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Abstract

We outline in this paper the main contributions of the XQueC project. XQueC,

namely XQuery processor and Compressor, is the first compression tool to seamlessly

allow XQuery queries in the compressed domain. It includes a set of data structures,

that basically shred the XML document into suitable chunks linked to each other, thus

disagreeing with the ’homomorphic’ principle so far adopted in previous XML com-

pressors. According to this principle, the compressed document is homomorphic to the

original document. Moreover, in order to avoid the time consumption due to compress-

ing and decompressing intermediate query results, XQueC applies ‘lazy’ decompression

by issuing the queries directly in the compressed domain.

Terms: XML databases, XML compression
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1 Introduction

An increasing amount of data on the Web is now available as XML, either being directly

created in this format, or exported to XML from other formats. XML documents typically

exhibit a high degree of redundancy, due to the repetition of element tags, and an expensive

encoding of the textual content. As a consequence, exporting data from proprietary formats

to XML typically increases its volume significantly. For example, [LS00] shows that specific

format data, such as Weblog data [APA04] and SwissProt data [UWX04], once XML-ized

grow by about 40%.

The redundancy often present in XML data provides opportunities for compression. In

some applications (e.g., data archiving), XML documents can be compressed with a general-

purpose algorithm (e.g., GZIP), kept compressed, and rarely decompressed. However, other
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applications, in particular those frequently querying compressed XML documents, cannot

afford to fully decompress the entire document during query evaluation, as the penalty to

query performance would be prohibitive. Instead, decompression must be carefully applied

on the minimal amount of data needed for each query.

With this in mind we have designed XQueC, a full-fledged data management system for

compressed XML data. XQueC is equipped with a compression-compliant storage model for

XML data, which allows many storage options for the query processor. The XQueC storage

model leverages a proper data fragmentation strategy, which allows the identification of the

units of compression (granules) for the query processor. These units are also manipulated

at the physical level by the storage backend.

XQueC’s data fragmentation strategy is based on the idea of separating structure and

content within an XML document. It often happens that data nodes found under the same

path exhibit similar and related content. Therefore, it makes sense to group all such values

into a single container and to decide upon a compression algorithm once per container. The

idea of using data containers has been borrowed from the XMill project [LS00]. However,

whereas XMill compressed and handled a container as a whole, in XQueC each container

item (corresponding to a data node) is individually compressed and accessible. The contain-

ers are key to achieving good compression as the PCDATA of a document affects the final

document compression ratio more than the tree of tags (which is typically only 20%-30%

of the overall compressed document size).

XQueC’s fragmented storage model supports fine-grained access to individual data

items, providing the basis for diverse efficient query evaluation strategies in the compressed

domain. It is also transparent enough to process complex XML queries. By contrast, other

existing XML queryable compressors exploit coarse-grained compressed formats, thus only

allowing a single top-down evaluation strategy.

In the XQueC storage model, containers are further aggregated into groups, which allow

their data commonalities to be exploited, thus allowing both compression and querying

to be improved. In addition to the space usage of compressed containers itself, there are

several other factors that impact the final compression ratio and the query performance.

Consider for instance two containers: if they belong to the same group, they will share

the same source model, i.e., the support structure used by the algorithm (e.g., a tree in

the case of the Huffman algorithm); if instead they belong to separate groups, they have

separate source models, thus always requiring decompression in order to compare their

values. Therefore, the grouping method impacts both the containers space usage and the

decompression times.

A proper choice of how to group containers should ensure that containers belonging to

the same group also appear together in query predicates. Indeed, it is always preferable to

perform the evaluation of a predicate within the compressed domain; this can be done if the

containers involved in the predicate belong to the same group and are compressed with an al-

gorithm supporting that predicate in the compressed domain. Information about predicates

can be inferred by looking at available query workloads. Moreover, different compression

algorithms may support different kinds of predicates in the compressed domain: for in-

stance, the Huffman algorithm [Huf52] allows the evaluation of equality predicates, whereas
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the ALM algorithm [Ant97] supports both equality and inequality predicates. XQueC ad-

dresses these issues by employing a cost model and applying a suitable blend of heuristics

to make the final choice.

