
A TOOL FOR AVERAGE AND WORST-CASE
EXECUTION TIME ANALYSIS

David Hickey1, Diarmuid Early1and Michel Schellekens1

Abstract
We have developed a new programming paradigm which, for conforming programs, allows the average-
case execution time (ACET) to be obtained automatically by a static analysis. This is achieved by
tracking the data structures and their distributions that will exist during all possible executions of a
program. This new programming paradigm is called MOQA and the tool which performs the static
analysis is called Distritrack. In this paper we give an overview of both MOQA and Distritrack.
We then discuss the possibility of extending Distritrack for static worst-case execution time (WCET)
analysis of MOQA programs using the tight tracking of data structures already being performed.

1. Introduction

Much work is being done on the development of ways to predict program execution times. The
efforts are concentrated into two areas -complexity theory in which various time measures have been
developed for counting the basic number of operations in a program andreal-time systems in which
constraints on the execution times of programs are imposed, e.g. deadlines, cost, etc.

In general however, the static analysis of programs to determine any property, one of which is time, is
known to be very difficult in practice. Measuring ACETs automatically is no different. Some analysis
techniques have been developed, e.g. [2], but these tend to be quite complicated involving many
difficult mathematical techniques. Along with this, it is required that in some cases the algorithms are
programmed in an unfamiliar style when compared to general programming languages.

MOQA involves a way to determine statically the distribution of all possible data structures at any
point in a program. This makes an ACET analysis possible. The underlying mathematical techniques
are less complicated than previous approaches and allow a common programming style. Currently
MOQA programs are coded in Java using an API implementingMOQA’s operations.

Distritrack is the tool that has been developed to automate the static ACET analysis ofMOQA
programs. It combines elements of a number of static analysis techniques in order to track the data
structures and their distributions as set out inMOQA. The output of an analysis is generally a recur-
rence equation representing the number of basic operations, e.g. comparisons, swaps or Java bytecode
instructions, executed on the data structures. As future research, low-level timing information for spe-
cific hardware could be combined with this in order to determine the expected “real” ACET (i.e. clock
cycles, milliseconds, etc.) for the program being considered taking into account caching, pipelining,
etc.

ACETs can be used in conjunction with other execution time measures in soft real-time systems to

1Centre for Efficiency Oriented Languages, Department of Computer Science, National University of Ireland, Cork

ECRTS 2008
8th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis
http://drops.dagstuhl.de/opus/volltexte/2008/1668

estimate deadlines. While deadlines determined in this way only guarantee enough time for a majority
of their associated tasks, they may however lead to a significant improvement in the utilisation of
system resources [7]. When deadlines are hard, WCET is a more suitable execution time measure.
Like ACET, this is often difficult to obtain. Here we examine if the tight tracking of data structures
that is performed by Distritrack might in fact also facilitate a WCET analysis.

This paper is organised as follows. In Section 2.MOQA is introduced. Then in Section 3. an
overview of Distritrack is given along with details of how data structures are tracked. Section 4.
gives an example of aMOQA program and the corresponding ACET output by Distritrack. Next
in Section 5. we examine possible ways of extending Distritrack’s current analysis in order to obtain
WCET estimates. Finally in Section 6. some concluding remarks are given.

2. MOQA

MOQA [9, 10] is a special purpose high-level language for data (re)structuring. Its data structures
are simply specified as finite partial orders. Its operations are based on the classical abstract data type
operations. However, each operation has been purposely designed to guarantee that data collections
remain random throughout the computations. This in turn guarantees a modular ACET analysis.

In this section an overview ofMOQA is given based on the main ideas discussed in [9].

2.1. Data Structures

The basic data structure in the current implementation ofMOQA is a series-parallel partial order
(SPPO) which is a partial order that only allows nodes to be in series, denoted by⊗, or in parallel,
denoted by‖. For example the SPPO in Figure 2(a) can be represented in series-parallel notation
by d ⊗ ((b ⊗ a)‖c). Sub-structures, which can be single nodes or more complex SPPOs, are called
components.

