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Abstract. In this paper we introduce an approach that allows to han-
dle the containment problem for the fragment XP(/,//,[ ],∗) of XPath.
Using rewriting techniques we define a necessary and sufficient condi-
tion for pattern containment. This rewrite view is then adapted to query
evaluation on XML documents, and remains valid even if the documents
are given in a compressed form, as dags.

1 Introduction

The focus in this paper is on the containment problem ([11, 12]) for the fragment
XP(/,//,[ ],∗) of XPath. XPath ([17]) is the main language for navigating and
selecting nodes in XML documents. The segment XP(/,//,[ ],∗) defines a class
of Core XPath queries expressing descendant relationships between nodes, pos-
sibly containing filters, and allowing to use the don’t–care (or wildcard) symbol
‘∗’. The queries of this fragment can be modeled by patterns: tree like graphs
having two types of edges child and descendant. Every XML document t is an
unranked tree t = (Nodest, Edgest), and can also be seen as a pattern. For any
two patterns P and Q, we say that P is contained in Q (P ⊆ Q), iff the query
represented by Q is more general that the one represented by P . For example,
a/b is contained in a//b, since child (/) is a particular case of descendant (//).

The big interest in the query containment problem ([11, 12, 16, 15]) is moti-
vated by its applications. Using the notion of pattern containment we can define
queries which are equivalent, i.e., that on any XML document, select the same
set of nodes. The query equivalence problem is closely linked to the query mini-
mization problem, which is essential for data base researchers. Since the time
required for the evaluation of a given query Q is linear with respect to the size
of Q ([8]), the minimization — possibility of replacing Q by an equivalent query
of smaller size — is of interest from the point of view of complexity ([6, 1, 9, 14]).

We propose to handle the containment problem using a rewrite approach.
We define a set of rewrite rules based on the semantics of XP(/,//,[ ],∗)–query
containment, and show that for any two patterns P and Q, P is contained
in Q if and only if we can rewrite P to Q using these rules. Such a rewrite
view gives us a uniform framework to treat also other problems, for instance
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query evaluation. We extend our approach on compressed documents encoded
as straightline regular grammars, and apply our rewrite technique in order to
evaluate XP(/,//,[ ],∗)–queries on compressed or unfolded (arborescent) XML
documents.

This paper is organized as follows: In Section 2 we introduce terminology
and notation, and recall some results on the pattern containment problem. Our
rewrite method is presented in Section 3. Finally, in Section 4 we show how to
adapt this rewrite approach to the query evaluation problem.

2 The Pattern Containment Problem

Let Σ be an alphabet containing the element names of all XML documents
considered. In this work we consider the fragment XP(/,//,[ ],∗) of XPath,
which consists of: node tests (symbols from Σ∪{∗}), child axis (/), descendant
axis (//), and qualifiers also called filters ([...]). Any element of XP(/,//,[
],∗) is a query that can be represented as a rooted tree structure graph over
Σ ∪ {∗}, called unary pattern, having:

– edges of two types: simple for child, and double for descendant,
– nodes labeled by the symbols from Σ ∪ {∗},
– one distinguished node marked with a special selection symbol ‘s’ represent-

ing the output information.

For instance, the unary pattern in Figure 1 represents the XP(/,//,[ ],∗) query
/a//b[./b/c/d]/c[./∗//d]. The notion of unary patterns is easily extended to

s

a

b

c

d

b

c

d

*

Fig. 1. Unary pattern representing query /a//b[./b/c/d]/c[./∗//d]

that of n–ary patterns, where we have n distinguished nodes, that model n–ary
queries selecting n–tuples of nodes. Miklau and Suciu show in [11] that, for the
purpose of the containment problem, it is sufficient to consider only the patterns
of arity zero, called boolean, where there are no distinguished nodes. Thus, all
patterns considered in the sequel will be boolean, and they will be simply called
patterns.

