
An Efficient Algorithm to Test Square-Freeness
of Strings Compressed by

Balanced Straight Line Program

Wataru Matsubara1, Shunsuke Inenaga2, and Ayumi Shinohara1

1 Graduate School of Information Science, Tohoku University, Japan
{matsubara@shino., ayumi@}ecei.tohoku.ac.jp

2 Graduate School of Information Science and Electrical Engineering,
Kyushu University, Japan

inenaga@c.csce.kyushu-u.ac.jp

Abstract. In this paper we study the problem of deciding whether a
given compressed string contains a square. A string x is called a square
if x = zz and z = uk implies k = 1 and u = z. A string w is said to be
square-free if no substrings of w are squares. Many efficient algorithms
to test if a given string is square-free, have been developed so far. How-
ever, very little is known for testing square-freeness of a given compressed
string. In this paper, we give an O(max(n2, n log2 N))-time O(n2)-space
solution to test square-freeness of a given compressed string, where n
and N are the size of a given compressed string and the corresponding
decompressed string, respectively. Our input strings are compressed by
balanced straight line program (BSLP). We remark that BSLP has expo-
nential compression, that is, N = O(2n). Hence no decompress-then-test
approaches can be better than our method in the worst case.

1 Introduction

Analyzing repetitive structure of strings has a wide range of applications, in-
cluding bioinformatics [1,2], formal language theory [3] and combinatorics on
words [4]. The most basic repetitive structure is zz, where z is a non-empty
string. Such a string zz is called a repetition. In particular, when z is primitive
(z = uk implies k = 1 and u = z), repetition zz is said to be a square.

A string w is said to be square-free or repetition-free if w contains no squares.
It is easy to see that any string of length greater than three over a binary alphabet
contains a square. However, there exists a square-free string over an alphabet
of size greater than two. For instance, abcacbabcb is a square-free string over
alphabet Σ = {a, b, c}. It was shown in [5,6] that there exist square-free strings
of infinite length over a ternary alphabet.

Since then, there have been extensive studies on testing square-freeness of
a string as well as finding squares in a string. Main and Lorentz [7] presented

Dagstuhl Seminar Proceedings 08261
Structure-Based Compression of Complex Massive Data
http://drops.dagstuhl.de/opus/volltexte/2008/1680

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62913665?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

an O(N)-time algorithm to test if a given string of length N is square-free.
Crochemore [8] also proposed an O(N)-time algorithm for the same problem.

On the other hand, it is known that the maximum number of squares in a
string of length N is Θ(N log N) [9,10]. Optimal O(N log N) algorithms that
detect all occurrences of squares of a given string have been proposed [9,8,11].
Kolpakov and Kucherov [12] showed that any string of length N can contain
O(N) distinct squares, and developed an O(N)-time algorithm to find all distinct
squares from a given string.

There are also several efficient parallel algorithms for the above problems.
Crochemore and Rytter [13] discovered a parallel algorithm to test square-
freeness of a string, which runs in O(log N) time using N processors. Apos-
tolico [14] showed an algorithm that can find all occurrences of squares with
the same time bound and the number of processors. Then, Apostolico and
Breslauer [15] presented parallel algorithms working in O(log log N) time using
N log N/ log log N processors, which test square-freeness and find all occurrences
of squares of a given string.

However, very little is known to the case where the input strings are given in
compressed forms. To our knowledge, the only relevant result is an O(n6 log5 N)
solution to find all occurrences of squares [16]. Their input is a string compressed
by composition systems, and n in the above complexity is the size of the com-
pressed input string. The matter about their solution is that no details of the
algorithm have ever been appeared.

In this paper, we present an O(max(n2, n log2 N))-time O(n2)-space algo-
rithm to test square-freeness of a given compressed string. Our input string is
compressed by balanced straight line program (BSLP) proposed by [17]. BSLP
is a variant of straight line program (SLP) [18]. SLP is a kind of context-free
grammar in the Chomsky normal form whose production rules are in either of
the form X → Y Z or X → a, and SLP derives only one string. We remark that
BSLP has exponential compression, which means that N = O(2n). Therefore,
no algorithms that decompress a given BSLP-compressed string can be better
than our algorithm in the worst case.

2 Preliminaries

2.1 Notations

For any set S of integers and an integer k, let

S ⊕ k = {i + k | i ∈ S} and
S ª k = {i− k | i ∈ S}.

Let Σ be a finite alphabet. An element of Σ∗ is called a string. The length of
a string w is denoted by |w|. The empty string ε is a string of length 0, namely,
|ε| = 0. For a string w = xyz, x, y and z are called a prefix, substring, and suffix
of w, respectively.

The i-th character of a string w is denoted by w[i] for 1 ≤ i ≤ |w|, and the
substring of a string w that begins at position i and ends at position j is denoted
by w[i : j] for 1 ≤ i ≤ j ≤ |w|. Let w[d] denote the prefix of length |w| − d of w,
that is, w[d] = w[1 : |w| − d]. For any string w, let wR denote the reversed string
of w, namely, wR = w[|w|] · · ·w[2]w[1].