The data of the language are labellings of the data structures. A data-labelling is simply an assignment
of a finite number of values to each node of the data structure so that the directed links of the data
structure are respected, i.e. if there is a directed link from a node x to a node y, then the label assigned
to x must be less than the label assigned to y. These labels can be any value, e.g. natural or real
numbers, words, other data structures containing data such as trees, etc. Any two labels need to be
comparable with respect to a given order on labels. For instance, the order on natural number labels
typically is the usual order on natural numbers.

MOQA programs compute over data-labellings, and will at each stage transform data-labellings to
new data-labellings. In such computations it is important to identify the states that data-labellings can
be in.

A state represents a collection of order-isomorphic data-labellings, i.e. data-labellings whose labels
are arranged in the same relative order within data structures.

We illustrate this with the data-labellings for the tree of size 4 given in Figure 1. If we use four distinct
values, saya, b, c, d, to represent the states of the same tree, wherea < b < c < d, we have only three
possible states as displayed in Figure 2. Note that the data-labelling in Figure 1(a) matches the state
in Figure 2(a) and data-labelling in Figure 1(b) matches the state in Figure 2(b).

2

12

5 8

2

(a)

1

8 5

10

(b)

Figure 1. Data-labellings on data structures.

a

b c

d

(a)

a

d

bc

(b)

d

c

b

a

(c)

Figure 2. Data-structure states.

Essentially, states reflect the relative order that the labels can be in, on any given data structure. The
values of the labels are irrelevant in this context, only their relative order is captured.

For any given data structure, the finite collection of the set of states over this data structure, is referred
to as therandom structure over the given data structure.

This amounts to the assumption that inputs for software are equally likely to occur in any of a given
number of finite states. Random data can be concisely captured as above via the notion of a random
structure. In practice of course, there may be several possible data structures. To represent this, the
notion of random bags is introduced. Arandom bag consists of finitely many random structures,
R1, . . . , Rn, each of which has amultiplicity Ki, wherei ∈ 1, . . . , n, which is a natural number used
in the calculation of the probabilities involved in the distribution.

2.2. Operations

Operations inMOQA map input random bags to output random bags. Operations which correctly
do this arerandom bag preserving.

The multiplicities of the input random bags are the key to the calculation of the ACETs. The ACET
for an operationP with input random bagR = {(R1, K1), . . . , (Rn, Kn)} is

TP (R) =
n

∑

i=1

Ki|Ri|

|R|
× T P (Ri) (1)

where|Ri| indicates the number of states inRi,
Ki|Ri|
|R|

is the probability ofRi occurring andT P (Ri)
is the ACET of executingP with inputRi.

Then, taking random bag preserving programs/operationsP andQ such that executingP on random
bagR results in random bagR′, the ACET of executingP followed byQ is:

T P ;Q(R) = TP (R) + T Q(R′) (2)

3

Mathematica

Definitions
 Operation

Soot Options MOQA Code

Jimple

Call Graph CFG

Functions

Handlers XML Engine

Stmt TimesTrackers

BTSG

Unit Time

Soot

Analyser

Figure 3. Distritrack architecture.

For the purpose of this paper we will focus on two mainMOQA operations. For a complete descrip-
tion of the operations, designed to capture traditional data structuring operations in a randomness
preserving fashion, we refer the reader to the Springer book [9].