For a given pattern P , we denote by NodesP the set of all its nodes. For any
u ∈ NodesP , nameP (u) stands for the element of Σ∪{∗} labeling the node u. By
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Edges↓(P ) and Edges⇓(P ) we mean respectively the set of child and descendant
edges of P . We define the size of P (denoted by |P |) to be the number of all
edges in P .

Definition 1. An XML tree t is a model of a pattern P iff there exists an
embedding from P to t; i.e., a function e : NodesP → Nodest, satisfying the
following conditions:

1. e preserves the root: e(rootP ) = roott;
2. e preserves the names:
∀u ∈ NodesP , nameP (u) = ∗, or nameP (u) = namet(e(u));

3. e preserves the relation child:
∀(u, v) ∈ Edges↓(P ), (e(u), e(v)) ∈ Edgest;

4. e preserves the relation descendant:
∀(u, v) ∈ Edges⇓(P ), (e(u), e(v)) ∈ (Edgest)+,

where (Edgest)+ is the transitive closure of the relation Edgest.

The notion of model is illustrated in Figure 2.
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a c

ab d

t

Fig. 2. Pattern P , its model t, and embedding e from P to t

Definition 2. Given two patterns P and Q, we say that P is contained in Q
(P ⊆ Q) iff every model of P is also a model of Q. The patterns P and Q are
equivalent (P ≡ Q) iff P ⊆ Q and Q ⊆ P .

Figure 3 represents two patterns which are easily seen to be equivalent.
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P

Fig. 3. Equivalent patterns P and Q

Miklau and Suciu prove in [11] that the containment problem for XP(/,//,[
],∗) is CoNP–complete. They also give a sufficient — but not necessary —
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condition for pattern containment. For that purpose, they extend the notion of
embedding to pattern homomorphism:

Definition 3. Given two patterns P and Q, a homomorphism from Q to P is
a function ϕ : NodesQ → NodesP , which is:

– root and name preserving;
– child preserving:
∀(u, v) ∈ Edges↓(Q), (ϕ(u), ϕ(v)) ∈ Edges↓(P );

– descendant preserving:
∀(u, v) ∈ Edges⇓(Q), (ϕ(u), ϕ(v)) ∈ (Edges↓(P ) ∪ Edges⇓(P ))+.

The authors of [11] prove that if there exists a homomorphism from Q to P , then
P is contained in Q. They give an algorithm which for two given patterns P and
Q verifies, in time O(|P ||Q|), whether there exists a homomorphism from Q to
P . Figure 4 shows the patterns P and Q, and the homomorphism ϕ from Q to
P proving that P ⊆ Q. Nevertheless, the existence of a homomorphism from Q

Qϕϕ
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a*

f

a*

P Q P

Fig. 4. Homomorphism ϕ from Q to P proving that P ⊆ Q

to P is not a necessary condition for P ⊆ Q (as is easily checked for the patterns
P and Q given in Figure 3, which are equivalent, but there is no homomorphism
neither from Q to P , nor from P to Q). In the following example we show a way
to prove the containment P ⊆ Q, if there is no homomorphism from Q to P .

Example 1. In Figure 5 we have presented two patterns P and Q (borrowed from
[11]) satisfying P ⊆ Q, such that there is no homomorphism from Q to P . Here,
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Fig. 5. Patterns s.t. P ⊆ Q, but no homomorphism from Q to P

to show the containment P ⊆ Q, we have to reason by cases. Let t be a model
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of P , and consider the middle edge c//d of pattern P . This edge can be realized
on t:

– either by the child edge c/d (as in Figure 6),
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Fig. 6. Model of P (and Q), where c//d is realized by c/d

– or by a path c/∗/. . . /d, having length ≥ 2 (as in Figure 7).
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Fig. 7. Model of P (and Q), where c//d is realized by c/a/d

Such an analysis shows that any model of P is also a model of Q, thus P ⊆ Q.
However, it is impossible to define one general homomorphism from Q to P ,
as the right branch a//b/c/∗//d of Q, corresponds in each case to a different
branch of P .