Since XQueC is capable of carefully balancing different compression performance as-

pects, it can be considered as a full-fledged compressed XML database, rather than a simple

compression tool. In summary, XQueC is the first queryable XML database management

system capable of:

• exploiting a storage model based on a fragmentation strategy that supports complex

XML queries and enables efficient query processing;

• compressing XML data and querying it as much as possible in the compressed domain;

• making a cost-based choice of the compression granules and corresponding compres-

sion algorithms, possibly based on a given query workload.

We demonstrate the utility of XQueC by means of a wide set of experimental results on

a variety of XML datasets and by comparing it with available competitor systems.

The remainder of the paper is organized as follows. Section 2 discusses the related

literature and presents a summary of the differences among XQueC and the available XML

compression tools. Section 3 illustrates the XQueC storage model.

2 Related Work

Compression has long been recognized as a useful means to improve the performance of

relational databases [CGK00, WKHM00, AYJ00]. However, the results obtained in the

relational domain are only partially applicable to XML. We examine in this section the

existing literature on compression as studied for relational databases, explaining to what

extent it might or might not be applicable to XML, and then survey the existing tools for

compression and querying of XML data [NLC06].

2.1 Compression in relational databases

First of all, let us note that the interest in compressing relational data has focused primarily

on numerical attributes. String attributes, which are less frequent in relational schemas,

have received much less attention. In contrast, string content is obviously critical in the

XML context. For example, within the TPC-H [Tra99] benchmark schema, only 26 of 61 at-

tributes are strings, whereas, within the XMark [SWK+02] benchmark for XML databases,

29 out of the 40 possible element content (leaf) nodes represent string values.

Studies of compression for relational databases include [CGK00, GRS98, Gra93, Gre99,

WKHM00]. The focus of these works has been on (i) effectively compressing terabytes

of data, and (ii) finding the best compression granularity (field-, block-, tuple-, and file-

level) from a query performance perspective. [WKHM00] discusses light-weight relational

compression techniques oriented to field-level compression, while [Gre99] uses both record-

level and field-level encodings. Unfortunately, field-level and record-level compression do
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not translate directly to the XML context. [GRS98] proposes an encoding, called FOR

(frame of reference), to compress numeric fact tables fields, that elegantly blends page-at-

a-time and tuple-at-a-time decompression. Again, their results clearly do not translate to

XML.

These papers have also studied the impact of compression on the query processor and

the query optimizer. While Goldstein et al. [GRS98] applies compression to index struc-

tures, such as B-trees and R-trees, to reduce their space usage, [WKHM00] discusses

how to modify the relational query processor, the storage manager, and the query opti-

mizer in presence of field-level compression. [CGK00] focuses on query optimization for

compressed relational databases, by introducing transient decompression, i.e., intermediary

results are decompressed (e.g., in order to execute a join in the compressed domain), then

re-compressed for the rest of the execution. As XQueC does for XML data, both [CGK00]

and [WKHM00] address the problem of incorporating compression within databases in the

presence of possibly poor decompression performance, which may outweigh the savings due

to fewer disk accesses.

A novel lossy semantic compression algorithm oriented toward relational data mining

applications is presented in [JNOT04]. Finally, compression in a data warehouse setting

has been applied in commercial DBMS products such as Oracle [PP03]. The recent advent

of the concept of Web mart (Web-scale structured data warehousing, currently pursued by

Microsoft, IBM and Sun) leads to the possibility that the interest of compression for data

warehouses will shift from the relational model to XML in the near future.

2.2 Non-queryable compressors for XML databases

XMill [LS00] is a pioneering system for efficiently compressing XML documents. It is based

on the principle of separately compressing the values and the document tags. Values are

assigned to containers in a default way (one container for each distinct element name) or,

alternatively, in a user-driven way. In order to achieve both maximum compression rate

and time, XMill may use a customized semantic compressor, and the obtained result may

be re-compressed with either GZIP or BZIP2 [BZI02].

XMLZIP [XML99] compresses an XML document by clustering subtrees from the root

to a certain depth. This does not allow the exploitation of redundancies that may appear

below this fixed level, and hence some compression opportunities are lost.