For any strings w, x, and integer k, we define the set Occ4(w, x, k) of all
occurrences of x that cover or touch the position k of w, namely,

Occ4(w, x, k) =
{

s

∣∣∣∣
w[s : s + |x| − 1] = x,
k − |x| ≤ s ≤ k + 1

}
.

We will heavily use the following lemma.

Lemma 1 ([19]). For any strings w, x, and integer k, Occ4(w, x, k) forms a
single arithmetic progression.

In what follows, we assume that Occ4(w, x, k) is represented by a triple of
the first element, the common difference, and the number of elements of the
progression, which takes O(1) space.

A non-empty string of the form xx is called a repetition. A string w is said
to be repetition-free if no substrings of w are repetitions.

A string of x is said to be primitive if x = uk for some integer k implies that
k = 1 and x = u. A repetition xx is called a square if x is primitive. A string
w is said to be square-free if no substrings of w are squares. By definition, any
string w is square-free if and only if w is repetition-free.

A repetition xx, which is a substring of a string w starting at position i, is
said to be centered at position i + |x| − 1.

2.2 Straight Line Program

Definition 1. A straight line program T is a sequence of assignments such that

X1 = expr1, X2 = expr2, . . . , Xn = exprn,

where each Xi is a variable and each expri is an expression in either of the
following form:

– expri = a (a ∈ Σ) or
– expri = X`Xr (`, r < i).

Since the straight line program (SLP) T has no recursive structure, it de-
scribes exactly one string. That is, an SLP can be seen as a CFG in the Chomsky
normal form which generates exactly one string. Denote by T the string derived
from the last variable Xn of the program T .

The size of the program T is the number n of assignments in T .
We define the height of a variable Xi by

height(Xi) ={
1 if X = a ∈ Σ,

1 + max(height(X`), height(Xr)) if Xi = X`Xr.

For any variable Xi of T , we define XR
i as follows:

XR
i =

{
a if Xi = a (a ∈ Σ),
XR

r XR
` if Xi = X`Xr (`, r < i).

Let T R be the SLP consisting of variables XR
i for 1 ≤ i ≤ n.

Lemma 2 ([20]). For any SLP T which derives string T , SLP T R derives
string TR and can be computed in O(n) time from SLP T .

When it is not confusing, we identify a variable Xi with the string derived
from Xi. Then, |Xi| denotes the length of the string derived from Xi.

3 Balanced Straight Line Program

We define a balanced straight line program (BSLP), which is a variant of an SLP
of Definition 1.

Definition 2. A balanced straight line program T is a sequence of assignments
such that

X1 = expr1, X2 = expr2, . . . , Xn = exprn,

where each Xi is a variable and each expri is an expression in either of the
following form:

– expri = a (i < n, a ∈ Σ) or
– expri = X`Xr with |X`| = |Xr| (`, r ≤ i < n), and
– exprn = X

[d]
` Xr with X`[|X` − d + 1 : |X`||] = Xr[1 : d] (`, r < n, d ≥ 0).

Note that the derivation tree of any BSLP variable of the form Xi = X`Xr

is a complete binary tree. BSLP is a compression scheme which has exponential
compression, that is, O(N) = O(2n), where N is the length of the decompressed
string.

Example 1. Consider BSLP T = {Xi}10i=1 with X1 = a, X2 = b, X3 = X1X2,
X4 = X1X1, X5 = X3X3, X6 = X3X4, X7 = X4X3, X8 = X5X6, X9 = X7X6,
and X10 = X

[2]
8 X9 that generates string T = abababaaababaa. The derivation

tree of BSLP T is shown in Figure 1.

4 Apostolico and Breslauer’s Algorithm

In this section we recall a parallel algorithm of [15] that checks square-freeness
of a string, on which our algorithm will be based.

Firstly, we define the FM function, as follows. Given strings X, Y , and integer
k, FM (X, Y, k) returns the first position of mismatch when we compare X with
Y at position k, that is:

FM (X, Y, k) =
min{1 ≤ i ≤ |Y | | X[k + i− 1] 6= Y [i]}. (1)

X1 X2

a b a ab a a b

X3 X3

X1 X2

X3

X1X1

X6X5

X8

X10

X1 X2

a b

X4

X1 X2

X3

X7

[2]

a ab a

X1 X2

X3

X1X1

X6

X4

X9

Fig. 1. The derivation tree of BSLP T of Example 1 that generates string T =
abababaaababaa. Recall that X

[2]
8 denotes the suffix of X8 of length |X8| − 2.

If there exists no such i, let FM (X, Y, k) = 0. In other words, FM (X,Y, k) is
the length of the common prefix of X[k : |X|] and Y plus one.

Let w be any string of length N , where N is a power of 2. For each 0 ≤ t ≤
log2 N − 1, partition w into consecutive blocks of length m = 2t. Let B = w[k :
k + m − 1] be one of such blocks. A repetition zz, which is a substring of w, is
said to be hinged on B if repetition zz satisfies the following conditions:

– 2m− 1 ≤ |z| < 4m− 1 and
– the first z of the repetition fully contains B, that is, zz = w[h : h + 2|z| − 1]

and k − |z|+ m ≤ h ≤ k.

