustering-based heuristic. Since the problem of computing the compression configurations
can be also thought of as a clustering problem, we designed a heuristic that employs a simple
clustering algorithm, i.e., the agglomerative single-link algorithm [13]. In our case, the distance
between pairs of containers must reflect the costs incurred when compressing those containers with
different algorithms. This cost, in turn, depends on the containers’ actual content. In particular,
the distance between containers is proportional to the cost for decompressing the containers and
storing them and their corresponding auxiliary structures. Moreover, for each algorithm, a non-null
decompression cost occurs whenever the two compressed containers are involved in comparisons not
supported by that compression algorithm (in the compressed domain). The distance can thus be
formalized as follows:

9

function Greedy(W : query workload): return a compression configuration
1 W ′ ←W ; s0 = 〈P0, alg0〉
2 Repeat
3 ci, cj ← containers having the maximum number of comparisons in W ′

4 W ′ ←W ′ \ {comparisons involving both ci and cj}
5 If ∄p ∈ P0|ci ∈ p or cj ∈ p

6 add the set pn = {ci, cj} to P0

7 W ←W \ {comparisons involving both ci and cj}
8 A← set of algorithms capable of doing the maximum number of comparisons
9 between ci and cj in the compressed domain
10 If |A| = 1
11 a← the algorithm in A

12 Else
13 a← the algorithm in A minimizing the expression
14 α · a.cd(Fpn) + β · a.cs(Fpn) + γ · a.cx(Fpn ,

∑
c∈pn |c|)

15 Make alg0 associate pn with a

16 until W ′ = ∅
17 For each container c|∄p ∈ P0, c ∈ p

18 P0 ← P0 ∪ {c}
19 Make alg0 associate {c} with an algorithm a chosen as at line 8
20 scurr ← s0

21 Repeat
22 pred← predicate in W having the maximum number of occurrences
23 ci, cj ← containers involved in pred

24 p′ ← set(P, ci); p′′ ← set(P, cj)
25 P ′ ← Pcurr \ p′ \ p′′ ∪ {p′ ∪ p′′}
26 For each ai ∈ A
27 algai

← algcurr

28 Make algai
associate pu with ai

29 sai
← 〈P ′, algai

〉
30 scurr ← argmins∈{scurr , sa1

, ..., sa|A|
}cost(s)

31 W ←W \ { comparisons involving two containers in pu}
32 until W = ∅
33 Return scurr

Figure 4: Greedy heuristic

10

function Clustering(W : query workload): return a compression configuration
1 distmin, distmax ← minimum and maximum distances among two containers in C
2 Divide the range [distmin, distmax] into equally-sized sub-ranges
3 For each sub-range r

4 If ∃ containers ci, cj |dist(ci, cj) ∈ r

5 P ← partition of C where containers ci, cj are in the same set
only if dist(ci, cj) is less or equal to the lowest value in r

6 For each p ∈ P

7 Make function alg associate p with algorithm a

that minimizes α · a.cd(Fp) + β · a.cs(Fp) + γ · a.cx(Fp,
∑

c∈p |c|)
8 scurr ← argmins∈{scurr , 〈P,alg〉}cost(s)
9 Return scurr

Figure 5: Clustering-based heuristic

dist(ci, cj) =

P
a∈A[α · uW(a, i, j) · a.cd(F{ci,cj}

) + β · a.cs(F{ci,cj}
) + γ · a.cx(F{ci,cj}

, |ci| + |cj |)]

|A|

where uW(a, i, j) is the number of comparisons in W between ci and cj that the algorithm a does
not support in the compressed domain.

The pseudocode of the clustering-based heuristic is reported in Figure 5. At first, it chooses a
number of distance levels among the containers. A distinct partition is generated for each distance
level, letting the containers with distance less or equal to the chosen level be in the same set.
This process leads to create partitions having decreasing cardinality, as the sets tend to be merged.
Obviously, a singleton partition is eventually produced at a distance level greater than the maximum
distance between containers. Since the cost function is invoked as many times as the number of
distance levels, the chosen number of levels stems from a trade-off between execution times and
probabilities of finding good configurations. Deciding the number of levels is empirically done,
and implies some manual tuning, which is not required in the other heuristics. Finally, for each
generated partition, the heuristic assigns to each set in the partition the algorithm that locally
minimizes the costs.