Another query-oblivious compressor which exploits the XML hierarchical structure is

XMLPPM [Che01]. It implements ESAX, an extended SAX parser, which allows the online

processing of documents. XMLPPM does not require user input, and can achieve better

compression than XMill in the default mode. However, it still represents a relatively slow

compressor when compared to XMill. A variant of XMLPPM that looks at the DTD to

improve compression has been recently presented [Che05].

The three compressors above focus on achieving the maximum compression for XML

data and are not transparent to queries.
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2.3 Queryable compressors for XML databases

Our work is most directly comparable with queryable XML compression systems.

The XGrind system [TH02] compresses XML by using a homomorphic encoding: an

XGrind-compressed XML document is still an XML document, whose tags have been en-

coded by integers and whose textual content has been compressed using the Huffman (Dic-

tionary, alternatively) algorithm. The XGrind query processor is an extended SAX parser,

which can handle exact-match and prefix-match queries in the compressed domain. Most

importantly, XGrind only allows a top-down query evaluation strategy, which may not al-

ways be desirable. XGrind covers a limited set of XPath queries, allowing only child and

attribute axes. It cannot handle many query operations, such as inequality selections in

the compressed domain, joins, aggregations, nested queries, and XML node construction.

Such operations occur in many XML query scenarios (e.g., all but the first two of the 20

XMark [SWK+02] benchmark queries).

XPRESS [MPC03] encodes whole paths into floating point numbers, and, like XGrind,

compresses textual (numeric, resp.) leaves using the Huffman (Difference or Dictionary, al-

ternatively) encoding. The novelty of XPRESS lies in its reverse arithmetic path encoding

scheme, which encodes each path as an interval of real numbers between 0 and 1. Queries

supported in the compressed domain amount to exact/prefix queries and range queries with

numerical values. Range queries with strings require full decompression. Also, the naviga-

tion strategy is still top-down as the document structure is maintained by homomorphism.

The fragment of XPath supported is more powerful than the one in XGrind, as it also allows

descendant axes. A recent extension of XPRESS [MPC06] replaces the Huffman encoding

with the Arithmetic encoding, thus preserving the order information among data values.

It also handles simple updates on XML data, such as insertions of new XML fragments or

deletions of existing ones. The compressed engine recomputes the statistics for the newly

added (or removed) content and only decompresses the portions of the document affected

by the changes.

In [BGK03] compression is applied to the structure of an XML document by using a

bisimulation relationship, whereas leaf textual nodes are left uncompressed. This com-

pressed structure preserves enough information to directly support Core XPath [MS02], a

rich subset of XPath. A more recent paper [BLM05] proposes a similar compact represen-

tation for XML binary trees, based on sharing common subtrees. However, both systems

cannot be directly compared with XQueC, because they are memory-based, and do not

produce a persistent compressed image of the data instance.

XQZip [CN04] uses a structure index tree (SIT) that tends to merge subtrees containing

the exact same set of paths. It applies GZIP compression to value blocks, which entails

decompressing entire blocks during query evaluation. The blocks have a predefined length,

empirically set at 1, 000 records each. At query processing time, XQZip tries to determine

the minimum number of blocks to be decompressed. The queries addressable by XQZip

belong to an extended version of XPath, enriched with union and the grouping operator in

the return step.

Finally, XCQ [NLWL06] uses DTDs to perform compression and subsequent querying
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System Struct./Text Homomorph. Predicates Language Evaluation Compression

Compression strategies granules

XGrind Binary/ Yes =, prefix XPath Top-down Value/tag

Huffman+Dict. subset

XPRESS RAE/ Yes =,<, XPath Top-down Value/path

Huffman(Arith.)+ prefix subset++

Dictionary+Diff.

[BGK03] Bisimulation/ No — Core Top-down —

— XPath bottom-up

XQZip SIT/ No — XPath 1.0++ Multiple Block (set of

GZip records)

XCQ PPG/ No — XPath 1.0 + aggr. Multiple Block (set of

GZip records)

XQueC Binary/ No =, <, XQuery Multiple Container

cost-driven prefix subset item/tag

Table 1: Comparative analysis of queryable XML compressors.

of XML documents. Partitioned path-based grouping (PPG) data streams are obtained

for each DTD path, and then compressed into a number of data blocks, which are input

to GZIP afterwards. Similarly to XQZip, the block size has to be carefully determined in

order to achieve good performance.