Let P1 and P2 be the set of positions where a copy of B occurs in w[k +2m :
k + 4m− 1] and w[k + 3m : k + 5m− 1], respectively. Let p ∈ P1 ∪ P2, and let

α = FM (w,w[k+m :p−1], p+m),
γ = FM (wR, wR[N−k+1:N−k+m], N−p+1).

Repetitions hinged on B can be detected based on the following lemma.

Lemma 3 ([15]). There exist repetitions zz which are hinged on B with |z| =
p− k, if and only if p− γ ≤ k + m + α− 1.

The above lemma is useful when the size of P1 ∪ P2 is at most two. In other
cases, the next lemma is helpful:

Lemma 4 ([15]). If |P1 ∪ P2| > 2, then w is not repetition-free.

A function to test if there is a square in string w hinged on a block B = w[k :
k + m− 1] is shown in Algorithm 1.

The algorithm of [15] consists of log2 N stages, and in the stage number t
(0 ≤ t ≤ log2 N − 1) it looks for repetitions hinged on any block of length

Algorithm 1: Function HingedSq(w, k, m) to test if there is a square in w
hinged on w[k : k + m + 1].

Input: String w of length N and integers k, m.
Output: Whether there exists a square in w hinged on w[k : k + m + 1] or not.
B = w[k : k + m + 1];1

P1 = the set of occurrence positions of B in w[k + 2m : k + 4m− 1]);2

P2 = the set of occurrence positions of B in w[k + 3m : k + 5m− 1]);3

if |P1 ∪ P2| > 2 then return true;4

foreach p ∈ P1 ∪ P2 do5

α = FM (w, w[k+m :p−1], p+m);6

γ = FM (wR, wR[N−k+1:N−k+m], N−p+1);7

if p− γ ≤ k + m + α− 1 then return true;8

return false;9

2t = m, based on Lemma 3 and Lemma 4. Their algorithm tests if a given string
is square-free or not in O(log log N) time using N log N/ log log N processors.

5 Testing Square-freeness of BSLP-Compressed Strings

In this section, we present our algorithms to test square-freeness of a given
BSLP-compressed strings.

5.1 Testing Square-freeness of Variables Forming Complete Binary
Trees

We begin with testing whether or not a string described by a variable forming a
complete binary tree contains a square.

Problem 1. Given a variable Xi = X`Xr with |X`| = |Xr|, determine whether
the string derived by Xi is square-free (or equivalently, repetition-free).

Observation 1 For any variable Xi = X`Xr and a repetition zz which is a
substring of Xi, there always exists a descendant Y of Xi such that

– zz is a substring of Y and
– zz touches or covers the boundary of Y .

See Figure 2 that illustrates the above observation.
Due to Observation 1, Problem 1 is reduced to the following sub-problem.

Problem 2. Given a variable Xi = X`Xr with |X`| = |Xr|, determine whether
or not there is a repetition that touches or covers the boundary of Xi.

In the sequel, we present our algorithm to solve Problem 2. The algorithm is
based on the parallel algorithm of [15] summarized in Section 4.

Xi

Y

z z

Fig. 2. Illustration of Observation 1. Repetition zz is a substring of Y and covers
the boundary of Y .

Lemma 5. Any repetition, which touches or covers the boundary of variable
Xi, is hinged on some descendant of Xi. Moreover, there are at most 14 such
descendants of height h for each 1 ≤ h ≤ height(Xi)− 2. (See also Figure 3.)

Proof. Consider repetitions zz that are centered within X`. Recall that repetition
zz are hinged on a substring of length 2h−1 only if 2× 2h−1− 1 = 2h− 1 ≤ |z| <
4× 2h−1 − 1 = 2h+1 − 1. Hence repetition zz is of length at least 2h+1 − 2 and
at most 2h+2− 4. Therefore, for repetition zz to touch or cover the boundary of
Xi and be centered in X`, the first z of the repetition has to occur in Xi[|X`| −
2h+2 + 5 : |X`|] = X`[|X`| − 2h+2 + 5 : |X`|], which is the suffix of X` of length
2h+2−4. It is clear that the suffix contains 7 variables of length 2h−1, each being
of height h. The other case for repetitions centered within Xr is symmetric. That
is, for the beginning position s of each such variable Y in Xi we have

|Xi| − |X`| − 7|Y | ≤ s ≤ |X`|+ 6|Y |.

ut

For any variables Xi = X`Xr and Xj , we abbreviate as

Occ4(Xi, Xj , |X`|) = Occ4(Xi, Xj).

That is, Occ4(Xi, Xj) is the set of occurrences of Xj that touch or cover the
boundary of Xi.

The following theorem is critical to our algorithm, which shows the complex-
ity of computing Occ4(Xi, Xj) for variables Xi and Xj both forming complete
binary trees.

Theorem 1 ([17]). For every pair Xi and Xj of variables both forming com-
plete binary trees, Occ4(Xi, Xj) can be computed in total of O(n2) time and
space.

We are ready to state the next lemma.