3 Pattern Containment via rewriting

We propose to handle the pattern containment problem using an approach based
on rewriting techniques. A key idea is that checking containment requires case
analysis in general, and this can be encoded as rewriting (as we illustrate in
Example 2 below). We construct a rewrite system R that permits to define a
necessary and sufficient condition (see Theorem 1) for pattern containment on
the fragment XP(/,//,[ ],∗).
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We start by giving a formal definition of pattern, alternative to that used in
the previous sections.

Definition 4. We define patterns over an alphabet Σ as the expressions P de-
rived from the grammar of Table 1, where ↓ and ⇓ stand respectively for child
and desendant, ω ∈ Σ ∪ {∗}, and ‘∗’ is the don’t–care symbol of XPath that
can replace any σ of Σ.

M : ε | ↓ ω | ⇓ ω | MM // path
S : ∅ | {MS} | S ∪ S // set of sibling unrooted terms
P : ωMS // patterns

Table 1. Grammar for patterns

This grammar produces precisely the patterns as defined in [6, 11]. For instance,
the graph P in Figure 8 corresponds to the expression

P = a ⇓ b{↓ b{↓ b ↓ c ↓ d, ↓ c ⇓ d}, ↓ c ↓ ∗ ⇓ d}

derived from the grammar of Table 1.

P
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Fig. 8. Pattern

By a term we mean any expression of the type M , S or P derived from the
grammar of Table 1, as well as any finite disjunction P1∨P2∨· · ·∨Pn of patterns.
The terms of the type M correspond to the linear paths without branching, they
start by a modal symbol ξ ∈ {↓,⇓}; those of the type S represent a set of terms
having a common parent node; and those of the type P are patterns. The terms
in P are rooted (they start by a symbol from Σ ∪ {∗}), those in M and S are
unrooted. To simplify, we will often identify the singleton {MS} with the term
MS. Given patterns P and Pi, for 1 ≤ i ≤ n, the terms of the form ε, P , or
P1 ∨ · · · ∨ Pn, will also be called d–patterns. A tree t is a model of a d–pattern
P1∨· · ·∨Pn iff t is a model of at least one pattern Pi, for 1 ≤ i ≤ n. A disjunctive
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d–pattern will be used in case analysis to represent different models of a given
pattern with a unique term, as in the following example.

Example 2. Consider the patterns

P = f ↓ ∗ ⇓ a and Q = f ⇓ ∗ ↓ a

given in Figure 3. We know that P ≡ Q, thus in particular P ⊆ Q, but there
is no homomorphism which proves it. Using the rules of our system R defined
below we will be able to rewrite P to Q, and prove the containment P ⊆ Q. The
idea is that every descendant is either a child or has a depth ≥ 2; thus, the edge
∗ ⇓ a of P can be realized either by the child edge ∗ ↓ a, or by a path having at
least one additional node between ‘∗’ and ‘a’, that we can denote by ∗ ⇓ ∗ ↓ a.
We will then rewrite the pattern P to the d–pattern

f ↓ ∗ ↓ a ∨ f ↓ ∗ ⇓ ∗ ↓ a

depicting the two cases mentioned. The two pattern components of this d–
pattern will then be rewritten in parallel. A child, as well as a descendant of
depth ≥ 2 are particular cases of descendant. As a consequence, the edge f ↓ ∗
will be rewritten to f ⇓ ∗, idem for the path f ↓ ∗ ⇓ ∗. This will give us the
following term:

f ⇓ ∗ ↓ a ∨ f ⇓ ∗ ↓ a,
which will be finally rewritten to Q, since each pattern composing this d–pattern
is exactly the pattern Q.