Table 1 reports the major differences among the discussed systems. XQueC realizes

a cost-driven compression, and a random-access query evaluation strategy, as opposed to

XPRESS, XGrind and XQZip. This is what makes XQueC the first compressed XML

database, rather than an XML compression tool. Besides guaranteeing that queries are

processed as much as possible in the compressed domain, XQueC also supports a more

expressive language fragment. Finally, the level of granularity XQueC considers is the

smallest possible, i.e., a container item or a tag, which can be thus randomly accessed

during querying. This is similar to XGrind, and in contrast to XQZip/XCQ, which rely on

block-level granules, and to XPRESS, which has both value-level and path-level granules.

3 Storing and querying compressed XML data

In this section, we describe XQueC’s storage model for compressed XML data. We outline

XQueC’s overall architecture in Subsection 3.1. XQueC’s query processing model is briefly

described in Subsection 3.2. This provides the groundwork for discussing the trade-off

between compact storage and efficient querying (Subsection 3.3).

3.1 XQueC storage structures and architecture

XQueC splits an XML document into three data structures, depicted in Fig. 1 for an XMark

sample: the structure tree, the containers and the structure summary. Besides providing a

description of each data structure, in the following we also discuss its space usage in order to

give an insight on the impact of each storage structure on the final document’s compression

ratio.
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Figure 1: XQueC storage structures: (a) sample XMark document, (b) structure summary,

(c) ID sequences and (d) containers.
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Across all the structures, XQueC encodes element and attribute names using a simple

binary encoding. The structure tree is encoded as a set of ID sequences, each associated

with a different root-to-node path in the tree. Figure 1(c) depicts the sequences resulting

from the paths /site, /site/people, /site/people/person, and /site/regions/asia/item in the sample

document. To encode the IDs in all its storage structures, XQueC uses conventional struc-

tural identifiers consisting of triples [pre, post, depth] as in [AKJP+02, HBG+03, PAKC+03,

Gru02]. The pre (post) number reflects the ordinal position of the element within the doc-

ument, when traversing it in preorder (postorder). The depth number reflects the depth of

the element in the XML tree. This node identification scheme allows the direct inference of

structural relationship between two nodes using only their identifiers. Note that the depth

field can be omitted, since in our storage structures, the structural identifiers are already

clustered by their path. Thus, the sequences in Fig. 1(c) actually use only a 2-tuple [pre,

post] to encode each structural ID. This means that for a document having N elements,

each [pre, post] ID is encoded using 2 ∗ ⌈log2(N)⌉ bits, thus the space usage of the set of ID

sequences is

csseq = 2 ∗ N ∗ ⌈log2(N)⌉. (1)

Similarly, the containers store together all data values found under the same root-to-leaf

path in the document. A container is realized as a sequence of records, each consisting of a

compressed value, and a number representing the position of its parent in the corresponding

ID sequence of the tree structure (see Fig. 1(d), where c(s) denotes the compressed version

of string s 1). We write size(ci) for the size in bits of the i-th compressed value in container

c and seqc for the ID sequence of its parent. Hence, the space usage of the compressed

containers is

cscont =
∑

c

(

|c| ∗ ⌈log2(|seqc|)⌉ +
∑

i=1,...,|c|

size(ci)
)

. (2)

Finally, the storage model includes a structure summary, i.e., an access support structure

storing all the distinct paths in the document. The structure summary of an XML document

d is a tree whose nodes uniquely represent the paths in d, that is, for each distinct path

p in d, the summary has exactly one node on path p. For a textual node under path p,

the summary has a node labeled /p/#text, whereas for an attribute node a under path p,

the summary has a node labeled /p/@a. This establishes a bijection between paths in an

XML document and nodes in the structure summary. Note also that each leaf node in the

structure summary uniquely corresponds to a container of compressed values. Fig. 1(b)

depicts the structure summary for the sample document. The space usage of a summary

SS is:

csaux =
∑

n∈SS

(

|tag(n)| + log2(|SS|)
)

. (3)

1When type information is not known a priori, XQueC applies a simple type inference algorithm that

attempts to classify the values on each path into simple primitive types.
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Figure 2: Architecture of the XQueC prototype.

where the first term represents the space needed for the storage of each node’s tag and the

second term accounts for its incoming edge. The summary is typically very small (see the

details in [ABMP07]), thus it does not significantly impact data compression.

