
TOWARDS PREDICATED WCET ANALYSIS

Amine Marref, Guillem Bernat1

Abstract
In this paper, we propose the use of constraint logic programming as a way of modeling context-
sensitive execution-times of program segments. The context-sensitive constraints are collected auto-
matically through static analysis or measurements. We achieve considerable tightness in comparison
to traditional calculation methods that exceeded 20% in some cases during evaluation. The use of
constraint-logic programming in our calculations proves to be the right choice when compared to the
exponential behaviour recorded by the use of integer linear-programming.

1. Introduction

WCET analysis have been explored for about two decades and can be divided into three categories:
end-to-end testing, static analysis (SA), and measurement-based analysis (MBA) [6]. SA and MBA
finds the WCET of a program as follows: (a) decomposing the program into segments, (b) finding
the execution times of these segments, and (c) combining these execution times using a calcula-
tion technique: tree-based [5], path-based [8], or implicit path-enumeration (IPET) [9, 14]. Path-
based methods suffer from exponential complexity and tree-based methods cannot model all types of
program-flow, leaving IPET as the preferred choice for calculation because of the ease of expressing
flow dependencies and the availability of efficient integer linear-programming (ILP) [1] solvers.

Current calculation techniques struggle to cope with variations in execution times of program seg-
ments caused by modern-hardware speed-up features because of the complexity resulting from mod-
eling all these timing variations. This motivates the use of a more powerful calculation technique
which copes with execution time variations and yields tighter, more context-sensitive WCET estima-
tions.

We proceed by identifying the necessary conditions leading to the observation of different execution
times of program segments. These conditions are expressed as implications which by definition are
disjunctions (if a and b are predicates than (a ⇒ b) ≡ (¬a ∨ b)). There can be many segments which
have multiple execution times, and each execution time of the segment is caused by one or more
segments that previously executed. This makes the total number of constraints to handle considerably
large.

In the current work, we use constraint-logic programming (CLP) [2] in order to express the con-
straints governing the execution flow and times of the segments in the program. All constraints
including implications/disjunctions can be encompassed in the same model using CLP and with no
model expansion. These two features make CLP solve an IPET model within seconds, which is
otherwise solved using ILP in hours because of model duplication (ILP handles disjunction through
model duplication). CLP also enables the integration of execution-time analysis of many hardware
components (Section 6), an issue that has never been properly resolved (Section 2).

1Department of Computer Science, University of York, Heslington, YO105DD, UK

ECRTS 2008
8th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis
http://drops.dagstuhl.de/opus/volltexte/2008/1667

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62913643?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The rest of the paper is organized as follows. Section 2 describes related work. Section 3 establishes
the required terminology. Section 4 explains the deriving of constraints required for CLP calcula-
tion by either static analysis or through measurements. Section 5 explains how the constraints are
expressed in CLP and highlights the problems encountered when trying to express the constraints
in our work using ILP. Section 6 shows an example where constraints derived from many hardware
components analysis are integrated together. Section 7 shows the tightness in WCET estimations we
obtained during the evaluation of our context-sensitive calculation. Finally, Section 8 summarizes the
important results and sets aims for future work.

2. Related Work

WCET analysis using context-sensitive IPET is not novel, the idea has been around for a long time.
What is common in the literature is that execution-context could not be fully exploited because of the
exponential complexity that usually accompanies the process. In addition, the focus has always been
to achieve context sensitivity in the execution counts of segments rather than the execution times due
to the fact that ILP is used to compute the solution which is by definition linear (i.e. either execution
counts or execution times can vary but not both).

There has been much work on WCET calculation using IPET starting in [9, 14] where the execution
times are constant. In later work e.g. [10, 4], ILP was used to represent more execution history by
modeling caches, pipelines, branch predictors, and speculative execution. The objective function is
generally augmented by execution-time gains/penalties resulting from the use of the hardware com-
ponent being analysed. These objective functions have not been integrated together because of their
complexity. Each segment has two execution times at most.