Xi

HGFEDCB

G G

H H

F F

E E

D D

C C

A

A A

B B

Xl Xr

Fig. 3. Illustration of Lemma 5 for height h = height(|Xi|)−5. No repetitions zz
hinged on variable A can touch or cover the boundary of Xi, since repetitions zz
are hinged on variable A only if 2×|A|−1 = 2h−1 ≤ |z| < 2h+1−1 = 4×|A|−1.

Lemma 6. Problem 2 can be solved in O(log2 |Xi|) time with O(n2) preprocess-
ing.

Proof. We process a given variable Xi in height(Xi)−2 stages, where each stage
is associated with height h, such that 1 ≤ h ≤ height(Xi)−2. In each stage with
height h, there are at most 14 descendants to consider by Lemma 5. Let Y be
one of such descendants, and let s be the beginning position of Y in Xi, that is,
Y = Xi[s : s + |Y | − 1]. Also, let V and Z be a variable whose boundary is at
position s + 3|Y | − 1 and at position s + 4|Y | − 1, respectively. It is easy to see
that |V | ≥ 2|Y | and |Z| ≥ 2|Y |. It follows from Lemma 1 that Occ4(V, Y) and
Occ4(Z, Y) form a single arithmetic progression. Due to Lemma 4,

1. If |Occ4(V, Y)∪Occ4(Z, Y)| > 2, then Xi is not repetition-free (see the left
of Figure 4).

2. If |Occ4(V, Y) ∪ Occ4(Z, Y)| ≤ 2, then we compute the values of α and γ
according to Lemma 3 and test if the conditions in the lemma is satisfied or
not (see the right of Figure 4).

Let us analyze the time complexity. Computing Occ4(·, ·) for each pair of
variables takes O(n2) time by Theorem 1. The variables V and Z can be found
in O(height(Xi)) time by a binary search. Since p−s ≤ 3|Y | and Xi[s+ |Y | : s+
4|Y |−1] can be represented by at most two BSLP variables, α = FM(Xi, Xi[s+
|Y | : p−1], p+|Y |) can be computed by at most two calls of the FM function. The
value of γ can be computed similarly by at most two calls of the FM function,
provided that {XR

i | 1 ≤ i < n} and Occ4(XR
i , XR

j) for every 1 ≤ i, j < n are
already computed. By Lemma 2, these reversed variables can be precomputed
in O(n) time. As to be shown in Section 6, the FM function can be answered in
O(log |Xi|) time. There are height(Xi)−2 stages. Since height(Xi) = log2 |Xi|+1,
the total time complexity is O(log2 |Xi|). ut

Our algorithm to solve Problem 2 is shown in Algorithms 2 and 3.

Algorithm 2: Function HingedSqBSLP(X,Y) to test if there exists a square
in X hinged on Y.

Input: BSLP variables X and Y.
Output: Whether there exists a square in X which is hinged on Y.
V = a variable whose boundary is at position s + 3|Y| − 1 in X;1

Z = a variable whose boundary is at position s + 4|Y| − 1 in X;2

if |Occ4(V, Y) ∪Occ4(Z, Y)| > 2 then3

return true;4

foreach p ∈ Occ4(V, Y) ∪Occ4(Z, Y) do5

compute α by at most two calls of FM ;6

compute γ by at most two calls of FM ;7

if p− γ ≤ s + |Y|+ α− 1 then8

return true;9

10

return false;11

5.2 Testing Square-freeness of BSLP-compressed Strings

Here, we consider the next problem, which is the main problem of this paper.

Problem 3 (Square-freeness Test for BSLP). Given BSLP T that describes string
T , determine whether T is square-free.

The two following lemmas are useful for establishing Theorem 2, which is the
main result of this subsection.

Lemma 7 ([21]). For any variables Xi and Xj forming complete binary trees
and integer k, Occ4(Xi, Xj , k) can be computed in O(log |Xi|) time, provided
that Occ4(Xi′ , Xj′) is already computed for every 1 ≤ i′ ≤ i and 1 ≤ j′ ≤ j.

Algorithm 3: Function TestSqBSLPVar(Xi) to test square-freeness of a
BSLP variable Xi.

Input: BSLP variable Xi with i 6= n.
Output: Whether there exists a square in Xi.
for h = 1 to height(X) do1

foreach descendant Y of X such that height(Y) = h, Y = X[s : s + |X| − 1],2

and |X|/2− 7|Y| ≤ s ≤ |X|/2 + 6|Y| do
if HingedSqBSLP(X, Y) = true then3

return true;4

5

6

return false;7

Xi

Y

Y

V

Z

Y

Y

Xi

Y

Y

V

Z

Y

αα

γ γ

Fig. 4. Illustration of Lemma 6. The left is Case 1, and the right is Case 2.

For any variable Xi = X`Xr with |X`| = |Xr|, we recursively define the
leftmost descendant lmd(Xi, h) and the rightmost descendant rmd(Xi, h) of Xi

with respect to height h (≤ height(Xi)), as follows:

lmd(Xi, h) =
{

lmd(X`, h) if height(Xi) > h,
Xi if height(Xi) = h,

rmd(Xi, h) =
{

rmd(Xr, h) if height(Xi) > h,
Xi if height(Xi) = h.