Overall, the compressed document size is thus cs = csseq + cscont + csaux, and the

resulting compression factor is cf = 1 − cs/os, where os is the original document size.

Fig. 2 outline XQueC’s architecture. The loader decomposes the XML document into ID

sequences and containers, and builds the structure summary. The compressor partitions the

data containers and decides which algorithm to apply (cfr. [ABMP07]). This phase produces

a set of compressed containers. The repository stores the storage structures and provides

data access methods and a set of compression functions working at runtime on constant

values appearing in the query. Finally, the query processor includes a query optimizer and

an execution engine providing the physical data access operators.

3.2 Processing XML queries in XQueC

The XQuery subset Q supported by XQueC is characterized as follows.

(1) XPath{/,//,∗,[ ]} ⊂ Q, that is, any Core XPath belongs to Q. When such XPath expres-

sions have as suffix a call to the function text(), they return the text value of the nodes

they are applied on. Navigation branches enclosed in square brackets may include complex

paths and comparisons between a node and a constant c. Predicates connecting two nodes

are not allowed; they may be expressed in XQuery syntax, as explained next. (2) Let $x

be a variable bound in the query context [XQU04] to a list of XML nodes, and p be a Core

XPath expression. Then, $x p belongs to Q, and represents the path expression p applied

with $x’s bindings list as initial context list. For instance, $x/a[c] returns the a children of

$x bindings having a c child. We denote the set of expressions (1) and (2) above as P, the
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18 22,26

28
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jname emph
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for $i in document("XMark.xml")//asia//item,
     $d in $i/description
where $d//keyword/text()="romantic"
return <gift><name>{$i/name/text()}<name>

           </gift>
                     {$i//emph}

Figure 3: Sample XQuery expression, and its corresponding path-annotated query pattern.

set of path expressions. (3) For any two expressions e1 and e2 ∈ Q, their concatenation,

denoted e1, e2, also belongs to Q. (4) If t is a tag and e ∈ Q, element constructors of the

form 〈t〉{e}〈/t〉 belong to Q. (5) All expressions of the following form belong to Q:

for $x1 in p1, $x2 in p2, . . . , $xk in pk

xq where pk+1 θ1 pk+2 and . . . and pm−1 θl pm

return q(x1, x2, . . . , xk)

where p1, p2, . . . , pk, pk+1, . . . , pm ∈ P, any pi starts either from the root of some document

d, or from a variable xl introduced in the query before pi, θ1, . . . , θl are some comparators,

and q(x1, . . . , xk) ∈ Q. A return clause may contain other for-where-return queries, nested

and/or concatenated and/or grouped inside constructed elements.

XQueC’s optimizer compiles a query q ∈ Q into an executable plan in several steps.

First, a set of query patterns, capturing q’s path expressions and the relationships

among them, are extracted from q. Figure 3 shows a query and its corresponding pattern,

in which child (resp. descendant) pattern edges are shown by simple (resp. double) lines,

and optional edges (allowing matches for the descendant node to be missing) are shown in

dashed lines. Finally, n markers identify nested edges: matches of the lower node should be

nested under the upper node matches. For instance, all name and emph matches should be

output together for a given $i and $d match. The full pattern extraction algorithm, which

is beyond the scope of this paper, is described in [ABM+06].

Based on the structure summary, XQueC analyzes each query pattern, associating to

each pattern node all paths (from the XML document) where bindings for this pattern node

may be found. In Figure 3, the numbers identifying the summary paths (recall Figure 1)

associated to each node are shown in dotted circles next to the node. This analysis follows

the original Dataguide usage for optimization [GW97].

The optimizer then builds a data access plan for each pattern node. If the query requires

the text value of the pattern node, such as $name in Figure 3, the access plan reads the

contents of containers corresponding to those paths. Otherwise, the access plan reads the

ID sequences for those paths. In both cases, unions are built whenever a pattern node has

more than one associated path, as was the case, for instance, with the emph in Figure 3.