In a very recent work [16], timing variability of basic blocks with respect to pipelines has been anal-
ysed where there can be multiple execution times of a basic block depending on the subpath previously
traversed, then ILP is used to calculate the overall WCET.

By and large, the work in [7] is the most related to ours. In [7] WCET calculation is performed us-
ing the notion of scopes to provide context-sensitivity mainly through constraining execution counts.
At the low-level, the execution-times of segments are expressed in a scenario-based fashion where
multiple execution times are allowed in theory. The integration in the ILP model requires bounds on
different execution times of a basic block to be known a priori which as we shall see (Section 5.2)
still generates pessimism and are very hard to derive. The work in [7] assumes that the constraints
are provided by a user, so although the calculation is context-sensitive, its practical value is limited to
when such constraints are available. The low-level constraints such as “block B1 has got execution
time 100 at most six times” are very unlikely to be provided by the user and must be derived automat-
ically which is hard. This leads to the fact that the evaluation incorporated only the pipeline effects of
a block over its immediate predecessor i.e. a block has at most two execution times.

Our work is different firstly in the sense that it allows all conditional execution-times to be expressed
easily so there is no need for akwardly written ILP objective functions. The constraints governing
the observation of execution times of a block are determined automatically without the need to put
bounds on the number of such observations which are then computed exactly using CLP. Secondly, all
constraints with respect to all hardware components are integratable together by simple conjunctions.
Thirdly, solving these constraints using CLP takes seconds while it can take hours using ILP. Finally,
the calculation is path-sensitive and introduces no pessimism as we shall demonstrate in Section 5.2.

3. Definitions

The core unit of the proposed calculation method is the basic block which is a contiguous sequence
of instructions where the first instruction is jumped to (or is the first instruction of the program) and
the last instruction is jumped from (or is the last instruction of the program) [11]. Each basic block
Bi (i ∈ [1..n]) is associated an execution count xi and an execution time ci. When Bi has θi execution
times, these will represented as cj

i where j ∈ [1..θi]. We also define wceti, bceti to be the WCET and
BCET of block Bi respectively.

The program under-analysis is represented by a control-flow graph (CFG) which is defined as a tuple
(V, E). V is the set of vertices, in this case the basic blocks in the program, |V | = n. E is the set of
edges, which in this case are the transitions between the basic blocks in the program.

In order to express conditional execution-time observation, we use the operator ’/’. For example
cj/i = α means that cj = α iff Bi is executed. A block Bi is the predecessor of a block Bj if there is
sequence of one or more edges from Bi to Bj not containing a back-edge [11].

4. Deriving the Constraints

We use predicated WCET analysis which we define as performing WCET analysis by considering all
different execution times of a program segment and expressing them as the outcomes of executing
some other segments in the past. There is therefore the need to (a) identify the different execution
times of a program segment and (b) identify the -previously executed- program segments that cause
these execution times. Without loss of generality, we use the basic blocks as our program segments.

4.1. Constraints Using SA

The number of different execution times of a basic block varies with the complexity of the architecture
where it runs. A complex architecture causes a basic block to exhibit a large number of different
execution times. So far, we can express execution dependency constraints with respect to instruction
caches (icaches), data caches (dcaches), static branch predictors, and pipelines. To maintain clarity,
we will only address the derivation of icache constraints.

The analysis of the icache deals with deriving execution time dependencies between blocks in the CFG
by exploiting basic-block layout in main memory2. We start by finding the WCET and BCET of all
basic blocks. If Bi shares a program line with Bj , then the effect is expressed using the constraint xi >
0 ⇒ cj = cj/i. We determine how many program lines belonging to Bj are loaded by the execution
of Bi, let this be α lines. Block Bj acquires a new execution time cj/i := wcetj−α× (im− ih) where
im is the icache miss latency, and ih is the icache hit latency. If Bi displaces a program line used by
Bj in a loop, then similarly cj/i := bcetj + β × (im − ih).