For each variable Xi (1 ≤ i < n) and height h (< height(Xi)), we pre-
compute two tables of size O(n log N) storing lmd(Xi, h) and rmd(Xi, h) respec-
tively. By looking up these tables, we can refer to any lmd(Xi, h) and rmd(Xi, h)
in constant time. These tables can be constructed in O(n log N) time in a bottom-
up manner [17].

Lemma 8. For the last variable Xn = X
[d]
` Xr and any variable Xj = XsXt with

|Xs| = |Xt|, Occ4(Xn, Xj , |X`|) can be computed in O(log2 N) time, provided
that Occ4(Xi′ , Xj′) is already computed for every 1 ≤ i′ ≤ n and 1 ≤ j′ ≤ n.

d

Xa

Xn

Xj
Xs Xt

Xl Xr

d

Xn

Xj
Xs Xt

Xl Xr

Fig. 5. Illustration of Lemma 8. If |Xj | > d, Occ4(Xn, Xj , |X`|) is equal
to the union of Occ4(Xa, Xs) ∩ Occ4(Xn, Xt, |X`|) ª |Xs| (the left) and
Occ4(Xn, Xs, |X`|) ∩Occ4(Xr, Xt, |Xs|+ d)ª |X`| (the right).

Proof. Let Xa = rmd(X`, height(Xj)). We can compute Occ4(Xn, Xj , |X`|) us-
ing the following recursion (see also Figure 5).

Occ4(Xn, Xj , |X`|) =

Occ4(Xr, Xj , d)ª |X`| ⊕ d if |Xj | ≤ d,

(Occ4(Xa, Xs) ∩Occ4(Xn, Xt, |X`|)ª |Xs|) ∪
(Occ4(Xn, Xs, |X`|)∩Occ4(Xr, Xt, |Xs|+d)ª|X`|)

if |Xj | > d.

It can be shown in a similar way to Lemma 5 of [17] that the intersection op-
erations can be performed in O(1) time and each of the resulting sets contains at
most one element. This also implies that the union operation between the two re-
sulting sets can be performed in O(1) time. It follows from Lemma 7 that each of
Occ4(Xr, Xj , d), Occ4(Xn, Xt, |X`|), Occ4(Xn, Xs, |X`|), and Occ4(Xr, Xt, |Xs|+
d) can be computed in O(log N) time. Since the depth of the recursion is at most
height(Xj), the overall complexity is O(log2 N). ut

Theorem 2. Problem 3 can be solved in O(max(n2, n log2 N) time using O(n2)
space.

Proof. By Lemma 6, square-freeness of the n − 1 variables forming complete
binary trees can be tested in total of O(max(n2, n log2 N)) time using O(n2)
space.

What remains to show is how to test square-freeness of the last variable
Xn = X

[d]
` Xr. We for now assume that no repetitions that touch or cover the

boundary of Xi are found for every 1 ≤ i < n, since otherwise there is no way

for the last variable Xn to be repetition-free. Note that there is no repetition
zz of length not greater than d in Xn, since such a repetition must touch or
cover the boundary of some descendant of Xn, but this contradicts the above
assumption. Hence all we need is to test whether there exists a repetition zz
such that zz = Xn[s : s + 2|z| − 1] with some |X`| − 2|z|+ 1 < s ≤ |X`| − d.

The testing algorithm is a modification of that of Lemma 6. We process
Xn with at most max(height(X`), height(Xr))− 2 stages. Let us focus on some
variable Y of height h < max(height(X`), height(Xr)) − 2 on which a repe-
tition satisfying the above condition may be hinged. See also Figure 6. We
can compute Occ4(Xn, Y, |X`|) in O(log2 N) time by Lemma 8 (the left arith-
metic progression in Figure 6). By Lemma 7, Occ4(Xr, Y, |Y |+ d) can be com-
puted in O(log N) time (the right arithmetic progression in Figure 6). As to
be shown by Lemma 10 and Lemma 11 in Section 6, the FM function can be
computed in O(log2 N) time when testing square-freeness of the last variable
Xn. Hence the values of α and γ can also be computed in O(log2 N) time.
Since max(height(X`), height(Xr)) < log2 N + 1, we can test square-freeness of
the last variable Xn in O(log3 N) time. Therefore, the overall time cost stays
O(max(n2, n log2 N)). The space requirement remains O(n2) as we only used the
precomputed values of Occ4(Xi, Xj) and Occ4(XR

i , XR
j) for each 1 ≤ i < n

and 1 ≤ j < n. ut
Our algorithm to solve Problem 2 is shown in Algorithms 4 and 5.

Algorithm 4: Function HingedSqBSLPLast(Xn, Y) to test if there exists a
square in Xn hinged on Y.