4 Conclusions

In this paper we presented our approach to the problem of optimizing compression choices in the
context of the XQueC compressed XML database system. By choosing how to group containers and
which compression algorithm to apply to each group, XQueC is able to exploit data commonalities
and to perform query evaluation as much as possible in the compressed domain. This improves
both compression and querying performance. We addressed the problem of optimizing compression
in XQueC through an appropriate cost model and a suitable blend of heuristics which, based on a
given query workload, are capable of driving appropriate compression choices.

References

[1] S. Al-Khalifa, H.V. Jagadish, J.M. Patel, Y. Wu, N. Koudas, and D. Srivastava. Structural Joins:
A Primitive for Efficient XML Query Pattern Matching. In Proceedings of the 18th International

11

Conference on Data Engineering, pages 141–152, San Jose, CA, USA, March 2002. IEEE.

[2] G. Antoshenkov. Dictionary-Based Order-Preserving String Compression. VLDB Journal, 6(1):26–39,
1997.

[3] Apache custom log format. http://www.apache.org/docs/mod/mod log config.html, 2004.

[4] A. Arion, A. Bonifati, G. Costa, S. D’Aguanno, I. Manolescu, and A. Pugliese. XQueC: Pushing Queries
to Compressed XML Data (demo). In Proceedings of 29th International Conference on Very Large Data

Bases, pages 1065–1068, Berlin, Germany, 2003. Morgan Kaufmann.

[5] A. Arion, A. Bonifati, G. Costa, S. D’Aguanno, I. Manolescu, and A. Pugliese. Efficient Query Evalua-
tion over Compressed XML Data. In Proceedings of the International Conference on Extending Database

Technologies, pages 200–218, Heraklion, Grece, 2004.

[6] A. Arion, A. Bonifati, I. Manolescu, and A. Pugliese. Path summaries and path partitioning in modern
XML databases. In Proceedings of the International World Wide Web Conference, pages 1077–1078,
2006.

[7] A. Arion, A. Bonifati, I. Manolescu, and A. Pugliese. Xquec: A query-conscious compressed xml
database. ACM Trans. Internet Techn., 7(2), 2007.

[8] P. Bohannon, J. Freire, P. Roy, and J. Simeon. From XML Schema to Relations: A Cost-based Approach
to XML Storage. In Proceedings of the 18th International Conference on Data Engineering, pages 64–76,
San Jose, CA, USA, 2002. IEEE.

[9] T. Grust. Accelerating XPath location steps. In Proceedings of the 2002 ACM SIGMOD International

Conference on Management of Data, pages 109–120, Madison, WI, USA, 2002. ACM.

[10] A. Halverson, J. Burger, L. Galanis, A. Kini, R. Krishnamurthy, A.N. Rao, F. Tian, S. Viglas, Y. Wang,
J.F. Naughton, and D.J. DeWitt. Mixed Mode XML Query Processing. In Proceedings of 29th Interna-

tional Conference on Very Large Data Bases, pages 225–236, Berlin, Germany, 2003. Morgan Kaufmann.

[11] T. C. Hu and A. C. Tucker. Optimal Computer Search Trees And Variable-Length Alphabetical Codes.
SIAM Journal of Applied Mathematics, 21(4):514–532, 1971.

[12] D. A. Huffman. A Method for Construction of Minimum-Redundancy Codes. In Proc. of the IRE,
pages 1098–1101, 1952.

[13] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review. ACM Computing Surveys,
31(3):264–323, 1999.

[14] H. Liefke and D. Suciu. XMILL: An Efficient Compressor for XML Data. In Proceedings of the 2000

ACM SIGMOD International Conference on Management of Data, pages 153–164, Dallas, TX, USA,
2000. ACM.

[15] E.S. De Moura, G. Navarro, N. Ziviani, and R. Baeza-Yates. Fast and Flexible Word Searching on
Compressed Text. ACM Transactions on Information Systems, 18(2):113–139, April 2000.

[16] S. Paparizos, S. Al-Khalifa, A. Chapman, H. V. Jagadish, L. V. S. Lakshmanan, A. Nierman, J. M.
Patel, D. Srivastava, N. Wiwatwattana, Y. Wu, and C. Yu. TIMBER:A Native System for Querying
XML. In Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data,
page 672, San Diego, CA, USA, 2003. ACM.

[17] P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe. Efficient and extensible algorithms for multi query
optimization. In Proceedings of the 2000 ACM SIGMOD International Conference on Management of

Data, May 16-18, 2000, Dallas, Texas, USA, pages 249–260, 2000.

[18] University of Washington’s XML repository. Available at www.cs.washington.edu/research/xmldatasets,
2004.

[19] I. H. Witten. Arithmetic Coding For Data Compression. Communications of ACM, pages 857–865,
1987.

12