The analysis is easily automated. For each block Bi, we find the blocks that share program lines
with it, and the blocks that conflict with it in some icache blocks. The start and end addresses of the
basic blocks, together with knowledge about the icache architecture enable the block execution-time
dependency-analysis with respect to the icache.

2The CFG is constructed from the disassembled binary file of the program and hence basic block start and end addresses -
in main memory - are available.

Studying cache conflicts is not novel in this work as it has been used in SA in the past [12]. The
novelty here is in using SA to derive new execution times and link these execution times to past
execution. Müeller [12] performed a complete analysis on instruction caches where icache accesses
are identified as being hits, misses or unknowns. Since the analysis must be safe, unknowns are
considered as being misses. This can be a great potential of pessimism in the evaluated WCET. In
Figure 2(a) - ignoring the constraints - the returned WCET is 3200 assuming c3 = 70.

4.2. Constraints Using Traces

Execution-trace analysis can also be used to derive the constraints of the CLP problem. An execution
trace is a time-stamped execution of the program which can be obtained using a tracing method [13]. It
contains all instructions executed during a particular run of the program with timing information. The
execution trace can be exploited to derive constraints on the execution-counts of program segments
or constraints on their execution-times.

Conditional execution times can be learnt from traces where a particular execution time of a block
B1 is recorded whenever B2 is executed. The quality of the generated traces affects the correctness
of the derived constraints. If traces are generated using full-path coverage, it is guaranteed that the
timing constraints are learnt exactly. However, path coverage is impractical, so a less costly coverage
metric must be employed. Unfortunately, functional testing coverage metrics are not adequate for our
task as they do not consider the temporal properties of the program, and hence there is a need for new
coverage metrics. We are currently exploring ways of generating appropriate test vectors that help
obtain maximum variability in block execution times and executed paths using genetic algorithms.

5. Modeling the Constraints

In the last section we explain how conditional execution-times are expressed using implications. In
this section we explain how CLP is used to model these constraints. In order to see the benefits of
using CLP in our work, a comparison against ILP is made to illustrate the constraints that can be
expressed better using CLP. In literature [9, 14], the constraints used in ILP are flow constraints. We
use flow constraints and introduce time constraints.

5.1. Flow Constraints

These constraints express the rules governing the execution flow and dependencies in a program, these
are divided into structural and functional constraints. Structural constraints preserve the execution
flow of the program, and functional constraints describe aspects of program-execution behaviour. For
a formal description, see [9, 14]. For instance, for any two blocks Bi and Bj , if we want to express that
they are on the same path where Bj is inside a loop, the constraint (xi > 0∧xj > 0)∨(xi = 0∧xj = 0)
is used in the CLP model. When the two blocks are outside any loop, the constraint xi = xj is enough
to express same-path relation. Mutual exclusion is represented similarly.

In this paper, the only type of flow constraints that is included in the CLP model are structural con-
straints. We do not detect functional constraints such as infeasible paths, so the model does not
incorporate them. However, they can be added if available.

5.2. Time Constraints

These constraints describe the necessary conditions - expressed in terms of execution flow - that must
hold to give rise to a particular execution time of some basic block. Given a basic block Bi with
θi execution times c1

i , c
2
i , ..., c

θ
i , Bi is affected by a set Ψi of σi blocks B1, B2, ..., Bσi

. In general
i /∈ [1..σi], but in some special cases where the block size is larger than the icache size or when it
accesses a variable whose size is larger than the dcache i ∈ [1..σi]. Every block Bk, k ∈ [1..σi] can
either execute or not execute, so there is a total of 2σi different effects on block Bi. These effects are
best visualized by imagining a truth table of θi variables where a 0 means block not executing and 1
means block executing. The relation 2σi ≥ θi must hold because every execution time of a block Bi

must be related to previous execution history. When 2σi > θi, there will be some effects of the blocks
in Ψi that are either equivalent (map to the same execution time) or impossible (the corresponding
combination of blocks is not possible). Notice that in the architecture we consider, θi is usually small.
Blocks Bi with large size can have a considerable θi.