Here we focus on theMOQA deletion operationDel, theMOQA product operation
⊗

and the
MOQA split operation.TheMOQA product operation enables the user to “merge” twoMOQA
data structures into a newMOQA data structure. For the specific case of list labellings, this operation
corresponds to the traditional merging of two lists. The product of a single element data structure
with a larger data structure amounts to the classial insertion operation of inserting an element into
a given data structure. TheMOQA product operation uses the traditional PushUp and PushDown
operations on labels as part of its internal working. TheMOQA deletion operation enables the user
to remove a label from a given labelling in such a fashion that the original data structure is reduced to
a random bag of new data structures, with labellings not containing the deleted label. TheMOQA
split operations simply reorders label relative to a given label, similar to the partitioning operation
of standard Quicksort. Details for these operations are provided in [9]. Most applications of the
operations reduce to the specific cases outlined above and hence the application of the operations
in practice are a great deal simpler than the definitions over general random structures as presented
in [9]. We will indicate later on how to handle the worst-case analysis for the case of these two
operations.

3. Distritrack

3.1. Overview

Figure 3 gives an overview of the design of Distritrack.

The most important aspect of Distritrack [3] is its ability to track theMOQA data structures. This is

4

the fundamental requirement inMOQA which allows the ACET of its operations to be calculated.
To allow this,data structure representations were formulated. These reflect the series-parallel nature
of MOQA’s data structures and facilitate the application of thecomposition laws (cf. Chapter 6 of
[9]) and the evaluation of formulae for multiplicities and the numbers of states.

At any point in a program each variable referencing aMOQA data structure has arandom bag
tracker associated with it. A random bag is represented as a collection of the data structure represen-
tations, in effect corresponding to random structures, which together represent all possible states of
the corresponding data structures.

To achieve this, the static analysis performed by Distritrack takes each statement in the code and
handlers simulate its effects on the actual data structures by altering the corresponding data structure
representations in the random bags being tracked. This can be viewed as an abstract interpretation
of the semantics ofMOQA operations. The “abstract” semantics are encapsulated in XML and
processed by Distritrack’s XML engine.

In order to be able to analyse the code effectively on a statement by statement basis, Distritrack
performs a flow analysis [5] of the program. This is done by the construction of a control-flow graph
and call graph for the program using a tool called Soot [8]. Information on the analysis is encapsulated
in another graph called a BTSG.

Distritrack gives special attention to statements such asfor loops2, recursive calls andif statements
which affect the control flow. The first two complicate the tracking of the data structure represen-
tations because the effects of a statement can not generally be analysed in isolation and have to be
simulated for a symbolic number of executions, e.g.n. To solve this problem the use ofrecursive
data structures (RDS) [4] was incorporated.

RDSs are especially suited for recursion. InMOQA theory there are two templates defined for
recursion based on the series-parallel nature of the data structures. For Distritrack these have been
generalised to give a more standard template for recursion. It is calledseries-parallel recursion and
is defined informally as follows:

Q(Y) = R(Y); P (Q(Y1); . . . ; Q(Yk))

whereR transforms SPPOY into Y1, . . . , Yk which can be in series or parallel andP processes the
results of the recursive calls. EitherP or R can be optionally excluded.

We also developed a set of rules for the construction of RDS definitions directly from the code asso-
ciated withfor loops. These rules are quite powerful but also require templates to be imposed on the
loop bodies.

Processingif statements and more specifically the conditions they depend on was very challenging.
However for a limited category of conditions calculating probabilities and determining the effects on
data structure representations is possible to automate in Distritrack. When a probability is not possible
to calculatecases are incorporated into the formulae for the ACETs, effectively resulting in separate
ACETs for true and false branches.

Evaluating the formulae at various points in the analysis is achieved by interacting with Mathematica.

2Other types of loops likewhile are currently not considered.

5

(a) op = ‖ (b) op = ⊗

GS 3op

(c)

Figure 4. Group structure with a repeat value set to 3.

The final output of Distritrack are ACET formulae built in a modular way from the program statements
and RDS formulae if required. These will generally be recurrence equations.

The analysis performed by Distritrack is quite flexible. The analysis itself requires little user interac-
tion with only some guidance on the processing of RDSs being provided through code annotations.
The tool can handle not only all the features ofMOQA but also many aspects of the Java program-
ming language. The analysis is interprocedural and can span multiple Java classes. Constructors,
overloaded methods, class hierarchies and many other complex features can be handled.