To formalize the idea employed in the examples above, we introduce a set
R of rules that serve to rewrite rooted and unrooted terms. Let M,S (possibly
with primes, subscripts) be as in the grammar of Table 1; ξ, ξ′ ∈ {↓,⇓}, σ ∈ Σ,
and ω, ω′ ∈ Σ ∪ {∗}:

1. S −→ ∅, M −→ ε //cut;
2. MσS −→M ∗ S //replace any symbol of Σ by the ‘∗’ of XPath;
3. ↓ ωS −→⇓ ωS //every child is also a descendant;
4. ξωξ′ω′S −→⇓ ω′S //ignore an intermediate node;
5. M{S1, S2} −→ {MS1,MS2} //left distributivity;
6. S −→ S ∪ S′, where S −→ S′ //add new siblings;
7. S ∪ S1 −→ S′ ∪ S1, if S −→ S′ //rewrite some of the siblings;
8. ⇓ ωS −→ (↓ ωS) ∨ (↓ ∗ ⇓ ωS) //case analysis: descendant is either a child

or has depth ≥ 2;
9. ⇓ ωS −→ (↓ ωS) ∨ (⇓ ∗ ↓ ωS) //idem.

By context–pattern we mean any pattern having a special additional hole
symbol ♦ that replaces one of its unrooted sub–terms. Let us consider a context–
pattern C and an unrooted term X. We define the fill–in of C with X (denoted
as C�X) to be the pattern obtained from C by replacing its hole symbol with
the term X; e.g. for the context–pattern C = f{↓ a,⇓ b{♦, ↓ d},⇓ ∗}, and the
unrooted term X =⇓ x{↓ y,⇓ z}, we get the fill–in:

C�X = f{↓ a,⇓ b{⇓ x{↓ y,⇓ z}, ↓ d},⇓ ∗}.
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We also suppose that for any context–pattern C and unrooted terms X and X ′,
the notation C�(X ∨X ′) stands for the disjunctive d–pattern C�X ∨ C�X ′. To
rewrite patterns with the rules of R we use suffix rewriting :

Definition 5. Given a pattern P and a pattern or a d–pattern Q, we say that P
can be rewritten to Q in one step using suffix rewriting (denoted as P −→R Q),
if there exist a context–pattern C and two unrooted terms X and X ′, such that:
P = C�X, Q = C�X ′, and X −→ X ′ is an instance of a rule in R.

Moreover, disjunctive terms can be rewritten using the following additional two
rules, where P is a pattern, and D,D1, D2 stand for d–patterns:

10. D1 ∨D −→ D2 ∨D, if D1 −→ D2 //case rewriting;
11. P ∨ P ∨D −→ P ∨D //consider any given case only once.

The main result of our work is the following:

Theorem 1. For any two patterns P and Q, P is contained in Q if and only if
P

∗−→R Q, i.e., P can be rewritten to Q using the rules of R in zero or finitely
many steps.

Proof. The semantics of the rules in R guarantee that P ∗−→R Q implies P ⊆ Q.
To show the converse, we start with the following lemma:

Lemma 1. For any patterns P and Q, if there exists a homomorphism from Q
to P , then P

∗−→R Q.

Proof. Given a homomorphism ϕ from Q to P , we construct a pattern P ′, such
that P ∗−→R P ′

∗−→R Q, as follows:

(a) for every node u of Q, we construct a corresponding node u′ of P ′, and we
set nameP ′(u′) = nameP (ϕ(u));

(b) we construct a child edge (u′, v′) ∈ Edges↓(P ′), if and only if (u, v) ∈
Edges↓(Q);

(c) we construct a descendant edge (u′, v′) ∈ Edges⇓(P ′), if and only if (u, v) ∈
Edges⇓(Q).

The cost of such a construction is linear with respect to the size of Q. The pattern
P ′ can be rewritten to the pattern Q using rule 2 of R. Indeed, the structures
(nodes, simple and double edges) of P ′ and Q are the same, but the names of
some u ∈ NodesQ and the corresponding node u′ ∈ NodesP ′ may be different.
Condition (a) implies that: either nameQ(u) = nameP ′(u′) = nameP (ϕ(u)),
or nameQ(u) 6= nameP ′(u′) = nameP (ϕ(u)). In the second case we have (see
Definition 3): nameQ(u) = ∗, and nameP ′(u′) ∈ Σ, thus to rewrite P ′ to Q we
have to use rule 2.