Data access plans corresponding to pattern nodes are combined by structural join op-

erators [AKJP+02] reflecting the semantics of pattern edges. We use structural outerjoins

10



for optional edges, as proposed in [CJLP03]. Structural joins followed by grouping are

employed for nested pattern edges.

To compensate for XQueC’s highly partitioned storage, the optimizer must produce

plans that reconstruct the XML elements which the query needs to output entirely, such as

emph in Figure 3. One alternative is to combine all the necessary containers and ID sequences

via structural joins. Another alternative is based on a pipelined, memory-efficient operator,

which we have studied in [ABMP06].

Finally, XQueC’s optimizer adds decompression operators, to decompress those values

that must be returned (uncompressed) in the query results.

3.3 Trade-offs between compact storage and efficient processing

XQueC aims at providing efficient query processing techniques typical of XML databases

together with the advantages of XML compression. These two goals clearly conflict. For

instance, compressing blocks of several values at a time (instead of compressing each value

individually, as XQueC does) may improve the compression factor, but would reduce the

query engine’s ability to perform very selective data access.

The desired XML database features which we targeted in XQueC are: selective data

access; scalable query execution operators; and low memory needs during query processing.

Our goals for XML compression in XQueC were: to reduce space usage, and to decompress

lazily. XQueC’s design is the result of mediating between these desiderata, as outlined

below.

Path partitioning provides for selective data access, more so than the tag-partitioning

structural ID indexing used in [JAKC+02, FHK+02, HBG+03]. Node partitioning schemes

more aggressive than path partitioning can be envisioned [BGK03], but they may lead lead

to excessive fragmentation. Structure Index Trees (SIT) [CN04] also lead to partitioning

nodes more than in XQueC, since two nodes are in the same group if they have the same

incoming path and the same set of outgoing paths. For instance, on the XMark document

of Figure 1(a), the two person elements would be in separate groups, since one has an address

child while the other does not. In the presence of optional elements, the SIT may thus get

very large.

Compressing each value individually enables both selective data access and lazy decom-

pression. The separation between ID sequences and containers helps selective data access,

since the processor does not have to access XML node values (voluminous even after com-

pression) when it only needs to access (part of) the tree structure. For instance, for four out

of the six pattern nodes in Figure 3, only ID sequences will be read. By the same argument,

this separation also reduces the processor’s memory needs.

To enable scalable query processing techniques in XQueC, we introduced structural iden-

tifiers for every node. The space occupied by the identifiers is the price to pay for the benefits

of structural join algorithms that run in linear time and require low memory [AKJP+02].

Observe that homomorphic compressors such as XGrind and XPRESS, lacking a store, do

not have direct access to given parts of the document. In such settings, there will always be

“unlucky” queries whose processing requires a full traversal of the compressed document,
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even if they only retrieve a small amount of data. Selective data access methods ensures

that XQueC does not suffer from such problems, given that:

• each compressed value can be accessed directly;

• IDs from each document path can be accessed directly (and in the order favorable for

further processing).

Path partitioning reduces IDs space usage by not storing the depth ID field; moreover,

we only store the post-order number in the ID sequences (not in containers).

To store XML documents in a compact manner, XQueC cannot afford to complement ID

sequences with a full persistent tree, as done in [JAKC+02, FHK+02, HBG+03], which (in

the absence of value compression) report a disk footprint four times the size of the document.

Thus, while ID sets are used as indices in [MS99, GW97], in XQueC they actually are the

storage.

XQueC’s elaborate choice of the best compression algorithm to use for each container is

important for reducing storage size, but also for lazy decompression. Details can be found

in [ABMP07].

4 Conclusions

In this paper, we have presented the XQueC project. XQueC allows to store compressed

XML data and issue XQuery queries in the compressed domain. Among its main contribu-

tions, we have discussed the storage model, which includes a set of suitable data structures

that allow to create accessible and efficient data containers. The system is also equipped

with a cost model, in order to decide the compression techniques and the compression gran-

ules needed for compressing and querying the data. For a detailed description of such cost

model and the experimental assessment of our system, we point the reader to [ABMP07].
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