Here we give an overview of the data structure representations that are incorporated into Distritrack for
tracking the random bags. We will also discuss how some of the required information for calculating
ACETs can be derived from these representations.

3.2. Data Structure Representations

The means by which Distritrack tracks values during its analysis ofMOQA programs is through the
use oftrackers. The most important of these arerandom bag trackers. A random bag tracker is a
set ofrandom structure representations built usingfundamental SPPO (series-parallel partial order)
representations. A multiplicity is attached to each random structure representation.

Currently the fundamental SPPO representations incorporated into Distritrack areempty structure,
basic structure, primitive structure andgroup structure. An empty structure contains nothing and
a basic structure represents a single data structure node. A primitive structure contains exactly two
components directly reflecting the binary nature of the series and parallel operators. Group structures
are n-ary structures, i.e. they can contain an arbitrary number of components, all joined either in
series or in parallel. The components within the group structure can have arepeat value set which
determines the number of occurrences of the components defined in the group structure. Figure 4
shows an example of this. The repeat value can also be set to a symbolic value. Thus group structures
form an important aspect of Distritrack’s symbolic analysis.

In practice the tracking of the data structures is quite complicated and requires some more sophisti-
cated representations, including RDSs as mentioned above.

The tracking of data structures can be compared toshape-analysis [11]. For example, the data struc-
ture representations can be viewed asshape graphs and the use of symbolic values for repeat values
can be viewed assummarization. In both cases an abstract interpretation of the operations that modify

6

the shape graphs is used.

3.3. Calculating Operation ACETs

For a SPPO representation the most important values that need to be obtained are summarised as
follows:

|s| The size of the entire SPPOs.

|M(s)| The size of the set of maximal nodes (informally defined as having no parents) ins.

|m(s)| The size of the set of minimal nodes (informally defined as having no children) ins.

L(s) The number of states possible ons.

Composition Laws The ACET to manipulate labels in an SPPO based on the series-parallel struc-
ture. Currently the ACET is defined as the number of comparisons required, which is suitable
for the data restructuring algorithms currently implemented inMOQA. For example the sim-
ple composition lawσup, which gives the average number of comparisons to push the minimum
label from a minimal node up to a maximal node, is defined as follows (• is a single node):

σup(•) = 0

σup(A ⊗ B) = σup(A) + σup(B) + |m(A)|

σup(A‖B) =
|A|σup(A) + |B|σup(B)

|A| + |B|

Multiplicity The multiplicity of the random structure.

Many of these will be derived in a recursive way, with empty and basic structures providing the base
cases. The multiplicities are determined by the definitions of operation behaviour in the abstract
semantics supplied to Distritrack.

As an example lets look at primitive structures. A primitive structure can be represented as follows:
ps = s1 op s2, whereop is either⊗ or ‖ ands1, s2 are two components. The following lists the
recursive way in which the size related values are obtained:

• |ps| = |s1| + |s2|

• If op is⊗ then|M(ps)| = |M(s1)|. If op is ‖ then|M(ps)| = |M(s1)| + |M(s2)|.

• If op is⊗ then|m(ps)| = |m(s2)|. If op is ‖ then|m(ps)| = |m(s1)| + |m(s2)|.

Functions for counting the number of states and the composition laws are binary operations based
on the series parallel nature of the data structures. Therefore they can very naturally be applied to
primitive structures.

Though more complicated to derive, these values can also be obtained for group structures.

With these formulae, the ACET for an operation can then be obtained using Equation 1 where the
ACET on each random structure is derived using the composition laws.

7

1 3 3 1

Figure 5. Output of MOQA’s split operation on an atomic random structure of size 4.

4. Example

Listing 1 gives the code for Quicksort implemented inMOQA. For simplicity the code for Java 5’s
generics is omitted. The input tomethod1 is considered always to be a list.