Input: BSLP variables X and Y.
Output: Whether there exists a square in last variable Xn which is hinged on Y.
compute Occ4(Xn, Y, |X`|);1

compute Occ4(Xr, Y, |Y|+ d);2

if |Occ4(Xn, Y, |X`|) ∪Occ4(Xr, Y, |Y|+ d)| > 2 then3

return true;4

foreach p ∈ Occ4(Xn, Y, |X`|) ∪Occ4(Xr, Y, |Y|+ d) do5

compute α by at most two calls of FM ;6

compute γ by at most two calls of FM ;7

if p− γ ≤ s + |Y|+ α− 1 then8

return true;9

10

return false;11

6 Computing the FM Function

The FM function in equation (1) plays a central role in our algorithms to com-
pute squares from BSLP-compressed strings. In our problem setting, the first

Algorithm 5: Algorithm TestSqBSLP(T) to test square-freeness of string
T given as BSLP T .

Input: BSLP T = {Xi}n
i=1 describing string T .

Output: Whether there exists a square in T .
/* Assume Xn = X

[d]
` Xr. */

for i = 1 to n− 1 do1

for j = 1 to n− 1 do2

compute Occ4(Xi, Xj);3

compute Occ4(XR
i , XR

j);4

5

if TestSqBSLPVar(X`) = true then6

return true;7

if TestSqBSLPVar(Xr) = true then8

return true;9

for h = 1 to max(height(X`), height(Xr))− 2 do10

foreach descendant Y of Xn such that height(Y) = h, Y = Xn[s : s + |X| − 1],11

and |Xn|/2− 7|Y| ≤ s ≤ |Xn|/2 + 6|Y| do
/* Lemma 5 */

if HingedSqBSLPLast(Xn, Y) = true then12

return true;13

14

15

return false;16

two inputs of the function are compressed forms. Given general SLP variables
X and Y , FM (X, Y, k) can be answered in O(n2) time with O(n3)-time prepro-
cessing [19,22]. In this section, we show that if X and Y form complete binary
trees, then FM (X,Y, k) can be answered in O(log |X|) time with O(n2)-time
preprocessing.

Lemma 9. For any variables Xi = X`Xr, Xj = XsXt with 1 ≤ i, j < n and
integer k, FM (Xi, Xj , k) can be computed in O(log |Xi|) time, provided that
Occ4(Xi′ , Xj′) is already computed for every 1 ≤ i′ ≤ i and 1 ≤ j′ ≤ j.

Proof. We can recursively compute FM (Xi, Xj , k), as follows (see also Figure 7):

1. If k + |Xj | ≤ |X`|, then
FM (Xi, Xj , k) = FM (X`, Xj , k).

2. If k > |X`|, then
FM (Xi, Xj , k) = FM (Xr, Xj , k).

3. If k + |Xs| ≤ |X`| < k + |Xj |, then we have the two following sub-cases. Let
Xa = rmd(X`, height(Xj)).
(a) If k − |X`|+ |Xa| /∈ Occ4(Xa, Xs), then

FM (Xi, Xj , k) = FM (Xa, Xs, k − |X`|+ |Xa|).
(b) If k − |X`|+ |Xa| ∈ Occ4(Xa, Xs), then

FM (Xi, Xj , k) = FM (Xi, Xt, k + |Xs|) + |Xs|.

Xr

Y

Y

Y

Y

d d

Xl

Xn

Fig. 6. Illustration of Theorem 2.

4. If k < |X`| < k + |Xs|, then we have the two following sub-cases.
(a) If k /∈ Occ4(Xi, Xs), then

FM (Xi, Xj , k) = FM (Xi, Xs, k).
(b) If k ∈ Occ4(Xi, Xs), then

FM (Xi, Xj , k) = FM (Xr, Xt, k + |Xs| − |X`|) + |Xs|.
In each recursion, either or both of the first and second variables in the FM
function decrease the height by at least one. Since |Xj | ≤ |Xi| and height(Xi) =
log2 |Xi| + 1, we conclude that FM (Xi, Xj , k) can be computed in O(log |Xi|)
time. ut

What remains is how to efficiently compute the FM function for the last
variable of BSLPs.

Lemma 10. For any BSLP variables Xn = X
[d]
` Xr, Xj = XsXt and integer k,

FM (Xn, Xj , k) can be computed in O(log N) time, provided that Occ4(Xi′ , Xj′)
is already computed for every 1 ≤ i′ < n and 1 ≤ j′ ≤ j.

Proof. We can recursively compute FM (Xn, Xj , k), as follows (see also Figure 8):

1. If k ≤ |X`| − |Xj |+ 1, then
FM (Xn, Xj , k) = FM (X`, Xj , k).

2. If k ≥ |X`| − d + 1, then
FM (Xn, Xj , k) = FM (Xr, Xj , k).

3. If |X`| − |Xj |+ 1 < k < |X`| − d + 1, then we have the following sub-cases.
Let Xa = rmd(X`, height(Xj)).
(a) If k + |Xs| − 1 ≤ |X`| − |Xa|, then

i. If k − |X`|+ |Xa| /∈ Occ4(Xa, Xs), then
FM (Xn, Xj , k) = FM (Xa, Xs, k − |X`|+ |Xa|).

k

Xi

Xl Xr

Xj

Case 1

k

Xi

Xl Xr

Xj

Case 2

k

Xi

Xl Xr

Xa

Xj
Xs Xt

Case 3

k

Xi

Xl Xr

Xj
Xs Xt

Case 4

Fig. 7. Four possible cases in computing FM (Xi, Xj , k), where Xi and Xj both
form complete binary trees (see Lemma 9).

ii. If k − |X`|+ |Xa| ∈ Occ4(Xa, Xs), then
FM (Xn, Xj , k) = FM (Xn, Xt, k + |Xs|) + |Xs|.