Impossible effects can be ruled-out before passing the time constraints to the solver, or they can
(eventually) be eliminated by the solver. Equivalent effects can be simplified using boolean algebra
techniques and then passed to the solver. Obviously, the degree of simplification will be different for
every equivalence class of time constraints.

Next we need to generate the conditional execution-time relations. Conditional execution times of Bi

are expressed using
(x1 ¯ 0 ∧ x2 ¯ 0 ∧ ... ∧ xσi

¯ 0 ⇒ ci = cj
i) (1)

where each ¯ stands for greater than (>) xor equal (=) (the ¯ can have a different instantiation in
each occurrence in the same time constraint). The time cj

i is the execution time observed for a given
instantiation of the operators ¯ e.g. (x1 > 0 ∧ x2 > 0 ∧ ... ∧ xσi

> 0 ⇒ ci = 100).

Adding more constraints to the constraint model generally helps prune the search. The potential large
number of time constraints is expected to speed-up the constraint search. For example, assume two
blocks B1, B2 affecting the execution time of a third block B3 in the following way:

(x1 = 0 ∧ x2 = 0 ⇒ c3 = 1)
∧(x1 = 0 ∧ x2 > 0 ⇒ c3 = 2)
∧(x1 > 0 ∧ x2 = 0 ⇒ c3 = 3)
∧(x1 > 0 ∧ x2 > 0 ⇒ c3 = 4)

(2)

The search space is

(x1, x2, c3) ∈ {({0}, {0}, {1}), ({0},Z+∗, {2}), (Z+∗, {0}, {3}), (Z+∗,Z+∗, {4})} (3)

In the absence of these constraints, the search space is:

(x1, x2, c3) = (Z+,Z+, {1, 2, 3, 4}) (4)

The size of the search space in Formula 3 is (|Z+∗|2 + 2× |Z+∗|+ 1). The size of the search space in
Formula 4 is (4× |Z+|2). As can be seen, the time constraints partition the (non-linear) search space.

It is still possible to express conditional execution times in ILP at the cost of great complexity. This
can be achieved through model duplication (ILP1) or bounds on execution times (ILP2).

B1

B2

B3 B4

B5

B6

B7

(a)

B1

B2

B3 B4

B5

B6a B6b

B7

(b)

B5

B1 B2

B3 B4

(c)

B5d

B1 B2

B3 B4

B5a B5b B5c

(d)

Figure 1: Time constraints for ILP

ILP1. Consider Figure 1(a) where c6/3 = 7 and c6/4 = 10. The basic ILP formulation of the problem

when c6 is constant is to maximize the sum
7∑

i=1

ci × xi. When c6 is not constant, the term c6 × x6

needs to be expanded further. This is done by duplicating B6 as is shown in Figure 1(b) and adding
mutual-exclusive path information to the model.

In Figure 1(b), B6 with execution times {7, 10} is expanded to B6a with execution time c6a = 7 and
B6b with execution time c6b = 10. Since c6 = c6a = 7 is observed only when B3 is executed, we
can state that B6a is mutually exclusive with B4. The same argument is made for B6b and B3. The
updated ILP formulation becomes (c1x1 +c2x2 +c3x3 +c4x4 +c5x5 +c6ax6a +c6bx6b +c7x7) with the
additional constraints that express mutual exclusivity. The ILP problem needs to be solved for each
set of mutual exclusive paths, then the best solution is taken. The number of model copies to solve
grows exponentially with the number of nodes that have multiple execution times and the number of
different times they have (e.g. Figures 1(c), 1(d)).