It remains to be shown that P can be rewritten to P ′:

– using rules 1 and 7 (with S′ = ∅), we can ignore all sub–branches of P which
do not contain the nodes images under ϕ;
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– if some node w of P is an image of m distinct nodes u1, . . . , um of Q, then
we rewrite the unique node w of P to m nodes u′1, . . . , u

′
m of P ′, by using

rule 6 (with S′ = S) and/or rule 5;
– case when edge (u′, v′) is in Edges↓(P ′): from condition (b) we know that

(u, v) ∈ Edges↓(Q), thus by Definition 3 we have (ϕ(u), ϕ(v)) ∈ Edges↓(P )
(we have nothing to do with the edge (ϕ(u), ϕ(v)) when rewriting P to P ′);

– case when edge (u′, v′) is in Edges⇓(P ′): from condition (c) and Definition 3
we can deduce that there exist k ≥ 1 and w0, . . . wk ∈ NodesP , such that:
w0 = ϕ(u), wk = ϕ(v), and ∀ i ∈ {0, . . . , k − 1} we have (wi, wi+1) ∈
Edges↓(P ) ∪ Edges⇓(P ). If k = 1 and (ϕ(u), ϕ(v)) ∈ Edges↓(P ), then we
can rewrite P to P ′ using rule 3. If k ≥ 2, then we use (k − 1 times) rule 4
to ignore the nodes w1, . . . wk−1 while rewriting P to P ′.

Finally, we obtain P
∗−→R P ′

∗−→R Q. ut

Note that if P is a tree, we also have the converse of Lemma 1; of course, in
this case a homomorphism from Q to P is an embedding from the pattern Q to
the tree P . Thus we have the following:

Remark 1. A tree t is a model of a pattern Q iff t
∗−→R Q.

By a homomorphism from a pattern Q to a d–pattern D = P1 ∨ · · · ∨Pn, we
mean a function which is a homomorphism from Q to Pi, for every 1 ≤ i ≤ n.
Thus, using Lemma 1, we obtain the following corollary:

Corollary 1. For any given pattern Q and a d–pattern D, if there exists a
homomorphism from Q to D, then D

∗−→R Q.

Proof. It suffices to remark that rules 10 and 11 imply that a d–pattern P1 ∨
· · · ∨ Pn can be rewritten to a pattern Q if and only if, for every 1 ≤ i ≤ n, we
have Pi

∗−→R Q. ut

To finish the proof of Theorem 1, we use the following proposition:

Proposition 1. For two patterns P and Q, if P ⊆ Q, then one can construct a
d–pattern D verifying P ∗−→R D, such that there exists a homomorphism from
Q to D.

Proof. From the result of Miklau and Suciu ([11]) we know that it is possible
to check if there exists a homomorphism from Q to P . If it is the case, the
d–pattern D satisfying the proposition is equal to P (see Lemma 1). If not, a
disjunctive d–pattern D satisfying the proposition can be constructed by using
rules 8 and 9 finitely many times. We know that every model of P is also a
model of Q. The idea is to represent all models of P by an equivalent d–pattern
D = P1∨· · ·∨Pn representing case analysis, such that for every 1 ≤ i ≤ n, there
exists a homomorphism from Q to Pi. ut

This terminates the proof of Theorem 1.
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The rewrite systemR is non–deterministic; nevertheless if P and Q are given,
there exists a well–defined, goal–directed strategy for rewriting P to Q. The idea
is to use only those rules among 1−11 that permit to converge to Q. We illustrate
this strategy in the following example:

Example 3. Let P and Q be the patterns represented in Figure 5. We show
how to rewrite P to Q, and thus prove the containment P ⊆ Q. The pattern
P = a ⇓ b{↓ b{↓ b ↓ c ↓ d, ↓ c ⇓ d}, ↓ c ↓ ∗ ⇓ d} can be seen as the fill–in

a ⇓ b{↓ b{↓ b ↓ c ↓ d, ↓ c♦}, ↓ c ↓ ∗ ⇓ d} � ⇓ d.