Line 9 is an annotation which tells Distritrack to build a RDS definition for the first of the method’s
parameters. In this case the RDS is a a simple single random structure - the sorted list. The representa-
tion for this is built into Distritrack and is calledLinear. In general however Distritrack will generate
a new RDS definition based on the code of the recursive method. All annotations to Distritrack are
optional and, except for those related to generating RDSs, give information to Distritrack which may
make the output simpler or the analysis more efficient.

Line 13 contains theMOQA operationsplit which partitions the input list around a random pivot.
Figure 5 shows the output random bag ofsplit for an input list with4 nodes. The number under each
random structure represents its multiplicity. In practice Distritrack tracks the output for symbolic
sizes.

Lines 15 and 16 then recurse on the resulting partitions similar to the non-MOQA version of Quick-
sort code.

Listing 1. Quicksort in MOQA.
1 p u b l i c c l a s s Q u i c k s o r t T e s t {
2
3 p u b l i c O r d e r e d C o l l e c t i o n method (
4 O r d e r e d C o l l e c t i o n oc){
5 q u i c k s o r t (oc) ;
6 return oc ;
7 }
8
9 @Transform (param =0 , rep =RDSBuild . SR , name = ‘ ‘ L inear ’ ’)

10 p r i v a t e vo id q u i c k s o r t (O r d e r e d C o l l e c t i o n oc){
11 i f (oc . s i z e () > 1) {
12 NodeInfo p a r t i t i o n N I = oc . g e t D i r e c t N o d e I n f o I t e r () . nex t () ;
13 O r d e r e d C o l l e c t i o n p a r t i t i o n = oc . s p l i t (p a r t i t i o n N I) ;
14 I t e r a t o r aboveAndBelow = p a r t i t i o n . g e t D i r e c t S u b s e t I t e r () ;
15 q u i c k s o r t (aboveAndBelow . nex t ()) ;
16 q u i c k s o r t (aboveAndBelow . nex t ()) ;
17 }
18 }
19 }

Listing 2. Quicksort ACET Mathematica package.
q u i c k s o r t [n1] := Which [Greater [n1 , 1] , P lus [−1 ,n1 ,

Sum [Times [Power [n1 ,−1] , q u i c k s o r t [P lus [−1 ,n1 ,Times [−1 , r0]]]] , { r0 , 0 ,P lus [−1 , n1]}] ,
Sum [Times [Power [n1 ,−1] , q u i c k s o r t [r0]] ,{ r0 , 0 ,P lus [−1 , n1]}]] ,
True , 0] ;

8

method [n0] := q u i c k s o r t [n0] ;

Listing 2 gives the Mathematica package generated by Distritrack for the ACETs of the methods
analysed in the Quicksort example. The ACET of thequicksort method corresponds to the standard
Quicksort recurrence:

qs[n] = n − 1 +
2

n

n−1
∑

i=0

qs[i]

5. Extending Distritrack for WCET Analysis

Adapting Distritrack for a WCET analysis requires new composition laws which calculate the worst-
case number of basic operations executed on a random structure when aMOQA operation is encoun-
tered. Effectively these will select one of the states represented within the random structure which
gives the largest execution time.

To illustrate how this can be achieved we briefly discuss the worst-case execution times for the two
main operations discussed in the present paper: the product operation

⊗

and the deletion operation
Del.

5.1. Worst Case Running Times of Basic Operations

5.1.1. Delete

Let R be a random structure with an underlying partial orderA. If we call Del(r, k) on each labeled
SPPOr in R, the greatest number of comparisons made by any operation call isδW

up(A, k).