ILP2. The other way to express conditional execution-times is to impose bounds on the number of
times each single execution time is observed. This allows all constraints to be solved by a single run
of the model and with expanding only the blocks in question. However, this only works provided the
bounds on the observation of different execution times are available which is very hard to determine
statically. In addition, the returned WCET will not be as accurate as the WCET returned by CLP or
ILP1. The reason for this is that there is no path information in ILP2 compared to CLP, ILP1.

6. Example of Integration

Figure 3 shows (a) a program written in pseudo-assembly, (d) its CFG, (b) its block memory layout,
and (c) the referenced variables placement in the dcache. We are interested in analysing the execution
time of B4 which has the value wcet4 in its worst case. This is equivalent to performing 3 icache
misses, 2 dcache misses, and starting execution from a flushed pipeline. Block B4 is reached from
three blocks: B1, B2, B3 where no block in these three blocks is a predecessor of another one. Assume
all blocks are outside any loop.

If B4 is executed after B1, it gains nothing in execution time with regards to icache because B1 loads
program lines PL1 and PL2 neither of which is used by B4. Block B4 however gains in dcache
execution by 1 × (dm − dh) because B1 loads data line DL1 which is used by B4. Finally, B4 gains

x10

B0

B3

B2B1

(x1 > 0 ⇒ c3 = 70)

c0 = 50

c1 = 100

c2 = 200

c3 ∈ [10, 70]

∧(x1 = 0 ⇒ c3 = 10)

wcet = 2600

(a)

x10B2B1

B0

B3bB3a

wcet = 2600

c3b = 10
c3a = 70
c2 = 200

c1 = 100

c0 = 50

(x1 > 0 ∧ c3b = 0) ∨ (x1 = 0 ∧ x3b > 0)

(x2 > 0 ∧ c3a = 0) ∨ (x2 = 0 ∧ x3a > 0)

(b)

x10B2B1

B0

B3bB3a

c3b = 10

c3a = 70

c2 = 200

c1 = 100

c0 = 50

x3a ≤ 7

x3b ≤ 8
wcet = 3020

(c)

Figure 2: The time constraints and the corresponding WCET using CLP (a), ILP1(b), and ILP2(c). In
(a) the nodes not duplicated, conditional execution times are added. In (b) and (c), the nodes with
variable execution times are duplicated. In (b), mutual exclusion constraints are added. In (c), bounds
on the execution counts of nodes with variable execution times are added.

jmp B4

ld d, 4

ld c, 6

jmp BX

ld d, 8

jne B4

ld a, 1B1:

B2:

B4:

ld c, 3

ld a, 5

B3: ld b, 7

ld b, 2

(a)

PL9

B1

B2

B3

B4

PL1

PL2

PL3

PL4

PL5

PL6

PL7

PL8

(b)

not a,b

DL1

DL2

DL3

DL5

DL4

contains a,b
not c,d

contains c,d

(c)

B4

B1 B2 B3

(d)

Figure 3: The disassembly code, memory layout, dcache content and a CFG window of a block B4

affected by blocks B1, B2, and B3

g1 cycles because of the pipelined execution of B1; B4 (no misprediction can occur as the jump is
unconditional).

If B4 is executed after B2, it gains 1× (im− ih) with regards to icache because B2 loads program line
PL3 which is used by B4. Block B4 gains in dcache execution by 1 × (dm − dh) because B2 loads
data line DL2 which is used by B4. Finally, B4 gains g2 cycles because of the pipeline execution of
B1; B4. Here assume g2 > g1.

If B4 is executed after B3, it gains nothing in execution time with regards to icache because B1 loads
no program line that is used by B4. Block B4 gains in dcache execution by 2× (dm− dh) because B3

loads data lines DL1, DL2 which are used by B4. Finally, B4 gains g3 cycles because of the pipeline
execution of B3; B4. Here assume g2 > g3 > g1.