Using rule 8 for the underlined term, we encode the cases depicted in Example 1:

a ⇓ b{↓ b{↓ b ↓ c ↓ d, ↓ c♦}, ↓ c ↓ ∗ ⇓ d} � ↓ d
∨ a ⇓ b{↓ b{↓ b ↓ c ↓ d, ↓ c♦}, ↓ c ↓ ∗ ⇓ d} � ↓ ∗ ⇓ d.

We obtain the d–pattern

a ⇓ b{↓ b{↓ b ↓ c ↓ d, ↓ c ↓ d}, ↓ c ↓ ∗ ⇓ d}
∨ a ⇓ b{↓ b{↓ b ↓ c ↓ d, ↓ c ↓ ∗ ⇓ d}, ↓ c ↓ ∗ ⇓ d},

which can be seen under the form

a ⇓ b{↓ b{♦, ↓ c ↓ d}, ↓ c ↓ ∗ ⇓ d} � ↓ b ↓ c ↓ d
∨ a ⇓ b{↓ b{↓ b ↓ c ↓ d, ↓ c ↓ ∗ ⇓ d},♦} � ↓ c ↓ ∗ ⇓ d.

We rewrite it using rule 10. We cut (rule 1) the underlined parts, and get

a ⇓ b{↓ b{↓ c ↓ d}, ↓ c ↓ ∗ ⇓ d} ∨ a ⇓ b{↓ b{↓ b ↓ c ↓ d, ↓ c ↓ ∗ ⇓ d}}.

The d–pattern that we have obtained is then identified with

a ⇓ b{↓ b ↓ c ↓ d, ↓ c ↓ ∗ ⇓ d} ∨ a ⇓ b ↓ b{↓ b ↓ c ↓ d, ↓ c ↓ ∗ ⇓ d}.

Its first component is equal to the pattern Q. To the second one, seen as the
fill–in a♦ � ⇓ b ↓ b{↓ b ↓ c ↓ d, ↓ c ↓ ∗ ⇓ d}, we apply rule 4, and get the term
a♦ � ⇓ b{↓ b ↓ c ↓ d, ↓ c ↓ ∗ ⇓ d} = a ⇓ b{↓ b ↓ c ↓ d, ↓ c ↓ ∗ ⇓ d}. Thus we
obtain the d–pattern

a ⇓ b{↓ b ↓ c ↓ d, ↓ c ↓ ∗ ⇓ d} ∨ a ⇓ b{↓ b ↓ c ↓ d, ↓ c ↓ ∗ ⇓ d} = Q ∨Q,

that is finally rewritten to Q using rule 11.

Remark 2. Our approach is no longer valid, if it is not based on suffix rewriting;
e.g. for P = ∗ ⇓ ∗ and Q = ∗ ↓ ∗, we have P ⊆ Q (P ∗−→R Q using rules 9, 1),
but P♦ � ↓ a = ∗ ⇓ ∗ ↓ a is not contained in Q♦ � ↓ a = ∗ ↓ ∗ ↓ a: for
instance, the tree t = f ↓ g ↓ b ↓ a is a model of ∗ ⇓ ∗ ↓ a, but not of ∗ ↓ ∗ ↓ a.
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4 Applications

The objective of this section is to show that our rewrite approach remains valid
even if the models of patterns are given in a compressed form (as dags), and
that it can be adapted for query evaluation on XML documents.

4.1 Case of Compressed Documents

To model compressed documents we use rooted dags instead of trees (as in [5, 2,
10, 7]). Figure 9 represents three formats of the same document: tree, fully and
partially compressed format (see [5] for formal definitions). In the sequel, by t we

Tree

f

a b a
Partially
compressed

f

a b
Fully

compressed

f

abaa

Fig. 9. Tree, fully compressed format, partially compressed format

will denote any given representation (tree or dag) of the document considered.
To distinguish between different formats of the same document we use regular
tree grammars. Given a document t, we call normalized grammar for t a regular
tree grammar Gt:

– which recognizes only t,
– where every node of t is represented by exactly one non–terminal,
– the indexes of non–terminals for children nodes are grater then the indexes

of non–terminals for parent nodes.