The δW
up function satisfies the following series-parallel recurrences (whereA andB are non-empty,

disjoint partial orders):

1. δW
up(A ⊗ B, k) =







δW
up(A, k) + |Bmin| − 1 + δW

up(B, 1) k ≤ |A|

δW
up(B, k − |A|) k > |A|

2. δW
up(A‖B, k) = max

(

δW
up(A, min(k, |A|), δW

up(B, min(k, |B|)
)

3. δW
up(•, k) = 0

5.1.2. Product

Let R be a random structure with an underlying partial orderA. If we replace the smallest label on
each labeled SPPO inR with a label which is larger thank members of the label set and smaller than
the others, and then call PushUp on the node with that label which simply pushes up the label, the
greatest number of comparisons made by any operation call isπW

up(A, k). We defineπW
down(A, k) in a

similar manner by replacing thelargest label and calling PushDown to push down a label.

If we similarly replace the smallest label on each labeled SPPO inR with a label greater thank
members of the label set and call a PushUp, the new label may be the label of a maximal node in the

9

output labeled SPPO. If this happens, then the greatest number of comparisons made by any PushUp
operation in these cases isµW

up(A, k). If not, thenµW
up(A, k) = −∞. We defineµW

down(A, k) in a
similar manner by replacing thelargest label and calling PushDown.

Let TW
P [I1, I2] be the worst-case running time for the unary product on the componentsI1 andI2 over

all labellings in the random structureR with underlying structureI1‖I2. Then we have

TW
P [I1, I2] ≤ (min(|I1|, |I2| + 1))(|I1,max| + |I2,min| − 1)+

+

min(|I1|,|I2|)
∑

i=1

[

πW
down(A, i) + πW

up(B, |B| + 1 − i)
]

TheπW
up andµW

up functions satisfy the following series-parallel recurrences (whereA andB are non-
empty, disjoint partial orders):

1. πW
up(A ⊗ B, i) =







max
(

πW
up(A, i), µW

up(A, i) + |Bmin|
)

i ≤ |A|

πW
up(A, |A|) + |Bmin| + πW

up(B, i − |A|) i > |A|

2. πW
up(A‖B, i) = max

(

πW
up(A, min(i, |A|)), πW

up(B, min(i, |B|))
)

3. µW
up(A ⊗ B, i) =

{

−∞ i ≤ |A|
µW

up(A, |A|) + |Bmin| + µW
up(B, i − |A|) i > |A|

4. µW
up(A‖B, i) = max

(

µW
up(A, min(i, |A|), µW

up(B, min(i, |B|)
)

5. πW
up(•) = µW

up(•) = 0

5.2. Extending Distritrack

The advantage of extending Distritrack for WCET analysis is that the input-output trace that it cur-
rently undertakes leads to very accurate WCETs. With the new composition laws Distritrack can
compute the WCET for each random structure representation in a random bag being tracked as input
into an operation. This can be done without altering the way in which the random bag trackers are
generated. When an entire method/program is analysed, the information obtained for each operation
is combined and the sequence of operation WCETs for the overall WCET can be derived. Existing
WCET tools already incorporate techniques for finding the maximum time required for different exe-
cution paths in a program, for example [1, 6]. These techniques could be applied in a similar fashion
to determine the WCET from the times associated with the random structures.

As an alternative, Distritrack could maintain the WCET to build a random structure up to each point
in the program analysis. Say operationopi is being analysed and its input is the random bagR.
Let WCETi−1(Rj) be the WCET required to build random structureRj within R by thei − 1 op-
erations beforeopi andT W

i (Rj) be the WCET of executingopi on Rj . Each random structure in
the output random bag resulting from the execution ofopi on Rj will be associated with the WCET
WCETi−1(Rj) + T W

i (Rj).

Then, after the last operation in a path of execution in a program, the WCET of that path will be the
maximum WCET value from the random bag output from the operation.

10

Other than this, the static analysis currently performed by Distritrack can remain largely unchanged.

This however does not use all the information provided by the data structure representations built by
Distritrack. The multiplicities may sometimes be useful in obtaining time estimates for the inputs to
an operation which are “most likely” to occur. In [7] this is shown to be important when, using the
WCET alone to determine deadlines in a real-time system, there is a large waste of resources when the
input that causes it occurs very infrequently. Therefore Distritrack can, for example, drop a WCET
value if the WCET occurs in a random structure that has a probability of occurring less than1

20
. This

of course is only relevant for soft real-time systems.