(b) If |X`| − d < k + |Xs| − 1 < |X`|+ 1, then
i. If k /∈ Occ4(Xa, Xs), then

FM (Xn, Xj , k) = FM (Xa, Xs, k − |X`|+ |Xa|).
ii. If k ∈ Occ4(Xa, Xs), then

FM (Xn, Xj , k) = FM (Xr, Xt, k + |Xs| − |X`|+ d) + |Xs|.
(c) If k + |Xs| − 1 ≥ |X`| + 1, then let Xs(h) = lmd(Xj , h) for each 1 ≤

h ≤ height(Xj). Also let Xs(h) = Xs(h−1)Xt(h−1). We first compute
f = FM (Xn, Xs(g), k), where |X`| − d < k + |Xs(g)| − 1 < |X`|+ 1.
i. If f ≤ |Xs(g)|, then FM (Xn, Xj , k) = f .
ii. If f = |Xs(g)|+1, then let Xr(h+1) = lmd(Xr, h+1). Find the smallest

h ≥ g such that k−|X`|+d+
∑h−1

p=g |Xs(p)| /∈ Occ4(Xr(h+1), Xt(h)).
A. If there is no such h, then

FM (Xn, Xj , k) = k + |Xj |.
B. Otherwise, FM (Xn, Xj , k) = FM (Xr(h+1), Xt(h), k − |X`|+ d +∑h−1

p=g |Xs(p)|).

In each recursion except for Case 3c, either or both of the first and second
variables in the FM function decrease the height by at least one. Hence it takes
O(log N) time like Lemma 9. In Case 3c, the value of f is computable in O(log N)
time by Case 3b. Finding the smallest h takes O(height(Xj)) = O(log |Xj |) time.
Since computing FM (Xr(h+1), Xt(h), k − |X`| + d +

∑h−1
p=g |Xs(p)|) will fall into

one of the cases of Lemma 9, we can manage Case 3c in O(log N) time. ut
When we test square-freeness of the last variable Xn, we sometimes need to

compute the extended version of FM function for given strings X, Y , and two
integers k, p, as follows:

FM (X,Y, k, p) =
min{1 ≤ i ≤ |Y | − p | X[k + i− 1] 6= Y [p + i]}.

Lemma 11. For any variables Xi, Xj with 1 ≤ i, j < n and any integers k, p,
FM (Xi, Xj , k, p) can be computed in O(log2 |Xi|) time.

Proof. It is not difficult to see that Xj [p : |Xj |] can be represented by a concate-
nation of variables Xj1 , Xj2 , . . . , Xjh

such that |Xj1 | < |Xj2 | < · · · < |Xjh
| and

h = O(height(Xj)). Find the leftmost variable Xjs such that FM (Xi, Xjs , k +∑s−1
r=1 |Xjr |) 6= 0. Then clearly FM (Xi, Xj , k, p) =

∑s−1
r=1 |Xjr |+FM (Xi, Xjs , k+∑s−1

r=1 |Xjr |). If such variable does not exist, then FM (Xi, Xj , k, p) = |Xj | − p.
Since each of the variables Xj1 , Xj2 , . . . , Xjh

can be found in O(height(Xi))
time and each call of the FM function takes O(log |Xi|) time by Lemma 9,
FM (Xi, Xj , k, p) can be computed in total of O(log2 |Xi|) time. ut

7 Conclusions and Future Work

In this paper, we presented an O(max(n2, n log2 N))-time O(n2)-space algorithm
to test if a given BSLP-compressed string is square-free. Here, n is the size of
BSLP and N is the length of the decompressed string.

Our future work includes the following.

– Apostolico and Breslauer [15] also presented a parallel algorithm to find the
set of all squares from a given (uncompressed) string. Therefore, a natural
question is if it is possible to extend our algorithm to detecting the set of
all squares from BSLP-compressed string. A major task is how to represent
the resulting set in polynomial space in the compressed size, since there are
Θ(N log N) occurrences of squares in a string of length N .

– Is it possible to extend our algorithm to general SLPs? Gasieniec et al. [16]
claimed a polynomial time algorithm to find all squares from a given string
compressed by composition systems, a generalization of SLPs. However, de-
tails of their algorithm have never been published unfortunately. Our algo-
rithm is heavily dependant that the variables except for the last one form
complete binary trees. Hence dealing with general SLPs does not seem as
easy.

– Can we extend our algorithm to testing if a given BSLP-compressed string
is cube-free? A cube is a string of the form xxx. If a string is square-free,
then it is always cube-free. But the opposite is not true. A cube-free string
may contain squares.