Such normalized grammars are straightline in the sens defined in [3], i.e., there
is no cycle on their dependency graph. For this reason we will refer to them as
SLR grammars.

Example 4. The SLR grammars for the three dags from Figure 9 are respectively:

X0 → f(X1, X2, X3, X4) Y0 → f(Y1, Y1, Y2, Y1) Z0 → f(Z1, Z1, Z2, Z3)
X1 → a Y1 → a Z1 → a

X2 → a Y2 → b Z2 → b

X3 → b Z3 → a.

X4 → a
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We extend the notion of SLR grammar to patterns. To define a normalized
grammar GP for pattern P , it is sufficient that every non–terminal Xi appearing
on the right hand side of any production of GP , is preceded by a modal symbol ↓
or ⇓, corresponding to the type of edge pointing to the node represented by Xi on
P . In order to have a uniform notation that covers patterns as well as documents,
we will do the same on the normalized grammar Gt, for any document t: every
non–terminal Xi appearing on the right hand side of some production in Gt, will
be preceded by ↓. For instance, the grammars GP and Gt respectively for the
pattern P and the tree t of Figure 11, are given in Figure 10.

P0 → ∗(↓ P1,⇓ P2) X0 → f(↓ X2, ↓ X1)

P1 → a X1 → b(↓ X2)

P2 → a X2 → a.

Fig. 10. SLR grammars GP and Gt for P and t from Figure 11

Remark that the notion of embedding from a pattern to a tree can be ex-
tended in a natural way to an embedding from a pattern to a rooted dag. To
define an embedding e from a pattern P to a dag t, we replace the conditions 2
and 3 of Definition 1 respectively by:

3. ∀u, v ∈ NodesP , such that (u, v) ∈ Edges↓(P ), there exists an edge going
form e(u) to e(v) on t;

4. ∀u, v ∈ NodesP , such that (u, v) ∈ Edges⇓(P ), all paths going from e(u) to
e(v) on t are in (Edgest)+.

Note that, if t is a tree, such a definition is equivalent to Definition 1, since
on any tree we have at most one path between two nodes. The notion of (dag)
model of a pattern and the pattern containment problem are defined in the same
way as in the case of tree models. Figure 11 shows a pattern P , its compressed
model t, and an embedding from P to t.

P

*

aa

f

b

a

t

Fig. 11. Pattern P , its compressed model t, and embedding from P to t
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SLR grammars can be used in our rewrite approach. To prove that a given
dag t is a model of a pattern P , it is sufficient (according to Remark 1) to rewrite
the grammar Gt representing t to the grammar GP representing P . We illustrate
this idea in the following example.

Example 5. Consider the grammars GP and Gt given in Figure 10. We show
how to rewrite Gt to GP using rules of R:

X0 → f(↓ X2, ↓ X1) 2−→ X0 → ∗(↓ X2, ↓ X1) 1−→ X0 → ∗(↓ X2) 6−→

X1 → b(↓ X2) X1 → b(↓ X2) 1−→
X2 → a X2 → a X2 → a

The first production of Gt is first rewritten using rule 2; then we cut a branch
represented by X1 (rule 1). At the same time, we can eliminate from Gt the
production X1 → b(↓ X2), since it has become unproductive (there is no more
production having X1 on their right hand sides).

X0 → ∗(↓ X2, ↓ X ′2) 3−→ X0 → ∗(↓ X2,⇓ X ′2) ≈ P0 → ∗(↓ P1,⇓ P2)
X2 → a X2 → a ≈ P1 → a

X ′2 → a X ′2 → a ≈ P2 → a.

Then, using rule 6 we double the number of children of X0; we introduce a new
non–terminal X ′2, which produces the same sub–pattern as X2. Finally, by Rule
3, we get a grammar which is equal, up to non–terminal renaming, to GP .