The execution time of B4 is captured by the constraint:

(x1 > 0 ⇒ c4 = wcet4 − (dm − dh)− g1)∧
(x2 > 0 ⇒ c4 = wcet4 − (im − ih)− (dm − dh)− g2)∧
(x3 > 0 ⇒ c4 = wcet4 − 2× (dm − dh)− g3)

(5)

7. Evaluation and Results

We obtain the execution times using Simplescalar [3]. We use pollution techniques to force the
WCET, BCET of each basic block in the program and compute this WCET, BCET by means of
measurements. The hardware used comprises a CPU with a single-issue in-order pipeline, icache
L1, dcache L1, and a static branch predictor. First, we analyse dependencies between basic blocks
with respect to the icache as we discuss in Section 4.1 (the process is automatic). Then we derive
the corresponding time constraints, and solve the constraints using ECLiPSe, a constraint logic
programming engine [2].

The objective of the evaluation is to show (a) that PWA yields tighter WCET estimations in compari-
son with HMU, and (b) show that the solution time to solve the CLP model is affordable.

We compare the tightness of the WCET values obtained using our Predicated WCET Analysis (PWA)
with a method that uses Hit, Miss, first-hit, first-miss, Unknown analysis (HMU) [12]. An HMU
icache analysis method quantifies the number of icache hits and misses per basic block. When the
icache access is guaranteed to be a hit or a miss, it is classified accordingly. When the icache access
is not guaranteed to be a hit or a miss (i.e. unknown), it is classified as a miss to achieve safety. Our
analysis method puts more context-sensitivity in the icache analysis by stating the condition under
which the icache access (considered a miss by HMU) will hit or miss.

We have tested our tool on some WCET benchmarks available from [15]. Table 1 shows the execution
times obtained using PWA and HMU on a representative3 subset of the benchmarks. The icache has
a size of 1k bytes. As can be seen, considerable tightness has been achieved in WCET for the first
three programs (select, fdct, fir) which can be explained by the large number of constraints -relative
to the number of blocks- which allows less pessimism during the constraint search.

The fourth program (lms) -although having the largest relative number of constraints in the table- does
not have the best WCET tightness using PWA. This is due to the nature of the constraints involved in
calculation. In our implementation, as a temporary solution to manage the large number of constraints
that a particular block can have, we decide that each basic block can be constrained by at most five
blocks. When a block is constrained by more than five blocks, its WCET is used during calculation.
The program lms has got a big loop which consumes more than half the number of its blocks (73),
which leads to many icache conflicts given the used icache configuration.

The last three programs (cnt, bsort, and ns) scored very small tightness. When these programs are run
on an icache with smaller size, they generate more constraints and score greater tightness.

The CLP solving time during evaluation (including some other programs) did not exceed a few sec-
onds. The solving process in ILP is usually instantaneous for one run but then becomes exponential

3Representative in terms of tightness i.e. the tightness scored with other programs from the benchmarks has more or less
one of the values shown in Table 1.

Table 1: WCETs of benchmark programs using PWA and HMU
program blocks implications wcet gainHMU PWA
1 select 40 27 558627 432803 22.6%
2 fdct 12 6 77759 66975 15%
3 fir 17 4 87822 81742 7%
4 lms 134 86 747776 724752 4.3%
5 cnt 36 2 94672 92912 1.9%
6 bsort 20 4 58179 57539 1.2%
7 ns 22 5 892708 888148 0.6%

when running all duplications. We use lp solve to solve each of the (linear) disjunctive ILP instances
(ILP1). Each instance is solved in few micro seconds. Using a more powerful ILP solver such as
CPLEX might cut down the time required to solve one instance of the disjunctive ILP. However, this
will only mean that (few) more time constraints can be tolerated. The exponential behaviour is still
present.

If for instance, the model has n time constraints and lp solve takes α units to solve each instance of
ILP1; the number n′ of time constraints that can be solved using CPLEX in the same amount of time
is n′ = n− ln(2)× ln(α/β) where β is the time taken by CPLEX to solve one instance. So if CPLEX
was a million times faster than lp solve (α = 106 × β), CPLEX can solve the same model with extra
10 time constraints in the same amount of time. The models in our case were solved in few micro
seconds, if the solver was a million times faster or more, they would be solved in few pico seconds or
less which is doable only by super computers.