Acknowledgments

The authors thank Wojciech Rytter for leading us to reference [15].

References

1. Gusfield, D.: Algorithms on Strings, Trees, and Sequences. Cambridge University
Press (1997)

2. Gusfield, D., Stoye, J.: Linear time algorithms for finding and representing all the
tandem repeats in a string. J. Comput. Syst. Sci. 69(4) (2004) 525–546

3. Harrison, M.: Introduction to Formal Language Theory. Addison-Wesley (1978)
4. Lothaire, M.: Combinatorics on Words. Addison-Wesley (1983)
5. Thue, A.: Über unendliche Zeichenreihen. Norske Vid Selsk. Skr. I Mat-Nat Kl.

(Christiana) 7 (1906) 1–22
6. Thue, A.: Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Norske

Vid Selsk. Skr. I Mat-Nat Kl. (Christiana) 1 (1912) 1–67
7. Main, M.G., Lorentz, R.J.: Linear time recognition of squarefree strings. In:

Combinatorial Algorithms on Words. Volume F12 of NATO ASI Series., Springer
(1985) 271–278

8. Crochemore, M.: Transducers and repetitions. Theoretical Computer Science 12
(1986) 63–86

9. Crochemore, M.: An optimal algorithm for computing the repetitions in a word.
Information Processing Letters 12(5) (1981) 244–250

10. Crochemore, M., Rytter, W.: Squares, cubes, and time-space efficient string search-
ing. Algorithmica 13(5) (1995) 405–425

11. Apostolico, A., Preparata, F.P.: Optimal off-line detection of repetitions in a string.
Theoretical Computer Science 22 (1983) 297–315

12. Kolpakov, R.M., Kucherov, G.: Finding maximal repetitions in a word in linear
time. In: Proc. 40th Annual Symposium on Foundations of Computer Science
(FOCS’99). (1999) 596–604

13. Crochemore, M., Rytter, W.: Efficient parallel algorithms to test square-freeness
and factorize strings. Information Processing Letters 38(2) (1991) 57–60

14. Apostolico, A.: Optimal parallel detection of squares in strings. Algorithmica 8
(1992) 285–319

15. Apostolico, A., Breslauer, D.: An optimal O(log log N)-time parallel algorithm for
detecting all squares in a string. SIAM J. Comput. 25(6) (1996) 1318–1331

16. Gasieniec, L., Karpinski, M., Plandowski, W., Rytter, W.: Efficient algorithms for
Lempel-Ziv encoding. In: Proc. 5th Scandinavian Workshop on Algorithm Theory
(SWAT’96). Volume 1097 of Lecture Notes in Computer Science., Springer-Verlag
(1996) 392–403

17. Hirao, M., Shinohara, A., Takeda, M., Arikawa, S.: Faster fully compressed pat-
tern matching algorithm for balanced straight-line programs. In: Proc. 7th Inter-
national Symp. on String Processing and Information Retrieval (SPIRE’00), IEEE
Computer Society (2000) 132–138

18. Karpinski, M., Rytter, W., Shinohara, A.: An efficient pattern-matching algorithm
for strings with short descriptions. Nordic Journal of Computing 4 (1997) 172–186

19. Miyazaki, M., Shinohara, A., Takeda, M.: An improved pattern matching algorithm
for strings in terms of straight-line programs. In: Proc. 8th Annual Symposium
on Combinatorial Pattern Matching (CPM’97). Volume 1264 of Lecture Notes in
Computer Science., Springer-Verlag (1997) 1–11

20. Matsubara, W., Inenaga, S., Ishino, A., Shinohara, A., Nakamura, T., Hashimoto,
K.: Computing longest common substring and all palindromes from compressed
strings. In: Proc. 34th International Conference on Current Trends in Theory and
Practice of Computer Science (SOFSEM’08). Volume 4910 of Lecture Notes in
Computer Science., Springer-Verlag (2008) 364–375

21. Inenaga, S., Shinohara, A., Takeda, M.: An efficient pattern matching algorithm
on a subclass of context free grammars. In: Proc. Eighth International Conference
on Developments in Language Theory (DLT’04). Volume 3340 of Lecture Notes in
Computer Science., Springer-Verlag (2004) 225–236

22. Lifshits, Y.: Processing compressed texts: A tractability border. In: Proc. 18th
Annual Symposium on Combinatorial Pattern Matching (CPM’07). Volume 4580
of Lecture Notes in Computer Science., Springer-Verlag (2007) 228–240

k

Xl

Xr

Xj

Case 1

d

Xn

k

Xl

Xr

Xj

d

Case 2

Xn

k

Xl

Xr

Xj

d

Xa

Xs Xt

Case 3(a)
Xn

k

Xl

Xr

Xj

d

Xa

Xs Xt

Case 3(b)
Xn

Case 3(c)

k

Xl

Xr

Xj

d

= X

Xs(g)

t(height(Xj)-1)Xt

= Xr(height(Xj))

= Xs(height(Xj))

Xn

Fig. 8. Five possible cases in computing FM (Xn, Xj , k), where Xn = X
[d]
` Xr is

the last variable of a BSLP (see Lemma 10).