4.2 Query Evaluation

SLR grammars help us to adapt the rewrite approach of Section 3 to XP(/,//,[
],∗)–query evaluation on (compressed) documents. To represent unary queries,
we use unary patterns (see Section 2). Let us consider the unary pattern P rep-

t:PP0

P1

P2 P3

P4

*

c

d c

a

P:

S

X0

X2X1

X3

X4 X5

X6

c

d c

a

f

ba

P

Fig. 12. Unary pattern P and its compressed model t

resenting the query P = /∗//c[./c]//d[./a], and the compressed document t,
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given in Figure 12. The corresponding SLR grammars GP and Gt are respec-
tively:

P0 → ∗(⇓ P1) X0 → f(↓ X1, ↓ X2)
P1 → c(⇓ P2, ↓ P3) X2 → b(↓ X6)
P2(s)→ d(↓ P4) X1 → a(↓ X6, ↓ X3)
P3 → c X3 → c(↓ X4, ↓ X5)
P4 → a X4 → d(↓ X6)

X5 → c(↓ X6)
X6 → a.

The non–terminal P2 of GP is marked ‘s’, since it represents the output node
of P . To find an answer for P on t, we rewrite the grammar Gt to the grammar
GP , using the rules of R. The non–terminal of Gt which will be rewritten to
the selecting non–terminal P2 of GP , will represent an answer for P on t. We
illustrate this reasoning below:

X0 → f(↓ X1, ↓ X2) 1−→ X0 → f(↓ X1) 2−→ X0 → ∗(↓ X1) 4−→
X2 → b(↓ X6)

X1 → a(↓ X6, ↓ X3) 1−→ X1 → a(↓ X3) X1 → a(↓ X3)

X3 → c(↓ X4, ↓ X5) X3 → c(↓ X4, ↓ X5) 3−→ X3 → c(⇓ X4, ↓ X5)
X4 → d(↓ X6) X4 → d(↓ X6) X4 → d(↓ X6)

X5 → c(↓ X6) 1−→ X5 → c X5 → c

X6 → a X6 → a X6 → a

X0 → ∗(⇓ X3) ≈ P0 → ∗(⇓ P1)
X3 → c(⇓ X4, ↓ X5) ≈ P1 → c(⇓ P2, ↓ P3)
X4 → d(↓ X6) ≈ P2(s)→ d(↓ P4)
X5 → c ≈ P3 → c

X6 → a ≈ P4 → a,

We have obtained an SLR grammar, which is (up to non–terminal renaming)
the SLR grammar GP for P . The non–terminal X4 of Gt has been rewritten to
the non–terminal P2, thus the node represented by X4 is an answer for P on t.

Note that, as any query P of the fragment XP(/,//,[ ],∗) is purely descen-
dant, the answer for P on a document t does not depend on the form under
which t is given (tree or dag); this is no longer valid for queries containing as-
cendant axes (cf.[5]). Remark also that our rewrite approach can be extended to
any n–ary query of XP(/,//,[ ],∗); an n–ary query selects a set of n–tuples of
nodes ([13]), and is easily represented as an n–ary pattern.
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5 Conclusion

We have presented an approach based on rewrite techniques, that allows to han-
dle the problem of query containment for the segment XP(/,//,[ ],∗) of XPath.
Such a rewrite view is also appropriate for compressed documents modeled as
dags, and can be adapted to (unary as well as n–ary) query evaluation on (com-
pressed) documents.

Straightline regular tree grammars can provide an exponential space compres-
sion. Nevertheless there exist more efficient compression techniques, like those
based on staightline context–free grammars (SLCF, [4, 3]), giving better (up to
doubly exponential) compression rates. Currently we are studying the possibil-
ity of extending our rewrite approach to such more efficient compressions. We
also hope to adapt our results to larger fragments of XPath, containing queries
modeled by more general patterns, having both descendant and ascendant edges.
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