However multiplicities in this case only lead to a partial solution. While the states within a random
structure have a uniform distribution, we currently do not have information on the distribution of
the execution times over the states. It may be possible however to develop ways of extracting such
information, again similar to the way the current composition laws derive ACETs.

Multiplicities may also indicate which random structures contain the worst case state for an operation.
It has been observed that the WCET generally occurs in a random structure which contains the largest
atomic (single nodes in parallel) components. In terms ofdivide and conquer, this makes sense. As
it turns out, the output from operations that create atomic components in series appear to always have
the lowest multiplicity attached to the random structure containing the largest atomic components.
This may be because these random structures contain more states and therefore fewer copies occur.
An example of this can be found in the output ofMOQA’s split operation. For size4, in Figure 5
it can be clearly seen that the random structures containing the largest atomic components have the
lowest multiplicity. These also form the worst case input into the recursive call of quick sort.

6. Conclusion

In this paper we have given an overview of a new programming paradigm calledMOQA and a corre-
sponding tool called Distritrack. Distritrack performs a static analysis ofMOQA programs, tracking
the data structures and their distributions as they are input to and output from program statements in
order to derive the ACET.

We discussed how Distritrack can have its ACET static analysis extended to derive WCET and other
time measures using the information provided by the tracking of the data structures. We have pro-
vided some initial ideas to serve as a basis on which to investigate this further, supporting a future
implementation of the tool in which the estimates provided for improved resource budgeting in soft
real-time applications can be supplemented with accurate WCET deadlines for hard real-time appli-
cations.

The price of the accurate results obtained by Distritrack are some limitations on the static analysis
which are required to obtain the tight tracking of the data structures, e.g. the analysis must be context-
sensitive in that all program paths have to be analysed separately.

References

[1] R. Chapman, A. Wellings, and A. Burns. Integrated program proof and worst-case timing anal-
ysis of spark ada. InProceedings of the Workshop on Language, Compiler, and Tool Support for
Real-Time Systems, June 1994.

11

[2] Philippe Flajolet, Bruno Salvy, and Paul Zimmermann. Automatic average-case analysis of
algorithms.Theor. Comput. Sci., 79(1):37–109, 1991.

[3] David Hickey. Distritrack: Automated average-case analysis. InQEST ’07: Proceedings of
the Fourth International Conference on Quantitative Evaluation of Systems, pages 213–214,
Washington, DC, USA, 2007. IEEE Computer Society.

[4] C. A. R. Hoare. Recursive data structures.International Journal of Parallel Programming,
4(2):105–132, 1975.

[5] Flemming Nielson, Hanne R. Nielson, and Chris Hankin.Principles of Program Analysis.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1999.

[6] Peter Puschner. Worst-case execution time analysis at low cost.Control Engineering Practice,
6:129–135, Jan. 1998.

[7] Peter Puschner and Alan Burns. Time-constrained sorting – a comparison of different sorting
algorithms. InProc. 11th Euromicro International Conference on Real-Time Systems, pages
78–85, Jun. 1999.

[8] McGill University Sable. Soot, a java optimization framework. www.sable.mcgill.ca/soot.

[9] M. P. Schellekens.A Modular Calculus for the Average Cost of Data Structuring. Springer,
August 2008. http://www.springer.com/computer/foundations/book/978-0-387-73383-8.

[10] M. P. SchellekensMOQA; unlocking the potential of compositional static average-case anal-
ysis. In Journal of Logic and Algebraic Programming, accepted for publication, to appear.

[11] Reinhard Wilhelm, Shmuel Sagiv, and Thomas W. Reps. Shape analysis. InCC ’00: Proceed-
ings of the 9th International Conference on Compiler Construction, pages 1–17, London, UK,
2000. Springer-Verlag.

12