8. Conclusions and Future Work

In this paper we have proposed the use of constraint-logic programming (CLP) to compute tight
values of WCET by using constraints derived through execution-time dependency-analysis. In this
work we have considered icache constraints only and we concluded that CLP is superior to integer
linear-programming (ILP) whenever there is a reasonable number of execution-time dependencies.
The choice of whether or not to use predicated WCET analysis (PWA) and CLP is dictated by the
nature of the program. If execution-time dependency-analysis reveals lots of constraints, it is worth
using PWA and CLP because considerable tightness may be achieved. In a future work, we will
show how constraints from other hardware components are derived. We are currently investigating
how to prove the safety of constraints derived using tracing. We are also working on improving the
calculation method so that constraints are solved more efficiently.

References

[1] A. Schrijver. Theory of Linear and Integer Programming. John Wiley & Sons, 1986.

[2] K.R. Apt and M. Wallace. Constraint Logic Programming using Eclipse. Cambridge University Press, New York,
NY, USA, 2007.

[3] D.C. Burger and T.M. Austin. The simplescalar tool set, version 2.0. Technical Report CS-TR-1997-1342, Univer-
sity of Wisconsin, Madison, 1997.

[4] C. Burguiere and C. Rochange. A contribution to branch prediction modeling in WCET analysis. In Proceed. of the
conf. on Design, Automation and Test in Europe, pages 612–617, Washington, USA, 2005. IEEE Computer Society.

[5] A. Colin and I. Puaut. Worst case execution time analysis for a processor with branch prediction. Real-Time Systems,
Special issue on worst-case execution time analysis, 18(2):249–274, April 2000.

[6] J.F Deverge and I. Puaut. Safe measurement-based WCET estimation. In Proceedings of the 5th International
Workshop on Worst Case Execution Time Analysis, pages 13–16, Palma de Mallorca, Spain, July 2005.

[7] A. Ermedahl. A Modular Tool Architecture for Worst-Case Execution Time Analysis. PhD thesis, Uppsala University,
Sweden, August 2003.

[8] C.A. Healy, R.D. Arnold, F. Müeller, M.G. Harmon, and D.B. Walley. Bounding pipeline and instruction cache
performance. IEEE Transactions on Computers, 48(1):53–70, 1999.

[9] Y.T. Steven Li and S. Malik. Performance analysis of embedded software using implicit path enumeration. In LCTES
’95: Proceedings of the ACM SIGPLAN 1995 workshop on Languages, compilers, & tools for real-time systems,
pages 88–98, New York, NY, USA, 1995. ACM Press.

[10] T. Mitra and A. Roychoudhury. A framework to model branch prediction for worst case execution time analysis. In
Proceedings of the 2nd Workshop on WCET Analysis, October 2002.

[11] S. S. Muchnick. Advanced Compiler Design and Implementation. Morgan Kaufmann Publishers, 1997.

[12] F. Müeller. Timing analysis for instruction caches. Real-Time Systems, 18(2/3):217–247, 2000.

[13] Stefan M. Petters. Comparison of trace generation methods for measurement based WCET analysis. In Proceedings
of the 3rd International workshop on worst-case execution time (WCET) analysis, pages 75–78, July 2003.

[14] P. Puschner and A.V. Schedl. Computing maximum task execution times - A graph-based approach. Real-Time
Systems, 13(1):67–91, 1997.

[15] Mälardalen WCET research group. Wcet project/benchmarks. http://www.mrtc.mdh.se/ projects/wcet/bench-
marks.html, January 2008.

[16] C. Rochange and P. Sainrat. A Context-Parameterized Model for Static Analysis of Execution Times. Transactions
on High-Performance Embedded Architecture and Compilation, 2(3):109–128, 2007.

